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Re� ned Plate Theory and Its Variants
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The developmentof a new re� ned plate theory and its two simple variants is given. The theories have strong com-
monalitywith the equationsof classical plate theory (CPT). However, unlike CPT, these theories assumethat lateral
and axial displacements have bending and shear components such that bending components do not contribute to-
ward shear forces and, likewise, shearing components do not contribute toward bending moments. The theory and
one of its variants are variationallyconsistent, whereas the second variant is variationally inconsistent and uses the
relationships between moments, shear forces, and loading. It should be noted that, unlike any other re� ned plate
theory, the governing equation as well as the expressions for moments and shear forces associated with this variant
are identical to those associated with the CPT, save for the appearanceof a subscript. The effectiveness of the theory
and its variants is demonstrated throughan example. Surprisingly, the answers obtained by both the variants of the
theory, one of which is variationally consistent and the other one is inconsistent, are same. The numerical example
studied, therefore, not only brings out the effectiveness of the theories presented, but also, albeit unintentionally,
supports the doubts, � rst raised by Levinson, about the so called superiority of variationally consistent methods.

Nomenclature
a = length of plate in x direction
b = width of plate in y direction
D = plate rigidity
E = Young’s modulus of plate material
G = shear modulus of plate material
h = thickness of plate
Mx , My , Mx y = moments due to stresses ¾x , ¾y , and ¿x y ,

respectively
Q x , Q y = shear forces due to stresses ¿zx and ¿yz ,

respectively
q = intensity of lateral load acting in z direction
u, v, w = displacements in x , y, and z directions,

respectively
ub , vb , wb = bending components of displacements

u, v, and w, respectively
us , vs , ws = shear components of displacements

u, v, and w, respectively
x , y, z = Cartesian coordinates
0-x-y-z = Cartesian coordinate system
°x y , °yz , °zx = shear strains
²x , ²y , ²z = normal strains
¹ = Poisson’s ratio of plate material
¼ = total potential energy
¾x , ¾y , ¾z = normal stresses
¿x y , ¿yz , ¿zx = shear stresses
52 = Laplace operator in two (x and y) dimensions

Introduction

P LATE analysis involvinghigher-ordereffects such as shear ef-
fects is an involvedand tediousprocess. Even the considerably

simple and well-known � rst-order shear deformation theories such
as Reissner’s theory1 and Mindlin’s theory2 require solving two dif-
ferential equations involving two unknown functions and involve
the use of shear coef� cient to approximatelysatisfy the constitutive
relationship between shear stress and shear strain. This coef� cient
itself is a matter of research3 even in case of beams.
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However,it ispossibleto take intoaccountthehigher-ordereffects
and yet keep the complexityat a considerablylower level.Notewor-
thy contributionsin this respect are from Librescu,4 Levinson,5 and
Donnel.6 The present author’s previous work7 may also be cited in
this respect. A critical review of the classical plate theory (CPT) as
well as some well-knownhigherorder theories is given by Vasil’ev.8

Librescu’s approach4 makes the use of weighted lateral displace-
ment. Constitutiverelationsbetween shear stressesand shear strains
are satis� ed. Reissner’s1 formulation comes out as a special case of
Librescu’s approach.4

Levinson5 uses a strength of materials approach and his theory,
unlike that of Mindlin’s,2 does not require adscititious considera-
tions to achieve its results. The governingequations Levinson5 gets
for the motion of a plate are the same as those of Mindlin’s theory2

provided that the shear coef� cient value associated with Mindlin’s
theory is taken as 5

6 .
Donnel’s6 approach is to make corrections to the classical plate

de� ections. He assumes that the shear forces are uniformly dis-
tributed accross the thickness of the plate, and to rectify this as-
sumption, introducesa numerical factor,which needs to be adjusted.
Constitutive relations between transverse shear stresses and strains
are not satis� ed exactly.

The present author’s previouswork7 utilizes physicallymeaning-
ful entities, for example,displacementand shear forces, for describ-
ing the displacement � eld. Gross equilibrium equations of the plate
are utilized to get a fourth-order partial differential equation. The
theory is variationally inconsistentbut easy to use.

