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REFINED KNOT INVARIANTS AND HILBERT SCHEMES

EUGENE GORSKY AND ANDREI NEGUT,

ABSTRACT. We consider the construction of refined Chern-Simons torus knot invariants by

M. Aganagic and S. Shakirov from the DAHA viewpoint of I. Cherednik. We give a proof

of Cherednik’s conjecture on the stabilization of superpolynomials, and then use the results

of O. Schiffmann and E. Vasserot to relate knot invariants to the Hilbert scheme of points on

C2. Then we use the methods of the second author to compute these invariants explicitly in

the uncolored case. We also propose a conjecture relating these constructions to the rational

Cherednik algebra, as in the work of the first author, A. Oblomkov, J. Rasmussen and V. Shende.

Among the combinatorial consequences of this work is a statement of the m

n
shuffle conjecture.

1. INTRODUCTION

In [3], Aganagic and Shakirov defined refined invariants of the (m,n) torus knot by con-

structing two matrices S and T that act on an appropriate quotient of the Fock space, and

satisfy the relations in the group SL2(Z) (as in the work of Etingof and Kirillov). They conjec-

tured that these invariants match the Poincaré polynomials of Khovanov-Rozansky HOMFLY

homology ([47, 46]) of torus knots. The computation of Khovanov-Rozansky homology for

torus knots is a hard open problem in knot theory, and the Aganagic-Shakirov conjecture has

been verified in a few cases when this homology can be explicitly computed from the definition.

In [10], Cherednik reinterpreted the construction of [3] in terms of the spherical double affine

Hecke algebra SH of type A, by replacing the SL2(Z) action on the Fock space representa-

tion by an SL2(Z) action on the DAHA. As such, he obtained a conjectural definition for the

three variable torus knot invariant known as the superpolynomial Pλ
n,m(u, q, t), defined for

all partitions λ and all pairs of coprime integers m,n. In Cherednik’s viewpoint, these super-

polynomials arise as evaluations of certain elements P λ
n,m in the DAHA. These elements are

polynomials in:

Pkn,km ∈ SH, ∀k ∈ Z,

by the same formula as the well-known Macdonald polynomials Pλ are polynomials in the

power sum functions pk, for all partitions λ. The DAHA SH is bigraded in such a way that

Pkn,km lies in bidegrees (kn, km), and the action of SL2(Z) on SH is by automorphisms which

permute the bidegrees of the elements Pkn,km. Cherednik constructs this action by a sequence of

elementary transformations, which are however rather difficult to describe by a closed formula.

Schiffmann and Vasserot ([60, 61]) give an alternate description of the DAHA by showing

that it is isomorphic to the elliptic Hall algebra. Under this automorphism, Pkn,km correspond

to the standard generators of the elliptic Hall algebra described by Burban and Schiffmann in

[8]. Moreover, Schiffmann and Vasserot show that SH acts on the K−theory of the Hilbert

scheme of points on the plane, and we will show that Cherednik’s superpolynomials can be

computed in this representation. We use this viewpoint to prove two conjectures announced by

Cherednik in [10] (let us remark that while the present paper was being written, Cherednik also

announced independent proofs in [10, Section 2.4.1]). The occurrence of the Hilbert scheme is

not so surprising: Nakajima ([53]) already used it to compute the matrices S and T of Aganagic

and Shakirov, although by using a different construction from ours.
1
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An explicit description of the action of Pkn,km on the K−theory of the Hilbert scheme was

obtained in [54], where these operators were shown to be described by a certain geometric

correspondence called the flag Hilbert scheme. We believe that a certain line bundle on this

moduli space is related to the unique finite-dimensional irreducible module Lm
n

of the rational

Cherednik algebra (see Conjecture 5.7 for a precise statement). A computational consequence

of our approach is the following formula for uncolored superpolynomials as a sum over stan-

dard Young tableaux.

Theorem 1.1. The superpolynomial Pn,m(u, q, t), defined as in [10], is given by:

(1)

Pn,m(u, q, t) =
∑

µ⊢n

γ̃n

g̃µ

SYT∑

of shape µ

∏n
i=1 χ

Sm/n(i)

i (1− uχi)(qχi − t)(
1− qχ2

tχ1

)
. . .
(
1− qχn

tχn−1

)
∏

1≤i<j≤n

(χj − qχi)(tχj − χi)

(χj − χi)(tχj − qχi)

where the sum is over all standard Young tableaux of size n, and χi denotes the q, t−1-weight

of the box labeled by i in the tableau. The constants in the above relation are given by:

(2) Sm/n(i) =

⌊
im

n

⌋
−

⌊
(i− 1)m

n

⌋
, γ̃ =

(t− 1)(q − 1)

(q − t)

and:

g̃µ =
∏

�∈λ

(1− qa(�)tl(�)+1)
∏

�∈λ

(1− q−a(�)−1t−l(�))

The notions of arm-length a(�) and leg-length l(�) of a box in a Young diagram will be

recalled in Figure 1.

We also give a prescription to compute general colored superpolynomials Pλ
n,m, for example

on a computer, although we do not yet have any “nice” formula. We use formulas such as (1)

to explore many combinatorial consequences, such as to prove or formulate conjectures about

q, t−Catalan numbers, parking functions and Tesler matrices in Section 6. The highlight is

an m
n

version of the shuffle conjecture [40], where a certain combinatorial sum over parking

functions in an m × n rectangle obtained by Hikita [43] is connected with the operators Pn,m

(see Conjecture 6.3 for all details). A sample of these results is a corollary of Conjecture 6.3,

which appears to be new and interesting by itself:

Conjecture 1.2. The “superpolynomial” Pn,m(u, q, t) can be written as a following sum:

Pn,m(u, q, t) =
∑

D

qδm,n−|D|t−h+(D)
∏

P∈v(D)

(1− utβ(P ))

Here the summation is over all lattice paths D contained below the main diagonal of an m×nl,

P goes over all vertices of D, δm,n = (m−1)(n−1)
2

and h+(D) and β(P ) are certain combinatorial

statistics (see Section 6.2 for details).

For m = n+1, the above identity was conjectured in [16] and proved in [37]. In the present

paper, we prove this conjecture in the limit t = 1. For many values of m and n, the above

conjecture has been verified on a computer.

We also note that Conjecture 1.2 can be regarded as a refinement of [57, Conjectures 23,24].

Indeed, in [57] the authors conjectured a relation between the Khovanov-Rozansky homology

of an algebraic knot and the homology of the Hilbert schemes of points on the corresponding

plane curve singularity. For torus knots, these Hilbert schemes admit pavings by affine cells,

and the homology can be computed combinatorially by counting these cells weighted with their

dimensions. It has been remarked in [57, Appendix A.3] that the corresponding combinatorial
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sum can be rewritten as a sum over lattice paths matching the combinatorial side of Conjecture

1.2. Furthermore, it has been conjectured in [57, Conjectures 23,24] that the Poincaré polyno-

mial for the Khovanov-Rozansky homology of torus knots can be rewritten as an equivariant

character of the space of sections of a certain sheaf on the Hilbert scheme of points on C2, and

this sheaf was written explicitly for m = kn± 1. For general m, a construction of such a sheaf

or its class in the equivariant K-theory was not accessible by the methods of [57] (see [57, p.

24] for the extensive computations).

In the present paper, we present a (conjectural) candidate for such a sheaf for all m co-

prime with n, using the geometric realization of Pn,m(u, q, t). To summarize, one can say that

Conjecture 1.2 would imply the agreement between the Aganagic-Shakirov and Oblomkov-

Rasmussen-Shende conjectural descriptions of HOMFLY homology of torus knots, though,

indeed, the relation between both of these descriptions to the actual definition of [47, 46] re-

mains unknown.

Another conjecture relates the operator Pm,n to the finite-dimensional representation Lm
n

of

the rational Cherednik algebra with parameter c = m
n

equipped with a certain filtration defined

in [35]. Such a representation is naturally graded and carries an action of symmetric group Sn

preserving both the grading and the filtration.

Conjecture 1.3. The bigraded Frobenius character of Lm
n

, equipped with the natural grading

and extra filtration (defined in [35]) equals Pm,n · 1.

This conjecture has bee mainly motivated by [35] where Lm
n

has been related to the Hilbert

schemes on the singular curve {xm = yn} and to the knot homology. For m = kn ± 1, the

conjecture follows from the results of [27, 28].

The structure of this paper is the following: in Section 2, we recall the basics on symmet-

ric functions, Macdonald polynomials, the double affine Hecke algebra, we state Cherednik’s

conjectures 2.6 and 2.7, and recall how they relate to the original construction of Aganagic

and Shakirov in Chern-Simons theory. In Section 3, we use the stabilization procedure of

Schiffmann-Vasserot to prove Cherednik’s conjectures by recasting his superpolynomials as

matrix coefficients. In Section 4, we discuss the Hilbert scheme and the flag Hilbert scheme,

and show how the machinery of [54] gives new formulas for torus knot invariants. In Section 5,

we discuss the connection between the Hilbert scheme and the rational Cherednik algebra, and

conjecture that a certain line bundle on the flag Hilbert scheme corresponds to the representa-

tion Lm
n

under the Gordon-Stafford functor. Finally, in Section 6, we present certain aspects

from the combinatorics of symmetric functions which arise in connection to our work, state

several conjectures about q, t−Catalan numbers, parking functions and Tesler matrices, which

we prove in several special cases.
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2. DAHA AND MACDONALD POLYNOMIALS

2.1. Symmetric functions. Consider formal parameters q and t, and let us define the following

ring of constants and its field of fractions:

(3) K0 = C[q±1, t±1], K = C(q, t)

Among our basic objects of study will be the algebras of symmetric polynomials:

V = K[x1, x2, . . .]
Sym, VN = K[x1, . . . , xN ]

Sym

In fact, the algebras VN form a projective system VN −→ VN−1, with the maps given by setting

xN = 0, and the inverse limit of the system is V . An important system of generators for these

vector spaces consists of power-sum functions pk =
∑

i x
k
i , for which we have:

V = K[p1, p2, . . .], VN = K[p1, . . . , pN ]

A linear basis of V is given by:

pλ = pλ1pλ2 . . . , as λ = (λ1 ≥ λ2 ≥ . . .)

go over all integer partitions. We have the scalar product 〈·, ·〉 on V given by:

(4) 〈pλ, pµ〉 = δµλzλ ∀ λ, µ

where z1n12n2 ... =
∏

i≥1 i
nini!. Then another very important basis of V is given by the Schur

functions sλ, which are orthogonal under the above scalar product and satisfy:

sλ = mλ +
∑

µ<λ

cµλmµ for some cµλ ∈ Z

where mλ = Sym
(
zλ1
1 zλ2

2 . . .
)

are the monomial symmetric functions, and < denotes the dom-

inance partial ordering on partitions: µ ≤ λ if µ1 + . . .+ µi ≤ λ1 + . . .+ λi for all i ≥ 1.