The purpose of this paper is to introduce a new variationally
consistent re� ned plate theory and, more important, its two simple
variants.One of the variants is variationallyconsistent,but the other
one is inconsistent.Note that the theorieshave strongsimilaritywith
the CPT, with respect to appearances and forms of some equations
and expressions. In fact, unlike any other re� ned plate theory, the
governing equation as well as the expressions for moments and
shear forces associated with the second variant of the theory are
identical to those associated with the CPT, save for the appearance
of a subscript.

For developingthe theories, axial as well as lateral displacements
are allowedto be also in� uencedby shearforces.A uniquefeatureof
the presentwork is that lateral and axialdisplacementshavebending
and shear components such that bending components do not con-
tribute toward shear forces and, likewise, shearing components do
not contribute toward bending moments. This results in simpli� ca-
tion in formulation.

Note that Mindlin’s formulation2 comes out as a special case of
Levinson’s formulation5 and Reissner’s formulation1 comes out as
a special case of Librescu’s formulation,4 whereas CPT comes out
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as a specialcase of the re� ned plate theoryand its variantspresented
here. Therefore, it is the opinion of the author that if � nite elements
basedon Levinson’s5 orLibrescu’s4 approachare used, the elements
will be prone to shear locking,whereas the � nite elements based on
the theories presented here will be free from shear locking.

The effectivenessof the theories is demonstrated through an ex-
ample. Results obtained are highly accurate. Surprisingly, the an-
swers obtained by both the variants of the theory, one of which is
variationally consistent and the other one is inconsistent,are same.
The numericalexamplestudied, therefore,notonly bringsout theef-
fectivenessof the theoriespresented,but also, albeitunintentionally,
supports the doubts, � rst raised by Levinson,9 about the so-called
superiority of variationally consistent methods.

Plate Under Consideration
Considera plate (of lengtha, width b, and thicknessh) of a homo-

geneous isotropic material. The plate occupies in 0-x-y-z Cartesian
coordinate system a region

0 · x · a; 0 · y · b; ¡h=2 · z · h=2 (1)

The plate is loadedon surface z D ¡h=2 by a lateral load of intensity
q.x; y/ acting in the z direction.The plate can have any meaningful
boundary conditions at edges x D 0, a and y D 0, b. The modulus
of elasticity E , shear modulus G, and Poisson’s ratio ¹ of the plate
material are related by G D E=[2.1 C ¹/].

Assumptions for the Re� ned Plate Theory
The following are the assumption involved for the re� ned plate

theory (RPT):
1) The displacements are small and, therefore, strains involved

are in� nitesimal.
2) The lateraldisplacementw has two components:bendingcom-

ponent wb and shear componentws . Both the componentsare func-
tions of coordinates x and y only.

3) In general, transverse normal stress ¾z is negligible in com-
parison with in-plane stresses ¾x and ¾y . Therefore, for a linearly
elastic isotropic material, stresses ¾x and ¾y are related to strains ²x

and ²y by the following constitutive relations:

¾x D [E=.1 ¡ ¹2/].²x C ¹²y /; ¾y D [E=.1 ¡ ¹2/].²y C ¹²x /

4) The displacement u in x direction and displacement v in y
direction each consists of two components.

a) The bending component ub of displacement u and vb of dis-
placement v are assumed to be analogous, respectively, to the dis-
placementsu and v given by the CPT. Therefore, the expression for
ub and vb can be given as

ub D ¡z
@wb

@x
; vb D ¡z

@wb

@y

Note that the displacement components ub , vb , and wb together do
not contribute toward shear stresses ¿zx and ¿yz .

b) The shear componentus of displacementu and the shear com-
ponent vs of displacementv are such that they give rise, in conjunc-
tion with ws , to the parabolic variationsof shear stresses ¿zx and ¿yz

across the cross section of the plate in such a way that shear stresses
¿zx and ¿yz are zeroat z D ¡h=2 andat z D h=2 and their contribution
toward strains ²x , ²y , and °x y is such that in the moments Mx , My ,
and Mx y there is no contribution from the components us and vs .