2.2. Macdonald polynomials. Another remarkable inner product on V was introduced by

Macdonald [50]:

(5) 〈pλ, pµ〉q,t = δµλzλ
∏

i

1− qλi

1− tλi
∀ λ, µ

The Macdonald polynomials Pλ are defined by the property of being orthogonal with respect

to 〈·, ·〉q,t and upper triangular in the basis of monomial symmetric functions:

Pλ = mλ +
∑

µ<λ

dµλmµ for some dµλ ∈ K

The square norm of Pλ is given by:

〈Pλ, Pλ〉q,t =
h′
λ

hλ
,

where:

hλ =
∏

�∈λ

(1− qa(�)tl(�)+1), h′
λ =

∏

�∈λ

(1− qa(�)+1tl(�))
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Here � goes over all the boxes in the Young diagram associated to the partition λ. The arm-

length a(�) (respectively, the leg-length l(�)) is defined as the number of boxes above (re-

spectively, to the right) of the box �. For illustration, see Figure 1.

a(�)a′(�)

l(�)

l′(�)

FIGURE 1. Arm, leg, co-arm and co-leg

There are various normalizations of Macdonald polynomials, and we will encounter their

integral form Jλ = hλPλ. We have:

(6) 〈Jλ, Jλ〉q,t = h2
λ〈Pλ, Pλ〉q,t = hλh

′
λ.

All these constructs make sense both in V (infinitely many variables) and in VN (finitely many

variables), and they are compatible under the maps V −→ VN . Let us now focus on the case of

finitely many variables. Fix a positive integer N and let:

ρN = (N − 1, N − 2, . . . , 1, 0)

Consider the evaluation homomorphism:

(7) εN : VN −→ K, εN(f) = f(tρ) = f(tN−1, tN−2, . . . , 1)

A simple computation reveals that:

(8) εN(pk) =
1− tkN

1− tk
=

1− uk

1− tk
,

where we capture the N-dependence in the new variable u = tN . Therefore, one can compute

εN(f) for a general symmetric function f by expanding it in terms of the pk and then using (8).

Theorem 2.1. ([50, eq. VI.6.17 and VI.8.8]) The following equations hold:

(9) εN(Pλ) =
1

hλ

∏

�∈λ

(tl
′(�) − uqa

′(�)) =⇒ εN(Jλ) =
∏

�∈λ

(
tl

′(�) − uqa
′(�)
)

where a′(�) (respectively, l′(�)) denote the co-arm and co-leg of � in λ (see Figure 1).

2.3. Double affine Hecke algebras. Following [14], we will define the double affine Hecke

algebra (DAHA) of type AN .

Definition 2.2. The algebra HN is defined over K by generators T±1
i for i ∈ {1, . . . , N − 1},

and Xj
±1, Yj

±1 for j ∈ {1, . . . , N}, under the following relations:
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(10)

(Ti + t−1/2)(Ti − t1/2) = 0, TiTi+1Ti = Ti+1TiTi+1, [Ti, Tk] = 0 for |i− k| > 1

TiXiTi = Xi+1, Ti
−1YiTi

−1 = Yi+1

[Ti, Xk] = 0, [Ti, Yk] = 0 for |i− k| > 1

[Xj , Xk] = 0, [Yj, Yk] = 0, Y1X1 . . .XN = qX1 . . .XNY1,X1
−1Y2 = Y2X1

−1T1
−2

The algebra HN contains the Hecke algebra generated by Ti, and two copies of the affine

Hecke algebra generated by (Ti, Xj) and (Ti, Yj), respectively. The basic module of HN is the

polynomial representation:

HN −→ End(C[X1, . . . , XN ]),

The element Xi acts as multiplication by xi, and Ti acts by the Demazure-Lusztig operator:

Ti = t1/2si + (t1/2 − t−1/2)
si − 1

xi/xi+1 − 1

where si = (i, i+1) are the simple reflections. Let us define the operators ∂i on C[X1, . . . , XN ])
by:

∂i(f) = f(x1, . . . , xi−1, qxi, xi+1, . . . xN ).

and introduce the operator γ = sN−1 · · · s1∂1 Set:

Yi = t
N−1

2 Ti · · ·TN−1γT
−1
1 · · ·T−1

i−1.

Then the operators Ti, Xj, Yj on VN satisfy the relations of the DAHA. A priori, these operators

do not necessarily send the subspace of symmetric polynomials VN to itself. However, it is

well-known that for any symmetric polynomial f , we have:

f(X1, . . . , Xn) : VN → VN , f(Y1, . . . , Yn) : VN → VN .

We will need the following result of Macdonald:

Proposition 2.3. ([50, eq. VI.3.4]) On the subspace VN of symmetric polynomials, the operator

δ1 := Y1 + . . .+ YN can be rewritten as:

(11) δ1 =
∑

i

Ai∂i, where Ai =
∏

j 6=i

txi − xj

xi − xj

.

In fact, the operator δ1 is diagonal in the basis of Macdonald polynomials of VN , with eigen-

values given by:

δ1 · Pλ(x) =

(
∑

i

tN−iqλi

)
Pλ(x).

This is part of an alternate definition of Macdonald polynomials as common eigenfunctions of

a collection of commuting differential operators, the first of which is δ1. Generalizing this, the

following result is the main theorem of [12]:

Theorem 2.4 ([12]). Let f be a symmetric polynomial in N variables. The operator:

Lf := f(Y1, . . . , YN)

is diagonal in the basis of Macdonald polynomials in VN , with eigenvalues:

(12) Lf · Pλ(x) = f(tρN qλ)Pλ(x).
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2.4. The SL2(Z) action. Letting e ∈ HN denote the complete idempotent, the spherical

DAHA is defined as the subalgebra:

SHN = e ·HN · e

There is an action of SL2(Z) on HN that preserves the subalgebra SHN . To define it, let:

τ+ =

(
1 1
0 1

)
, τ− =

(
1 0
1 1

)

be the generators of SL2(Z). Then Cherednik ([14], see also [61]) shows that:

(13) τ+(Xi) = Xi, τ+(Ti) = Ti, τ+(Yi) = YiXi(T
−1
i−1 · · ·T

−1
i )(T−1

i · · ·T−1
i−1)

τ−(Yi) = Yi, τ−(Ti) = Ti, τ−(Xi) = XiYi(Ti−1 · · ·Ti)(Ti · · ·Ti−1)

extend to automorphisms of HN , and they respect the relations in SL2(Z). This action allows

one to construct certain interesting elements in HN . Start by defining:

P λ,N := Pλ(Y1, . . . , YN) ∈ SHN

For example, P (1),N = δ1 is the sum of the Yi. For any pair of integers (n,m) with gcd(n,m) =
1, let us choose any matrix of the form:

γn,m =

(
x n
y m

)
∈ SL2(Z)

Definition 2.5. (and Proposition, see [14], [61]) The elements:

P λ,N
n,m := γn,m(P

λ,N) ∈ SHN

do not depend on the choice of γn,m.

The same construction can be done starting from the power-sum symmetric functions:

pNk := Y k
1 + . . .+ Y k

N ∈ SHN .

Acting on them with γn,m gives rise to operators:

PN
kn,km := γn,m(p

N
k ) ∈ SHN

As in the above Proposition, these do not depend on the particular choice of γn,m. Since the

Macdonald polynomials P λ,N are polynomials in the power-sum functions pNk , then the P λ,N
n,m

are polynomials in PN
kn,km. These can be easily calculated on a computer.

2.5. Cherednik’s conjectures. Following [10], we define the DAHA-superpolynomials:

Pλ,N
n,m(q, t) = εN(P

λ,N
n,m · 1) ∈ K, PN

kn,km(q, t) = εN(P
N
kn,km · 1) ∈ K

where εN is the evaluation map of (7). Since the operators P λ,N
n,m can be expressed as sums of

products of PN
kn,km, we will see that the superpolynomials Pλ,N

n,m (q, t) can be expressed in terms

of the matrix elements of PN
kn,km. Therefore, we will mostly focus on the latter, and in Section

4 we will show how to compute them. The following conjectures were stated in [10]:

Conjecture 2.6 (Stabilization). There exists a polynomial Pλ
n,m(u, q, t) such that:

Pλ,N
n,m(q, t) = Pλ

n,m(u = tN , q, t)
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Conjecture 2.7 (Duality). Define the reduced superpolynomial by the equation:

Pλ,red
n,m (u, q, t) =

Pλ
n,m(u, q, t)

Pλ
1,0(u, q, t)

Then the polynomials P for transposed diagrams are related by the equation:

q(1−n)|λ|Pλt,red
n,m (u, q, t) = t(n−1)|λ|Pλ,red

n,m (u, t−1, q−1).

One of our main results is a proof of the above conjectures, to be given in Subsections 3.4

and 4.5.