5) Body forcesare assumed to be zero (body forcescan be treated
as external forces without much loss of accuracy).

Displacements, Strains, Stresses, Moments,
and Shear Forces in RPT

Expressionsfor displacements,etc., associatedwith the RPT will
now be obtained.

Expressions for Displacements in RPT
Based on the assumptions made in the preceding section, it is

possible, with some effort, to write
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w D wb C ws (4)

Expressions for Strains in RPT
Expressions (2–4) can be used to obtain expressions for normal

strains ²x , ²y , and ²z and shear strains °x y , °yz , and °zx . The expres-
sions for the strains are
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Expressions for Stresses in RPT
Using strain expressions(5) and (6) in constitutiverelationsfor¾x

and¾y , as givenin theassumption3 in theprecedingsection,onegets
expressions for stresses ¾x and ¾y . Using shear strain expressions
(8–10) and constitutive equations for shear stress and shear strains
that is, ¿xy D G°x y , ¿yz D G°yz , and ¿zx D G°zx , onegets expressions
for ¿x y , ¿yz , and ¿zx . These expressions are
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The expressionsobtainedfor stresseswill be utilizedforobtaining
expressions for moments and shear forces.

Expressions for Moments and Shear Forces in RPT
The moments Mx , My , and Mx y and shear forces Qx and Q y are

de� ned as 8
>>>><

>>>>:
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>>>>;

d z (16)

Using expressions (11–15) in Eq. (16), one gets expressions for
moments Mx , My , and Mx y and shear forces Q x and Q y as follows:
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where the plate rigidity D is de� ned by

D D
Eh3

12
¡
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¢ (22)

Note that expressions for moments Mx , My , and Mx y contain only
wb as an unknown function. Also, the expressions for shear forces
Q x and Q y contain only ws as an unknown function.

Total Potential Energy in RPT
Note that transverse normal strain ²z given by expression (7) is

identically zero. The total potential energy ¼ for the plate is given
by

¼ D 1
2
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Using Eqs. (5), (6), and (8–15) in Eq. (23), one can write
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Governing Equations in RPT
Minimizing the total potential energy given by expression (24)

with respect to wb and ws yields the governingequationsand bound-
ary conditions. The governing equations of the plate are given by

52 52 wb D q=D (25)

1
84

¡
5252ws

¢
¡ [5.1 ¡ ¹/=h2]

¡
52 ws

¢
D q=D (26)

where

52 D @2

@x2
C @ 2

@y2
(27)

Boundary Conditions in RPT
Minimizing the total potential energy given by the expression

(24) with respect to wb and ws also yields boundary conditions.
The boundary conditions for the plate are given as follows.
1) At corners (x D 0, y D 0), (x D 0, y D b), (x D a, y D 0), and

(x D a, y D b) the following conditions hold: a) the condition in-
volving wb (bending component of lateral displacement)
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and b) the condition involving ws (bending component of lateral
displacement)
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2) On edges x D 0 and a, the following conditions hold: a) the
conditions involving wb (bending component of lateral displace-
ment)
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and b) the conditions involving ws (shear component of lateral dis-
placement)
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3) On edges y D 0 and b, the following conditions hold: a) the
conditions involving wb (bending component of lateral displace-
ment)
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and b) the conditions involving ws (bending component of lateral
displacement)
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Comments on Equations of RPT
1) In RPT, there are two governingequations that are two uncou-

pled fourth-order partial diffferential equations, that is, Eqs. (25)
and (26).

2) With respect to boundary conditions, note the following:
a) In RPT, there are four boundary conditions per edge. Out of

these, two conditions [e.g., in case of edge x D 0, conditions (30)
and (31)] are stated in terms of wb and its derivatives only. The
remaining two conditions [e.g., in case of edge x D 0, conditions
(32) and (33)] are stated in terms of ws and its derivatives only.

b) In RPT, there are two conditions per corner. One condition
[i.e., condition(28)] is stated in terms of wb and its derivativesonly.
The remaining condition [i.e., condition (29)] is stated in terms of
ws and its derivatives only.