2.6. Refined Chern-Simons theory. In this section we describe the approach of Aganagic and

Shakirov, which has its roots in Chern-Simons theory. A 3-dimensional topological quantum

field theory associates a number Z(M) to every 3-manifold, a Hilbert space Z(N) to a closed

2-manifold N , and a vector Z(M) ∈ Z(∂M) to a 3-manifold M with boundary. All our

3-manifolds may come with closed knots embedded in them.

We will be interested in invariants of torus knots inside the sphere S3. The sphere can be

split into two solid tori glued along the boundary, and the Hilbert space Z(T 2) associated to

their common boundary can be identified with a suitable quotient of V . This quotient has a

basis consisting of Macdonald polynomials labeled by Young diagrams inscribed in a k × N
rectangle. One can think of Macdonald polynomials as invariants of the meridian of the solid

torus colored by these diagrams. The space Z(T 2) is acted on by the mapping class group of

the torus, namely SL2(Z), as constructed in [3].

Consider the (m,n) torus knot colored by a partition λ inside a solid torus, linked with a

meridian colored by µ. For such a link, a TQFT should produce a vector vλn,m,µ in Z(T 2). One

defines a knot operator W λ
n,m by the formula:

W λ
n,m|Pµ〉 = vλn,m,µ.

In particular, W λ
n,m|1〉 is the vector in Z(T 2) associated to a solid torus with a λ-colored (m,n)

torus knot inside. The construction of [3] uses the equation:

(14) W λ
n,m = K−1W λ

1,0K,

where W λ
1,0 is the operator of multiplication by Pλ and K is any element of SL2(Z) taking

(1, 0) to (n,m), seen as an endomorphism of Z(T 2). The action of SL2(Z) was introduced by

A. Kirillov Jr. in [48] and is given by the two matrices ([3, 19, 48]) written in the Macdonald

polynomial basis 1:

(15) Sµ
λ = Pλ(t

ρqµ)Pµ(t
ρ), T µ

λ = δµλq
1
2

∑
i λi(λi−1)t

∑
i λi(i−1).

which correspond to the matrices:

σ =

(
0 1
−1 0

)
, τ =

(
1 1
0 1

)
∈ SL2(Z).

The refined Chern-Simons knot invariant is then defined as

(16) PCS
n,m,λ(q, t) := 〈1|SW λ

n,m|1〉q,t.

The extra S-matrix in (16) is responsible for the gluing of two solid tori into S3. The equations

(14)-(16) give a rigorous definition of the polynomials PCS
n,mλ(q, t), which a priori depend on

1The operators in [3] differ from these by overall scalar factors, which are not important for us
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the choice of k and N . It is conjectured in [3] that for large enough k and N the answer does

not depend on k and its N-dependence can be captured in a variable u = tN .

The approach of [10] is to identify Z(T 2) with the finite-dimensional representation of SHN .

Such representations were classified in [64], and in type AN they occur when q is a root of unity

of degree k+βN , and t = qβ. It is known ([13]) that the bilinear form 〈·, ·〉q,t is nondegenerate

on Z(T 2), which is a quotient of the polynomial representation by the kernel of this form. The

following lemma shows the equivalence of the approaches of [3] and [10].

Lemma 2.8. In the representation Z(T 2), any W ∈ SHN satisfies:

(17) SWS−1 = σ(W ).

where σ acts on the DAHA as in Subsection 2.4.

Proof. By (12), we have Sµ
λ = εN(Pλ(Y ) · Pµ(x)). Consider the vector:

v = S(1) =
∑

µ

εN(Pµ)Pµ

Then:

S(Pλ) =
∑

µ

Sµ
λPµ = Pλ(Y ) · v

hence we conclude that for any function f ∈ VN , one has S(f) = σ(f) · v. Therefore:

S(Wf) = σ(Wf) · v = σ(W )σ(f) · v = σ(W )S(f)

holds for any W ∈ HN and any f ∈ VN . �

Corollary 2.9. The definitions of the refined knot invariants in [3] and [10] are equivalent to

each other:

PCS
n,m,λ(q, t) = Pλ,N

n,m (q, t).

Proof. Similarly to Lemma 2.8, one can show that the equation TWT−1 = τ(W ) holds for

any W ∈ SHN . Together with (17), this implies the equation KWK−1 = κ(W ), where K is

an arbitrary operator from SL2(Z) and κ is the corresponding automorphism of the spherical

DAHA. In other words, the two actions of SL2(Z) on the image of SHN in the automorphisms

of Z(T 2) agree with each other. Since both P λ,N
1,0 and W λ,N

1,0 are defined as multiplication

operators by the Macdonald polynomial Pλ, one has P λ,N
1,0 = W λ,N

1,0 and

P λ,N
n,m = W λ,N

n,m

for all m, n and λ. It remains to notice that the covector 〈1|S|·〉q,t coincides with the evaluation

map εN , hence

PCS
n,mλ(q, t) = 〈1|SW λ

n,m|1〉q,t = εN(W
λ
n,m · 1) = εN(P

λ
n,m · 1) = Pλ,N

m,n (q, t).

�

3. STABILIZATION AND N -DEPENDENCE

Conjecture 2.6 involves the N-dependence of the expression Pλ,N
n,m = εN(P

λ,N
n,m · 1), and we

will understand this in three steps. First, we will recast the evaluation εN as a certain matrix

coefficient of the operator P λ,N
n,m . Secondly, we will describe the behaviour of these operators

as N → ∞ and show that they stabilize to an operator P λ
n,m. Thirdly, we will discuss the

behaviour of the matrix coefficients as N → ∞.
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3.1. Matrix Coefficients. Let us start from the polynomial representationSHN −→ End(VN).
We will consider the evaluation vector:

(18) v(u) :=
∑

λ

Jλ

hλh′
λ

∏

�∈λ

(
tl

′(�) − uqa
′(�)
)
∈ VN

In the above, the first sum goes over all partitions, and so v(u) rightfully takes values in a

completion of VN . Then for any f ∈ VN , we have:

εN(f) = 〈f,v(u)〉q,t

∣∣∣
u=tN

Indeed, since the above relation is linear, it is enough to check it for f = Jλ, where it follows

from (6) and (9). Then our knot invariants are given by the formula:

(19) Pλ,N
n,m = εN(P

λ,N
n,m · 1) = 〈v(u)|P λ,N

n,m |1〉q,t

∣∣∣
u=tN

where 〈·|∗|·〉q,t denotes matrix coefficients with respect to the Macdonald scalar product 〈·, ·〉q,t.

3.2. Stabilization of operators. We will now let N vary. Recall that the spaces of symmetric

polynomials VN form a projective system under the maps ηN : VN −→ VN−1 that set xN = 0,

and V is the inverse limit if this system. Therefore, we have projection maps η∞,N : V −→ VN .

We will rescale our operators:

(20) P
N

0,k = t−k(N−1)

(
PN
0,k −

tkN − 1

tk − 1

)
, P

N

kn,km = PN
kn,km for n 6= 0

Proposition 3.1. (cf. [60, Prop. 1.4]) The following relation holds:

P
N−1

kn,km ◦ ηN = ηN ◦ P
N

kn,km

Therefore, there exist limiting operators Pkn,km := limN→∞ P
N

kn,km on V , such that:

P
N

kn,km ◦ η∞,N = η∞,N ◦ Pkn,km

For a general partition, the operators P λ,N
n,m on VN are sums of products of PN

kn,km, and therefore

there exist operators P λ
n,m on V which stabilize the operators P λ,N

n,m :

P
λ,N

n,m ◦ η∞,N = η∞,N ◦ P λ
n,m

All these new operators P λ
n,m and Pkn,km lie in the algebra SH, defined in [60] as the stabiliza-

tion of the spherical DAHA’s SHN as N → ∞.

3.3. Commutation relations. The isomorphism between SH and the elliptic Hall algebra,

established in [61] (see also [56]), allows one to present some explicit commutation relations

between the operators Pn,m. These commutation relations were discovered by Burban and

Schiffmann in [8]. It is sometimes convenient to represent the operator Pn,m by the vector

(n,m) in the integer lattice Z2 (we assume n > 0). The action of SL2(Z) on the algebra SH is

then just given by the linear action on this lattice.

Definition 3.2. ([56]) A triangle with vertices X = (0, 0), Y = (n2, m2) and Z = (n1 +
n2, m1 +m2) is called quasi-empty if m1n2 −m2n1 > 0 and there are no lattice points neither

inside the triagle, nor on at least one of the edges XY, Y Z.



REFINED KNOT INVARIANTS AND HILBERT SCHEMES 11

Let us define the constants:

(21) αn =
(qn − 1)(t−n − 1)(q−ntn − 1)

n
,

and the operators θkn,km (for coprime m,n) by the equation:

∞∑

n=0

znθkn,km = exp

(
∞∑

n=1

αnz
nPkn,km

)
.

The elliptic Hall algebra is defined by the following commutation relations ([8]):

[Pn1,m1 , Pn2,m2 ] = 0,

if the vectors (n1, m1) and (n2, m2) are collinear, and:

(22) [Pn1,m1, Pn2,m2 ] =
θn1+n2,m1+m2

α1
,

if the points (0, 0), (n2, m2) and (n1 + n2, m1 +m2) form a quasi-empty triangle.

• • • •

• • • •

• • • •

• • • •

FIGURE 2. Example of a commutation relation: [P1,2, P1,1] = P2,3.

It would be interesting to find a topological interpretation of the equation (22). Note that

the complete statement of this equation requires the RHS of (22) to be multiplied by a central

element, which must be included in the definition of the elliptic Hall algebra. For the sake of

brevity, we will neglect this technical point, whose discussion can be found in [8].

3.4. Proof of the stabilization conjecture 2.6. In this Subsection, we will use the elliptic Hall

algebra viewpoint to prove Conjecture 2.6. The inner product 〈·, ·〉q,t, the vacuum vector |1〉
and the evaluation vector v(u) are all preserved under the maps ηN : VN −→ VN−1. Therefore,

all of these notions are compatible with the above limiting procedure, so we conclude that:

(23) Pλ
n,m := 〈v(u)|P λ

n,m|1〉q,t

is the same whether we compute it in V or VN . Comparing this with (19), we conclude that:

Pλ
n,m = Pλ,N

n,m

∣∣∣
u=tN

This proves Conjecture 2.6. We will prove Conjecture 2.7 in the next section, when we will

realize the elliptic Hall algebra and the polynomial representation geometrically.
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4. THE HILBERT SCHEME OF POINTS

4.1. Basic Definitions. Let Hilbd = Hilbd(C
2) denote the moduli space of colength d ideal

sheaves I ⊂ OC2 . It is a smooth and quasi-projective variety of dimension 2d. Pushing forward

the universal quotient sheaf on Hilbd×C2 gives rise to the rank d tautological vector bundle on

Hilbd:

T |I = Γ(C2,O/I)

The torus T = C∗ × C∗ acts on C2 by dilations, and therefore acts on sheaves on C2 by

direct image. This gives an action of T on the moduli spaces Hilbd. We can then consider the

equivariant K−theory groups K∗
T (Hilbd), all of which will be modules over:

K∗
T (pt) = K0 = C[q±1, t±1]

where q and t are a fixed basis of the characters of T = C
∗ × C

∗. As early as the work of

Nakajima, it became apparent that one needs to study the direct sum of these K−theory groups

over all degrees d. In other words, we will consider the vector space:

K =
⊕

d≥0

K∗
T (Hilbd)⊗K0 K

This vector space comes with the geometric pairing:

(24) (·, ·) : K ⊗K −→ K, (α, β) = π∗(α⊗ β)

where π : Hilbd −→ pt is the projection map. Feigin-Tsymbaliuk and Schiffmann-Vasserot

independently proved the following result:

Theorem 4.1. ([20], [60]) There exists a geometric action of the algebra SH on K, which

becomes isomorphic to the polynomial representation V .

4.2. Torus fixed points. We have the following localization theorem in equivariantK−theory:

(25) K ∼=
⊕

d≥0

K∗
T (Hilb

T
d )⊗K0 K

There are finitely many torus fixed points in Hilbd, and they are all indexed by partitions λ ⊢ d:

Iλ = (xλ1y0, xλ2y1, . . .) ⊂ C[x, y]

The skyscraper sheaves at these fixed points give a basis Iλ = [Iλ] of the right hand side of

(25), and therefore also of the vector space K. This basis is orthogonal with respect to the

pairing (24):

(Iλ, Iµ) = δλ,µ · gλ

where:

(26) gλ := Λ•(T∨
λ Hilbd) =

∏

�∈λ

(1− qa(�)t−l(�)−1)
∏

�∈λ

(1− q−a(�)−1tl(�))

Theorem 4.2. (e.g. [42, 59]) Under the isomorphism K ∼= V of Theorem 4.1, the classes

Iλ ∈ K correspond to the modified Macdonald polynomials:

H̃λ(q; t) = tn(λ)ϕ 1
1−1/t

[
Jλ(q; t

−1)
]
∈ V

where ϕ 1
1−1/t

: V −→ V is the plethystic homomorphism defined by pk −→
pk

1−1/tk
, and:

(27) n(λ) =
∑

�∈λ

l(�) =
∑

�∈λ

l′(�)
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The polynomials H̃λ were introduced by Garsia and Haiman [24], and they are called modi-

fied Macdonald polynomials. They behave nicely under transpose:

(28) H̃λt(q; t) = H̃λ(t; q).

Following [5], let us define the operator ∇ on V by the formula:

(29) ∇H̃λ = qn(λ
t)tn(λ)H̃λ.

Under the isomorphism V ∼= K, ∇ corresponds to the operator of multiplication by the line

bundle O(1), while the geometric inner product (24) corresponds to the following twist of the

Macdonald inner product:

(30) (·, ·) = (−q)−d

〈
ϕ−1

1
1−1/t

(
∇−1(·)

)
, ϕ−1

1
1−1/t

(·)

〉

q,t−1

on Kd
∼= Vd

4.3. Geometric operators. The most interesting elements of SH to us are Pkn,km, for all

k 6= 0 and gcd(n,m) = 1. In the current geometric setting, we will study their conjugates:

(31) P̃kn,km = ϕ 1
1−1/t

◦ Pkn,km(q; t
−1) ◦ ϕ−1

1
1−1/t

Let us now describe how these operators act on K, and we will start with the simplest case,

namely n = 0. We define the polynomial:

(32) Λ(z) =

d∑

i=0

(−z)i[ΛiT ] ∈ K[z]

where T is the tautological rank d vector bundle on Hilbd. As was shown in [54], we have:

(33) exp

(
∑

k≥0

αkP̃0,kz
k

)
· c =

Λ
(
q
z

)
Λ
(
t
z

)
Λ
(

1
zqt

)

Λ
(

1
zq

)
Λ
(

1
zt

)
Λ
(
qt
z

) · c ∀c ∈ K

where the constants αk are given by (21). In order to compute how each P̃0,±k acts, we need to

expand the right hand side in powers of z and take the appropriate coefficient. We will give a

more computationally useful description of P̃0,k in (36) below.

For n > 0, we consider the flag Hilbert scheme:

Hilbd,d+kn = {I0 ⊃ I1 ⊃ . . . ⊃ Ikn} ⊂ Hilbd×Hilbd+1 × . . .× Hilbd+kn

where the inclusions are all required to be supported at the same point of C2. This variety

comes with projection maps:

p− : Hilbd,d+kn −→ Hilbd, p+ : Hilbd,d+kn −→ Hilbd+kn

that forget all but the first/last ideal in the flag, and with tautological line bundles L1, . . . ,Lkn

given by:

Li|I0⊃...⊃Ikn = Γ(C2, Ii−1/Ii)

As explained in [54], the flag Hilbert scheme is not simply the iteration of kn individual Naka-

jima correspondences. The reason for this is that the convolution product of Nakajima corre-

spondences is not a complete intersection, and thus the intersection-theoretic composition is
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a codimension kn − 1 class on the scheme Hilbd,d+kn. For this reason, the composition dif-

fers significantly from the fundamental class of Hilbd,d+kn. In loc. cit., we have the following

description of the operators P̃kn,km acting on K:

(34) P̃kn,km ·c =
1

[k]
·p+∗

[
kn∏

i=1

[Lkn+1−i]
⊗Sm/n(i) ⊗

(
k−1∑

j=0

(qt)j · [Ln][L2n] · · · [Ljn]

[Ln+1][L2n+1] · · · [Ljn+1]

)
· p−∗(c)

]

where we denote [k] = (qk−1)(tk−1)
(q−1)(t−1)

and Sm/n are the integral parts of (2). Note that the above

differs by an overall normalizing constant from the operators of [54]. The above formula has

geometric meaning, and in the next section we will make it more suitable for computations.

4.4. Matrix Coefficients. Let us compute the matrix coefficients (Iλ|P̃kn,km|Iµ). Define:

(35) ω(x) =
(x− 1)(x− qt)

(x− q)(x− t)

The easiest case for us is n = 0, since P̃0,k is multiplication with a given K−theory class, and

thus is diagonal in the basis Iλ. More concretely, (33) yields:

exp

(
∑

k≥0

αk(Iλ|P̃0,k|Iµ)z
k

)
= δµλ

∏

�∈λ

ω
(

z
χ(�)

)

ω
(

χ(�)
z

)

where given a box � = (i, j) in a Young diagram, its weight is χ(�) = qi−1tj−1. Taking the

logarithm of the above gives us:

(36) (Iλ|P̃0,k|Iµ) = δµλ

(
(qt)k

(qk − 1)(tk − 1)
+
∑

�∈λ

χ(�)k

)

The matrix coefficients of P̃kn,km for n > 0 are written in terms of standard Young tableaux

(abbreviated SYT), so let us recall this notion. Given two Young diagrams ρ1 ⊃ ρ2, a SYT

between them is a way to index the boxes of ρ1\ρ2 with different numbers 1, . . . , l such that

any two numbers on the same row or column decrease as we go to the right or up. We will

often write:

ρ1 = ρ2 +�1 + . . .+�l

if we want to point out that the box indexed by i is �i. Then [54] gives us the formula:

(Iµ|P̃kn,km|Iλ) =
γkn

[k]
·
gλ
gµ

SYT∑

µ=λ+�1+...+�kn

[
k−1∑

j=0

(qt)j
χn(k−1)+1χn(k−2)+1 · · ·χn(k−j)+1

χn(k−1)χn(k−2) · · ·χn(k−j)

]
·

(37) ·

∏kn
i=1 χ

Sm/n(i)

i (qtχi − 1)(
1− qtχ2

χ1

)
· · ·
(
1− qt χkn

χkn−1

)
∏

1≤i<j≤kn

ω−1

(
χj

χi

) �∈λ∏

1≤i≤kn

ω−1

(
χ(�)

χi

)

where χi = χ(�i), γ = (q−1)(t−1)
qt(qt−1)

and gλ are the equivariant constants of (26).

Remark 4.3. Since the multiplication operators by power sums pn coincide with the operators

Pn,0, equation (37) can be used to compute their matrix elements in the modified Macdonald

basis. Indeed, this computation will agree with the Pieri rules for Macdonald polynomials [50],

so (37) can be considered as a generalization of Pieri rules.
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4.5. Refined invariants via Hilbert schemes. Similarly to (31), we can define operators P̃ λ
n,m

as conjugates to P λ
n,m under ϕ 1

1−1/t
. In particular, the operator P̃ λ

1,0 is conjugate by ϕ 1
1−1/t

to the multiplication operator by Pλ(q, t
−1). Since ϕ 1

1−1/t
is a ring homomorphism, P̃ λ

1,0 is a

multiplication operator by

ϕ 1
1−1/t

(Pλ(q, t
−1)) =

t−n(λ)H̃λ(q, t)

hλ(q, t−1)
.

and the action of SL2(Z) implies:

(38) P̃ λ
n,m :=

t−n(λ)

hλ(q, t−1)
H̃λ

[
pk → P̃kn,km

]
.

As was shown in (23), the super-polynomials are given by:

Pλ
n,m(u, q, t) =

〈
v(u)|P λ

n,m|1
〉
q,t

, where v(u) =
∑

µ⊢n

Jµ

hµ(q; t)h′
µ(q; t)

∏

�∈µ

(
tl

′(�) − uqa
′(�)
)

Under the isomorphism of Theorem 4.2, we can write the above as a matrix coefficient in

K ∼= V :

(39) P̃λ
n,m(u, q, t) =

(
Λ(u)|P̃ λ

n,m|1
)
, where Λ(u) =

∑

µ⊢n

Iµ
gµ

∏

�∈µ

(
1− uqa

′(�)tl
′(�)
)

and the change of variables is:

(40) P̃λ
n,m(u, q, t) = (−q)−n|λ|Pλ

n,m(u, q, t
−1)

By the equivariant localization formula, we see that the K−theory class Λ(u) defined above

as a sum of fixed points coincides with the exterior class of (32). We have thus expressed our

super-polynomials in terms of the geometric operators (34) on the K−theory of the Hilbert

scheme.

Proof of Theorem 1.1. By (39), the uncolored DAHA – superpolynomial is given by:

P̃n,m(u, q, t) = (Λ(u)|P̃n,m|1) =
∑

µ⊢n

(Iµ|P̃n,m|1) ·

∏
�∈µ(1− uχ(�))

gµ

We can use (37) to compute the above matrix coefficients, and we obtain:

(41) P̃n,m(u, q, t) =

SYT∑

µ=�1+...+�n

γn

gµ
·

∏n
i=1 χ

Sm/n(i)

i (1− uχi)(qtχi − 1)(
1− qtχ2

χ1

)
· · ·
(
1− qt χn

χn−1

)
∏

1≤i<j≤n

ω−1

(
χj

χi

)

Changing t → t−1 gives us formula (1). �

As for the colored knot invariant P̃λ
n,m , it is also a particular matrix coefficient of the operator

P̃ λ
n,m:

P̃λ
n,m(u, q, t) = (Λ(u)|P̃ λ

n,m|1) =
∑

µ⊢n|λ|

(Iµ|P̃
λ
n,m|1) ·

∏
�∈µ(1− uχ(�))

gµ
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By (38), the operator P̃ λ
n,m expands in the operators P̃nk,mk given by the same formula as

modified Macdonald polynomials expand in the power-sum functions pk. For computational

purposes, the task then becomes to compute expressions of the form:

∑

µ⊢n(k1+...+kt)

(Iµ|P̃nk1,mk1 · · · P̃nkt,mkt|1) ·

∏
�∈µ(1− uχ(�))

gµ

for any k1, . . . , kt. These can be computed by iterating (37) and the result will be a sum over

standard Young tableaux. The summand will be in general more complicated than (41), but it

can be taken care of by a computer. While we do not yet have a “nice” formula suitable for

writing down in a theoretical paper, we may use the geometric viewpoint to prove Cherednik’s

second conjecture:

Proof of Conjecture 2.7. In terms of the modified superpolynomials P̃ , the desired identity be-

comes:

P̃λt,red
n,m (u, q, t) = P̃λ,red

n,m (u, t, q), where P̃λ,red
n,m (u, q, t) := (−q)−(n−1)|λ|Pλ,red

n,m (u, q, t−1).

Recall that

Pλ
1,0(u, q, t) =

1

hλ(q, t)

∏

�∈λ

(tl
′(�) − uqa

′(�)),

so

P̃λ
1,0(u, q, t) =

t−n(λ)

hλ(q, t−1)

∏

�∈λ

(1− uqa
′(�)tl

′(�)),

hence

P̃λ,red
n,m (u, q, t) =

P̃λ
n,m(u, q, t)

P̃λ
1,0(u, q, t)

=
hλ(q, t

−1)(Λ(u)|P̃ λ
n,m|1)

t−n(λ)
∏

�∈λ(1− uqa′(�)tl′(�))
.

Therefore by (38) we get

P̃λ,red
n,m (u, q, t) =

(
Λ(u)|H̃λ(q, t)

[
pk → P̃km,kn

]
|1
)

∏
�∈λ(1− uqa′(�)tl′(�))

.

By (28) H̃λ(q, t) = H̃λt(t, q), and by (37) the matrix coefficients of P̃km,kn are invariant under

the switching q ↔ t and the transposition of the axis, as well as Λ(u). �

4.6. Constant term formulas. Formula (41) can be repackaged as a contour integral. We may

write:

P̃n,m(u, q, t) = (Λ(u)|P̃n,m|1) = (1|P̃−n,m|Λ(u))

where P̃−n,m is the adjoint of P̃n,m. Formula (4.12) of [54] gives us the following integral

formula for this expression:

(42) P̃n,m(u, q, t) =

∫ ∏n
i=1 z

Sm/n(i)

i · 1−uzi
zi−1(

1− qtz2
z1

)
· · ·
(
1− qt zn

zn−1

)
∏

1≤i<j≤n

ω

(
zi
zj

)
dz1
2πiz1

· · ·
dzn
2πizn

where the contours of the variables zi surround 1, with z1 being the outermost and zn being the

innermost (we take q, t very close to 1). We can move the contours so that they surround 0 and

∞, and then the integral comes down to the following residue computation:

P̃n,m(u, q, t) = (Reszn=0 − Reszn=∞) · · · (Resz1=0 − Resz1=∞)
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(43)
1

z1 · · · zn
·

∏n
i=1 z

Sm/n(i)

i · 1−uzi
zi−1(

1− qtz2
z1

)
· · ·
(
1− qt zn

zn−1

)
∏

1≤i<j≤n

ω

(
zi
zj

)

We will compute the above residue in section 6.5, which will give another combinatorial way

to compute P̃n,m.

4.7. Let us say a few words about the viewpoint of Nakajima in [53], which relates knot

invariants to the following map:

Ψd : V −→ Kd, Ψd(f) = f(W∨)

where W is the universal bundle on Hilbd. As a K−theory class (and this will be sufficient for

the purposes of the present paper), it is given by [W] = 1 − (1 − q)(1 − t)[T ]. We may take

the direct product of the above maps over all d and define:

(44) Ψ : V −→ K, Ψ =

∞∏

d=0

Ψd

The map Ψ defined above takes values in a certain completion of K, since we consider the

direct product. Via equivariant localization, we see that:

(45) Ψ(f) =
∑

λ

Iλ
gλ

· f

(
1− (1− q−1)(1− t−1)

∑

�∈λ

χ(�)−1

)

The right hand side of (45) uses plethystic notation of symmetric functions, which is described

in [53]. In loc. cit., Nakajima uses the map (44) to study knot invariants, essentially by using

the viewpoint given by the left hand side of relation (17) where the S-matrix is realized as an

operator on VN . Our viewpoint, outlined in the previous sections, is to compute the same knot

invariants by using the right hand side of (17) and interpret S as an automorphism of the algebra

SH. The two perspectives produce significantly different formulas.

5. REPRESENTATIONS OF THE RATIONAL CHEREDNIK ALGEBRA

5.1. The rational Cherednik algebra. Rational Cherednik algebras were introduced in [17]

as degenerations of the DAHA.

Definition 5.1. The rational Cherednik algebra of type An−1 with parameter c is:

Hc = C[h]⊗ C[h∗]⋊ C[Sn],

where h is the Cartan subalgebra of sln, and the commutation relations between the various

generators are:

[x, x′] = 0, [y, y′] = 0, gxg−1 = g(x), gyg−1 = g(y),

[x, y] = (x, y)− c
∑

s∈S

(αs, x)(α
∗
s, y)s,

for any x ∈ h∗, y ∈ h, g ∈ Sn. Here S denotes the set of all reflections in Sn and αs is the

equation of the reflecting hyperplane of s ∈ S.
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The polynomial representation also makes sense for rational Cherednik algebras, and its

representation space is Mc(n) = C[h]. The symmetric group acts naturally, h acts by multipli-

cation operators and elements of h∗ act by Dunkl operators:

Dy = ∂y − c
∑

s∈S

(αs, y)

αs
(1− s)

As a generalization of this construction, one can consider the standard module:

Mc(λ) = τλ ⊗ C[h],

where λ is any partition and τλ is the corresponding irreducible representation of Sn. It is

well-known that Mc(λ) has a unique simple quotient Lc(λ).

5.2. Finite-dimensional representations. It turns out that the representation theory of the

rational Cherednik algebra depends crucially on the parameter c. For example, we have the

following classification of finite-dimensional representations.

Theorem 5.2 ([4]). The algebra Hc only has finite-dimensional representations if c = m
n

for

some gcd(m,n) = 1, in which case it has a unique irreducible representation

Lm
n
= Lm

n
(n).

Furthermore (if m > 0), one has

dimLm
n
= mn−1, dim(Lm

n
)Sn =

(m+ n− 1)!

m!n!
.

The representation Lm
n

is canonically graded and carries a grading-preserving action of Sn.

In particular, it is a representation of Sn, so we can define its Frobenius character:

chLm
n
=

1

n!

∑

σ∈Sn

TrLm
n
(σ)pk11 . . . pkrr

where pi are power sums, and ki is the number of cycles of length i in the permutation σ. The

Frobenius character makes sense for any representation of Sn, and in particular the Frobenius

character of the irreducible τλ equals the Schur polynomial sλ.

Theorem 5.3 ([4]). The graded Frobenius character of Lm
n

equals

chq Lm
n
=

q−
(m−1)(n−1)

2

[m]q
φ[m](hn),

where [m]q =
1−qm

1−q
and φ[m] : Λ → Λ is the homomorphism defined by φ[m](pk) = pk

1−qkm

1−qk
.

For m = n + 1, Gordon observed a close relation between the representation Ln+1
n

and

Haiman’s work. Gordon constructs a certain filtration on Ln+1
n

and proves the following result.

Theorem 5.4 ([26]). The bigraded Frobenius character of grLn+1
n

is given by the formula

chq,t grLn+1
n

= ∇en.

In [35], Gordon’s filtration was generalized to all finite-dimensional representations Lm
n

and it was conjectured that the bigraded character grLm
n

is tightly related to the Khovanov-

Rozansky homology of the (m,n) torus knot. In light of the conjectures of [3], we formulate

the following:
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Conjecture 5.5. The bigraded Frobenius character of grLm
n

is given by:

chq,t grLm
n
= P̃n,m · 1

where P̃n,m are the transformed DAHA elements of Subsection 4.3.

When m = n+1, the conjecture follows from Theorem 5.4 and Corollary 6.5 below. Conjec-

ture 5.5 is also supported by numerical computations, and it is compatible with some structural

properties. For example, the symmetry between the q and t gradings of the character has been

proven in [35], and this symmetry is manifest in the operators P̃n,m. Moreover, Conjecture

5.5 was proved in loc. cit. at t = q−1, by showing that the knot invariant equals the singly

graded Frobenius character, see also Section 6.7 for details. It was also observed by Gordon

and Stafford that:

chq,t grLm+n
n

= ∇ chq,t grLm
n
,

where ∇ is the operator of (29). This matches with the equality:

(46) P̃n,n+m = ∇P̃n,m∇
−1

which follows easily from the definition of P̃n,m in Subsection 4.3.

Remark 5.6. The above only deals with the uncolored case, since the representation-theoretic

interpretation of colored refined knot invariants has yet to be developed. It is proved in [18] that

at t = q−1 the unrefined λ-colored invariant of the (m,n) torus knot is given by the character

of the infinite-dimensional irreducible representation Lm
n
(nλ). It would be interesting to define

a filtration on Lm
n
(nλ) that matches their character with refined invariants.

5.3. The Gordon-Stafford construction. Conjecture 5.5 is part of a correspondence between

representations of the rational Cherednik algebra and coherent sheaves on Hilbert schemes,

which we will now discuss. Kashiwara and Rouquier ([44]) have constructed a quantization of

the Hilbert scheme depending on the parameter c, such that the category of coherent sheaves

over this quantization is equivalent to the category of representations of Hc. In characteristic p,

the analogous construction has been carried out by Bezrukavnikov-Finkelberg-Ginzburg ([7]).

We will only be concerned with characteristic 0, in which case the initial result of Gordon and

Stafford ([27]) claims the existence of a map:

(47) DbRep(Hc) −→ DbCoh(Hilbn)

for all c. The category on the left consists of filtered representations (see [27] for the exact

definition) of the rational Cherednik algebra. One may ask about the image of the unique

irreducible finite-dimensional representation Lm
n

under the above assignemnt. During our dis-

cussions with Andrei Okounkov, the following conjecture was proposed:

Conjecture 5.7. Under the Gordon-Stafford map (47), Lm
n

is sent to:

(48) Fm
n
:= p∗

(
L

Sm/n(1)
n ⊗ . . .⊗L

Sm/n(n)

1

)

where p : Hilb0,n −→ Hilbn is the projection map from the flag Hilbert scheme to the Hilbert

scheme (see Subsection 4.3 for the notations), and L1, . . . ,Ln are the tautological line bundles.

The flag Hilbert scheme together with the projection p should be understood in the DG sense,

see [54] for details. In fact, the above conjecture is a particular case of a far-reaching conjectural

framework of Bezrukavnikov–Okounkov, concerning filtrations on the derived category of the

Hilbert scheme.
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To support Conjecture 5.7, note that the functor (47) matches the bigraded character of repre-

sentations with the biequivariant K−theory classes of coherent sheaves. Therefore, Conjecture

5.7 implies that:

chq,t grLm
n
=
[
p∗

(
L

Sm/n(1)
n ⊗ · · · ⊗ L

Sm/n(n)

1

)]

Comparing with (34), we see that the object in the right hand side is simply P̃n,m · 1 ∈ K.

Therefore, Conjecture 5.7 implies Conjecture 5.5.

5.4. Affine Springer fibres. Yet another geometric realization of Lm
n

is provided by the affine

Springer fibres in the affine flag variety. Let us recall that the affine Grassmannian Grn of type

An−1 can be defined as the moduli space of subspaces V ⊂ C((t)) satisfying tnV ⊂ V and

a certain normalization condition. Similarly, the affine flag variety Fln can be defined as the

moduli space of flags of subspaces in C((t)) of the form V1 ⊃ V2 ⊃ . . . ⊃ Vn ⊃ Vn+1 = tnV1

such that dimVi/Vi+1 = 1.

Recall that an affine permutation (of typeAn−1) is a bijectionω : Z → Z such that ω(x+n) =

ω(x) + n for all x and
∑n

i=1 ω(i) =
n(n+1)

2
. It is well known that Fln is stratified by the affine

Schubert cells Σω labelled by the affine permutations. The homogeneous affine Springer fiber:

Σm
n
⊂ Fln (resp. ΣGr

m
n
⊂ Grn)

is defined as as set of flags (resp. subspaces) invariant under multiplication by tm, where, as

above, we assume that gcd(m,n) = 1. It is known to be a finite-dimensional projective variety

[29, 45, 49] and the total dimension of the homology equals ([43, 49]):

dimH∗(Σm
n
) = mn−1, dimH∗(ΣGr

m
n
) =

(m+ n− 1)!

m!n!
.

The similarity between this equation and Theorem 5.2 suggests a relation between Lm
n

and the

homology of Σm
n

. Indeed, in [58, 64] the authors constructed geometric actions of the DAHA

and trigonometric / rational Cherednik algebras on the space H∗(Σm
n
) equipped with certain fil-

trations. In all these constructions, the spherical parts of the corresponding representations can

be naturally identified with H∗(ΣGr
m
n
), also equipped with certain filtrations. It is important to

mention that the homological grading on H∗(Σm
n
) does not match the representation-theoretic

grading on Lm
n

. On the other hand, the bigraded character of grH∗(Σm
n
) is expected to match

the bigraded character of grLm
n

after some regrading, when one takes into account both the

geometric filtration on the homology and the generalized Gordon filtration on Lm
n

(see [35] for

the precise conjecture).

In the next section we give an explicit combinatorial counterpart of this conjecture (Con-

jecture 6.3), which can be explicitly verified on a computer. By Conjecture 5.5, the bigraded

character of grLm
n

is given by P̃n,m · 1 and hence can be computed combinatorially using (37).

On the other hand, one can try to compute the bigraded character of grH∗(Σm
n
) using some

natural basis in the homology, which is expected to be compatible with the geometric filtration.

Definition 5.8. ([34]) We call an affine permutation ω m–stable, if ω(x+m) > ω(x) for all x.

Theorem 5.9. ([34]) The intersection of an affine Schubert cell with the affine Springer fiber

Σm
n

is either empty or isomorphic to an affine space. The nonempty intersections correspond to

the m-stable affine permutations ω, and the dimension of the corresponding cell in Σm
n

equals:

dimΣω ∩ Σm
n
= | {(i, j)|ω(i) < ω(j), 0 < i− j < m, 1 ≤ j ≤ n} |.
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In the homology of Σm
n

one then have a combinatorial basis corresponding to these cells,

with the homological gradings given by the above equation. In [34] the m-stable affine per-

mutations has been identified by an explicit bijection with another combinatorial object, the

so-called m/n-parking functions, see Section 6.3. The dimension of a cell is translated to a

certain combinatorial statistics dinv on parking functions, which has been obtained earlier by

Hikita in [43]. We also conjecture that the geometric filtration on the homology is compatible

with the basis of cells, and admits an easy combinatorial description as the “area” of the corre-

sponding parking function. Modulo this conjecture, one can show that the bigraded character

of grH∗(Σm
n
) coincides with the combinatorial expression (51).

One can similarly describe the cell decomposition of ΣGr
m
n

, which turns out to coincide with

the compactified Jacobian of the plane curve singularity {xm = yn}. The affine Schubert cells

in Grn cut out affine cells in ΣGr
m
n

, which can be labeled either by the m–stable permutations

with additional restrictions ([34]) or by the Dyck paths in the m × n rectangle ([32, 33]). The

dimension of such a cell can be rewritten as
(m−1)(n−1)

2
− h+(D), where h+(D) is an explicit

combinatorial statistic on the corresponding Dyck path D (see Section 6.2).

6. COMBINATORIAL CONSEQUENCES

6.1. In this section we focus on the combinatorial structure of uncolored refined knot polyno-

mials. By (41), we have for gcd(n,m) = 1:

(49) P̃n,m · 1 =
∑

λ⊢n

cn,m(λ)
H̃λ

gλ
,

where cn,m(λ) is the sum of terms cn,m(T ) over all standard Young tableaux T of shape λ:

(50) cn,m(T ) = γn

∏n
i=1 χ

Sm/n(i)

i (qtχi − 1)
∏n−1

i=1

(
1− qtχi+1

χi

)
∏

1≤i<j≤n

ω−1

(
χj

χi

)

Recall that χi denotes the weight of box i in the standard Young tableau T and the constants

Sm/n(i) are defined by (2). Some of the coefficients cn,m(λ) have appeared in various sources:

for m = 1 they are remarkably simple and were computed first in [23] and later rediscovered in

[57, 62]. For general m and small n some of these coefficients were computed in [57, Section

5.3], [15] and [62]. Although the individual terms cn,m(T ) have a nice factorized form, their

sums cn,m(λ) look less attractive, for example:

c7,2(4, 3) = (1− q)2(1− t)2(1− t2)(1− t3)(qt− 1)

(q3t3 + q3t2− q3 + q2t5 +2q2t4 + q2t3 − q2t+ qt6 + qt5 − qt4 − 2qt3− qt2 + t7 − t5 − t4 − t3)

For hook shapes of size n, the coefficients cn,m(k, 1, . . . , 1) are equal to a product of linear

factors times a sum of n terms. Explicitly, the following formula was computed in [55] using

shuffle algebra machinery:

cn,m(k, 1, . . . , 1) =
(1− q)(1− t)

qntn

k−1∏

i=1

(1− qi)

n−k∏

i=1

(1− ti)

(
n−1∑

i=0

q
∑k−1

j=0⌊
mj+i

n ⌋t
∑n−k

j=1 ⌈
mj−i

n ⌉

)

for all coprime m and n, and all 1 ≤ k ≤ n. For small k, this agrees with the computations

in [57, Section 5.3]. Further, we give a combinatorial interpretation of uncolored refined knot

invariants, generalizing the so-called “Shuffle Conjecture” of [40]. In [23] A. Garsia and M.

Haiman introduced a bivariate deformation of Catalan numbers, and in [21] (see also [36])

it was proved that it can be obtained as a weighted sum over Dyck paths. In [32] (see also
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[33]) this weighted sum was reinterpreted as a sum over cells in a certain affine Springer fiber

and generalized to the rational case. We conjecture that the rational extension of q, t−Catalan

numbers is given by the u = 0 specialization of the refined invariant (Conjecture 6.1) and thus

can be computed as a certain sum over tableaux. The coefficients of the full u−expansion of the

refined invariant are given by the generalized Schröder numbers. The combinatorial statistics

for these numbers was conjectured in [16] and proved in [37], and the rational extension of

these statistics was conjectured in [57]. We give a conjectural formula for them in terms of

tableaux in Conjecture 6.2.

It was conjectured in [40] that the vector ∇en = P̃n,n+1 · 1 can be written as a certain

sum over parking functions on n cars, and it was shown that the combinatorial formulas for

q, t−Catalan and q, t−Schröder numbers follow from this conjecture. This combinatorial sum

was reinterpreted in [43] as a weigthed sum over the cells in a certain parabolic affine Springer

fiber, and a rational extension of the combinatorial statistics of [40] has been proposed. We

conjecture that the symmetric polynomials constructed in [43] coincide with P̃n,m · 1. This

conjecture is supported by vast experimental data provided to us by Adriano Garsia.

It has been conjectured in [35] that the weighted sums of [43] (also [32, 57]) compute the bi-

graded Frobenius characters of the finite-dimensional representations Lm
n

(and their specializa-

tions), and the Poincaré polynomials of Khovanov-Rozansky homology of torus knots. On the

other hand, it has been conjectured in [3, 10] that refined knot invariants compute the Poincaré

polynomials of Khovanov-Rozansky homology. Although all of these conjectures remain open,

the “rational Shuffle Conjecture” (Conjecture 6.3) provides a consistency check for them, since

its left and right hand side are explicit combinatorial expressions independent of knot homology

or filtration on Lm
n

.

Finally, we use the notion of Tesler matrices introduced in [39] (see also [2, 22]) to compute

the residue (43), and thus give an explicit formula for refined knot invariants. We will use this

to prove the specialization of the rational Shuffle Conjecture at t = 1.

6.2. Generalized q, t-Catalan numbers. We define a m/n Dyck path to be a lattice path in

a m × n rectangle from the top left to the bottom right corner, which always stays below the

diagonal connecting these two corners. Alternatively, a Dyck path is a Young diagram inscribed

in the right triangle with vertices (0, 0), (m, 0) and (0, n). We denote the set of all m/n Dyck

paths by Ym/n, and it is well known that:

|Ym/n| =
(m+ n− 1)!

m!n!
.

Given a Dyck path D, we define, following [32] and [33], the statistic:

h+(D) =

{
x ∈ D

a(x)

l(x) + 1
<

m

n
<

a(x) + 1

l(x)

}
.

We define the m/n rational Catalan number as the following weighted sum over Dyck paths:

Cn,m(q, t) =
∑

D∈Ym/n

qδm,n−|D|th+(D),

where δm,n = (m−1)(n−1)
2

. The polynomial Cn,m(q, t) is symmetric in m and n by construction,

and it has been conjectured in [33] that it is symmetric in q and t as well. Here we propose

strengthening the q, t−symmetry conjecture by the following:
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Conjecture 6.1. The following relation holds:

Cn,m(q, t) = (hn|P̃n,m|1) =
∑

λ⊢n

cn,m(λ)

gλ

where hn ∈ V is the complete symmetric function.

Indeed, the matrix coefficient in the right hand side of the above relation is symmetric in q
and t, since (50) implies:

cn,m(λ; q, t) = cn,m(λ
t; t, q)

Therefore, Conjecture 6.1 implies that:

Cn,m(q, t) = Cn,m(t, q)

Note that for m = n+ 1, Conjecture 6.1 follows from the results of [21] and Corollary 6.5.

In [57], the polynomials Cn,m(q, t) have been extended to accommodate the extra variable u.

Given a Dyck path D and an internal vertex P , we define β(P ) to be the number of horizontal

segments of D intersected by the line passing through P and parallel to the diagonal (see Figure

3). Let v(D) denote the set of internal vertices of D.

P•

FIGURE 3. Computation of the statistic β(P )

Conjecture 6.2. The following equation holds:
∑

D∈Ym/n

qδm,n−|D|th+(D)
∏

P∈v(D)

(1− ut−β(P )) = P̃n,m(u, q, t)

For m = n + 1 a similar identity was conjectured in [16] and proved in [37] (see [38] and

[57, Section A.3] for more details).

6.3. The Rational Shuffle Conjecture. The symmetric polynomial P̃n,m · 1 ∈ V has a com-

binatorial interpretation. Let us define a m/n parking function as a function:

f : {1, . . . , m} → {1, . . . , n}, such that |f−1([1, i])| ≥
mi

n
∀ i

Alternatively, a parking function can be presented as a standard Young tableau F of skew

shape (D + 1m) \D, where D is a m/n Dyck path. Given such a tableau, the function f can

be reconstructed by sending each i to the x-coordinate of the box labeled by i in the tableau. It

is clear that this correspondence is bijective.



24 EUGENE GORSKY AND ANDREI NEGUT,

5

2

1

4

3

FIGURE 4. A 3/5 Dyck path and a parking function

Given a box x = (i, j), let us define r(x) = mn−m− n−mi− nj. Given a m/n parking

function F , define:

s(F ) = | {(x, y) : x > y such that r(F (y)) < r(F (x)) < r(F (x)) +m} |

and define smax(D) to be the maximum of s(F ) over all parking functions F constructed on

the Dyck path D. Let

dinv(F ) = s(F ) + h+(D)− smax(D).

Finally, define the descent set of F by:

Des(F ) = {x : r(F (x)) > r(F (x+ 1))}

Let PFm/n denote the set of all m/n parking functions. The following symmetric function has

been independently constructed in [1] and [43]:

(51) Frn,m =
∑

F∈PFm/n

qδm,n−|D|tdinv(F )QDes(F ),

where QDes(F ) is the Gessel quasisymmetric function [25, 40] associated with the set Des(F ). In

[43], it was proved that Frn,m specializes to the symmetric function from [40] when m = n+1,

and that Frn,m computes the Frobenius character of the Sn action in the homology of a certain

Springer fiber in the affine flag variety equipped with extra filtration, as in Section 5.4. The

following conjecture generalizes this fact for all m and it arose during private communication

between the first author and Adriano Garsia:

Conjecture 6.3. The following identity holds:

Frn,m = P̃n,m · 1

When m = n + 1, it follows from Corollary 6.5 that this conjecture specializes to the main

conjecture of [40]. At the suggestion of Adriano Garsia, we give a constant term formula for

P̃n,m · 1, which is related to the SYT formula of (49) in the same way as formula (42) is related

to formula (41). The following formula follows from [54]:

(52) P̃n,m · 1 =

∫
Ψn(e(qtz1) · · · e(qtzn))

∏n
i=1 z

Sm/n(i)

i(
1− qtz2

z1

)
· · ·
(
1− qt zn

zn−1

)
∏

1≤i<j≤n

ω

(
zi
zj

)
dz1
2πiz1

· · ·
dzn
2πizn

where Ψn is the map of (45) and e(z) =
∑

i(−z)iei. The above integral goes over contours

that surround 0 and ∞, with z1 being the innermost and zn being the outermost contour. One
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can compute the above residues in zi and produce a sum of symmetric functions indexed by

certain matrices of natural numbers. We will show how to do this in the slightly simpler case

of the super-polynomials P̃n,m.

6.4. The m = n + 1 case. For m = n + 1, one can prove that the rational q, t–Catalan

numbers agree with the q, t–Catalan numbers defined in [23], and Conjecture 6.3 agrees with

the “Shuffle conjecture” of [40]. The following proposition follows from the results of [23],

but we present its proof here for completeness.

Proposition 6.4. One has the identity: P̃0,1(pn) = en.

Proof. It is enough to prove this above in any VN , since V is the inverse limit of these vector

spaces. Let us recall that:

P
N

0,k = t−k(N−1)

(
PN
0,k −

tkN − 1

tk − 1

)

If we keep N finite but make the change of variables ϕ 1
1−1/t

of Theorem 4.2, we obtain the

operator:

(53) P̃N
0,1 = ϕ 1

1−1/t
◦ P

N

0,1 ◦ ϕ
−1

1
1−1/t

= t−N+1ϕ 1
1−1/t

◦

(
δ1 −

tN − 1

t− 1

)
◦ ϕ−1

1
1−1/t

where δ1 is the operator of (11). The operators P̃N
0,1 stabilize to P̃0,1. Using (53), we can rewrite

the desired identity as:

(54) δ1(pn) =
1− tN

1− t
pn + (−1)n

tN (1− qn)

tn(1− t)
ϕ−1

1
1−1/t

(en).

Indeed, ∂
(i)
q pn = pn + (qn − 1)xn

i , so by (11)

δ1(pn) = pn
∑

i

Ai(x) + (qn − 1)
∑

i

Ai(x)x
n
i .

Consider the function F (z) =
∏N

i=1
1−zxi

1−ztxi
=
∑∞

z=0 z
nFn. It has the following partial fraction

decomposition:

F (z) =
1

tN
+

t− 1

tN

N∑

i=1

Ai(x)

1− tzxi

,

hence

(55)
∑

i

Ai(x)x
n
i =

{
1−tN

1−t
n = 0

FntN

tn(t−1)
n > 0,

Therefore we have

δ1(pn) =
1− tN

1− t
pn +

tN(1− qn)

tn(1− t)
Fn.

On the other hand,

lnF (z) =

N∑

i=1

(ln(1− zxi)− ln(1− ztxi)) = −

∞∑

k=1

(1− tk)
zkpk
k

,

hence

F (z) = ϕ−1
1

1−t

[
exp(−

∞∑

k=1

zkpk
k

)

]
= ϕ−1

1
1−t

[
∏

i

(1− zxi)

]
,
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and Fn = (−1)nϕ−1
1

1−t

(en). �

Corollary 6.5. The following identities hold:

P̃n,1 · 1 = en, P̃n,n+1 · 1 = ∇en

Proof. It follows from (22) that P̃n,1 = [P̃0,1, P̃n,0], hence:

P̃n,1 · 1 = [P̃0,1, P̃n,0] · 1 = P̃0,1P̃n,0 · 1 = P̃0,1 · pn = en.

The second identity follows from the equation P̃n,n+1 = ∇P̃n,1∇
−1. �

As a corollary, we get the following decomposition of the Garsia-Haiman coefficients:

Proposition 6.6. Given a Young diagram λ, the following identity holds:

(56) ΠλBλ =
1

M

SYT∑

T of shape λ

cn,1(T ),

where:

Πλ =

χ(�)6=1∏

�∈λ

(1− χ(�)), Bλ =
∑

�∈λ

χ(�)

The coefficients cn,1(T ) are defined by (50).

Proof. It has been shown in [23, Theorem 2.4] that the left hand side of (56) coincides with the

coefficient:

gλ · 〈en, H̃λ〉q,t−1

By Corollary 6.5, this is equal to gλ · 〈H̃λ|P̃n,1|1〉q,t−1 , which equals the right hand side of (56)

by (50). �

6.5. Tesler matrices. By (43), the super-polynomials Pn,m ultimately come down to comput-

ing the residue:

P̃n,m(u, q, t) = (Reszn=0 − Reszn=∞) · · · (Resz1=0 − Resz1=∞)

(57)
1

z1 · · · zn
·

∏n
i=1 z

Sm/n(i)

i · 1−uzi
zi−1(

1− qtz2
z1

)
· · ·
(
1− qt zn

zn−1

)
∏

1≤i<j≤n

ω

(
zi
zj

)

For m > 0, the above only has residues at zi = ∞. Therefore, let us consider the expansions:

1− ux

x− 1
= −1 + (u− 1)

∑

k≥1

x−k, ω(x) = 1 +
∑

k=1

A(k)x−k,
ω(x)

1− qt
x

=
∑

k=1

B(k)x−k

where:

A(k) = −(q − 1)(t− 1)
qk − tk

q − t
, B(k) =

(qk+1 − qk)− (tk+1 − tk)

q − t

Using these, we can compute the (57) inductively. Take first the residue in the variable z1:

P̃n,m(u, q, t) =

xi
n≥0∑

x1
n+...+xn

n=Sm/n(n)

(1− u+ uδ0xn
n
) · A(xn−1

n )

xi
n>0∏

i<n−1

B(xi
n)
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Reszn=∞ · · ·Resz2=∞
1

z1 · · · zn−1

∏n
i=2 z

Sm/n(i)+x1
i

i · 1−uzi
zi−1(

1− qtz2
z1

)
· · ·
(
1− qt zn

zn−1

)
∏

1≤i<j≤n−1

ω

(
zi
zj

)

Following [39] (see also [22] and [2]), we introduce the notion of Tesler matrix. An upper tri-

angular matrix X = {xi
j ≥ 0}1≤i≤j≤n is called a m/n Tesler matrix if it satisfies the following

system of equations:

(58) xi
i +
∑

j>i

xi
j −

∑

j<i

xj
i = Sm/n(i) ∀ i

We will denote the set of all m/n Tesler matrices by Tesm/n. Taking next the residues in the

variables z2, . . . , zn gives us:

(59) P̃n,m(u, q, t) =
∑

X∈Tesm/n

xi
i>0∏

1≤i≤n

(1− u)
∏

1≤i≤n−1

B(xi
i+1)

xi
j>0∏

i<j−1

A(xi
j)

Therefore, the above computes the uncolored knot invariant as a sum of certain simple terms

over all Tesler matrices. Note that the whole sum depends very strongly on n, while the m
dependence is captured only in the equation (58). However, the superpolynomial Pn,m is con-

jecturally symmetric in m and n, and this is not manifest from the above formula.

6.6. Degeneration at t = 1. In fact, P̃n,m|u=0 is a polynomial in q and t with positive coef-

ficients, which is not manifest from (59) above. This follows from the fact that it is the Euler

characteristic of a certain line bundle on the flag Hilbert scheme Hilb0,n, as in Subsection 4.3.

The higher cohomology groups of this line bundle vanish, and H0 only produces positive coef-

ficients (this vanishing result is outside the scope of this paper and will be presented in a future

work). However, we can completely describe this polynomial when t = 1 (or when q = 1,

since the right hand side of (59) is clearly symmetric in q and t).

Theorem 6.7. Conjectures 6.1 and 6.2 hold for t = 1 and any coprime n,m.

Proof. Let us first remark that any Tesler matrix from Tesm,n gives rise to a Dyck path in the

n×m rectangle, with horizontal steps xi
i. Indeed, for any k ≤ n we have the equation:

Sm/n(1) + . . .+ Sm/n(k) =

k∑

i=1

(
xi
i +
∑

j>i

xi
j −

∑

j<i

xj
i

)
=

k∑

i=1

(
xi
i +
∑

j>k

xi
j

)

Therefore:
k∑

i=1

xi
i ≤ Sm/n(1) + . . .+ Sm/n(k) =

⌊
km

n

⌋
.

Any given Dyck path may correspond to many Tesler matrices. However, note that:

(60) A(x)|t=1 = δ0x, B(x)|t=1 = qx

so any summand of (59) that has some xi
j > 0 for j > i + 1 will vanish. Therefore, the only

summands of (59) that survive are those such that xi
j = 0 for all j > i + 1. Such Tesler

matrices will be called quasi-diagonal, and the set of quasi-diagonal m/n Tesler matrices will

be denoted by qTesm/n. Therefore, (59) becomes:

(61) P̃n,m(0, q, 1) =
∑

X∈qTesm/n

qx
n−1
n +...+x1

2

xi
i>0∏

1≤i≤n

(1− u)
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The condition xi
i > 0 specifies the corners of a Dyck path, while the sum

∑n−1
i=1 xi

i+1 =∑n
i=1 i(Sm/n(i)− xi

i) computes the area between the Dyck path and the diagonal. Therefore:

P̃n,m(0, q, 1) =
∑

D∈Ym/n

q
(m−1)(n−1)

2
−|D|(1− u)# of corners of D

This implies Conjecture 6.2 at t = 1. When we set u = 0, we obtain Conjecture 6.1 at t = 1.

�

6.7. Degeneration at t = q−1. We will compute the knot invariant at t = q−1, and show that

it is a q−analogue of the m,n−Catalan number. This proves Conjecture 6.1 at t = q−1.

Proposition 6.8. For any m and n with gcd(m,n) = 1, we have:

(62) P̃n,m(0, q, q
−1) =

[m+ n− 1]!

[m]![n]!
,

where [k] = qk/2−q−k/2

q1/2−q−1/2 are the q−integers and [k]! = [1] · · · [k] are the q−factorials.

Proof. Let us describe the degeneration of all constructions that we used to the case t = q−1,

where q and t are the equivariant parameters on C
2. Macdonald polynomials Pλ(q, t

−1) will de-

generate to Schur polynomials sλ, hence modified Macdonald polynomials H̃λ will degenerate

to modified Schur polynomials ϕ 1
1−1/t

(sλ).

As it was explained in [3], the case t = q−1 corresponds to the classical Chern-Simons theory.

The corresponding knot invariants and operators were widely discussed in the mathematical and

physical literature, see e.g. [48, 63] for more details. In particular, it is shown in [63, section

3.4] that:

P̃n,m(q, q
−1) = DP̃n,0(q, q

−1)D−1, where D = ∇(q, q−1)
m
n .

Remark that pn =
∑n−1

k=0(−1)ks(n−k,1k), and:

∇(s(n−k,1k)) = q
(n−k)(n−k−1)

2
− k(k+1)

2 s(n−k,1k) = q
n(n−2k−1)

2 s(n−k,1k),

hence:

D(s(n−k,1k)) = q
m(n−2k−1)

2 s(n−k,1k) = q
(m−1)(n−1)

2
+n−1

2
−kms(n−k,1k).

Therefore:

P̃n,m(1) = D(pn) = q
(m−1)(n−1)

2

n−1∑

k=0

(−1)kq
n−1
2

−kmϕ 1
1−1/t

(s(n−k,1k)).

By [4, Theorem 1.6], this vector coincides with the graded Frobenius character of the finite-

dimensional representation Lm/n. One can also check (see e.g [30, 35] for details) that its

evaluation is given by the equation (62). �
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