3) The following entities of RPT are identical, save for the ap-
pearanceof a subscript,to the correspondingentitiesof CPT: a) gov-
erning equation (25); b) edge boundary conditions (30), (31), (34),
and (35)]; c) corner boundary condition (28); and d) moment ex-
pressions for Mx , My , and Mx y , that is, expressions (17–19). (The
bending component wb of lateral displacement � gures in the just
mentioned equations/expressionsof RPT, whereas lateral displace-
ment w � gures in the corresponding equations/expressions of the
CPT.)

4) Because in the differentialequations the only differentialoper-
ator occurring is the invariant operator 52 , it indicates that explicit
solutions of the theory may also be found in terms of plane polar
and elliptical coordinates.

5) The governing equations of RPT are somewhat analogous to
those obtained by Green (these equations are quoted on pages 168–

170 of Ref. 10). However, because of strong similarity to CPT,
RPT equations are easy to deal with. Moreover, Green’s equations
are based on Reissner’s approach1 and, therefore, the transverse
shear stressesand shear strainsdo not exactly satisfy the constitutive
relations. In RPT, these constitutive relations are exactly satis� ed.

Variants of RPT
The RPT results in two fourth-orderpartial differentialequations

(25) and (26) and boundary conditions (28–37). It is possible to
introduce simpli� cation and yet retain very good accuracy. Two
variants of the theory will be presented.

1) In RPT-Variant I variational consistency will be adhered to,
but a simpli� ed expression for total potential energy will be used
after ignoring terms of marginal utility. The resulting governing
equations can be considered to be analogous to those of Mindlin’s
theory.2 It will be observed that one of the governing equations has
striking similarity to that of the CPT.

2) In RPT-Variant II instead of using a variationalapproach,gross
equilibriumequationsof theplatewill be satis� ed.The approachcan
be consideredto be an improvementover Ref. 7. It will be observed
that the resulting governing equation, as well as expressions for
moments and shear forces, have striking similarity to those of the
CPT.

RPT-Variant I
As per assumptions4a and 4b given earlier and also from expres-

sions for Mx , My , Mx y , Q x , and Q y , that is, expressions (17–21),
the following can be noted:

1) The displacement components ub , vb , and wb together con-
tribute only toward ¾x , ¾y , and ¿x y , but do not contribute toward
shear stresses ¿zx and ¿yz .

2) The shear componentus of displacementu and the shear com-
ponent vs of displacement v are such that a) they give rise, in con-
junction with ws , to the parabolic variations of shear stresses ¿zx

and ¿yz across the cross section of the plate and b) their contribution
toward strains ²x , ²y , and °xy is such that in the moments Mx , My ,
and Mx y there is no contribution from the components us and vs .

3) As a result, a) in expressions for moments Mx , My , and Mx y ,
that is, expressions (17–19), there are terms associated with com-
ponent wb of lateral displacement,but there are no terms associated
with component ws and b) in expressions for shear forces Qx and
Q y , that is, expressions (20) and (21), there are terms associated
with component ws of lateral displacement, but there are no terms
associated with component wb .

In viewof this, it is possibleto identify terms of marginalutility in
expression(24) for totalpotentialenergy.For example,in expression
(5) for strain ²x , there is a term ¡z.@2wb=@x2) associated with wb

and there is a term
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associated with ws : The terms associated with ws do not enter into
the expressions of moments Mx , My , and Mxy . Therefore, in the
productof¾x and²x , theproductof termscontainingws can be safely
ignored because the product is of two small insigni� cant entities.
Similar arguments can be advanced in case of the the product of ¾y

and ²y , as well as in the product of ¿x y and °xy .
Therefore, the expression for total potential energy can be ex-

pressed with good accuracy as follows:
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Displacements, Strains, Stresses, Moments, and Shear Forces in
RPT-Variant I

The expressions for displacements, strains, stresses, moments,
and shear forces in RPT-Variant I are the same as those of the cor-
responding entities in RPT.

Governing Equations in RPT-Variant I
Minimizing the total potential energy given by the expression

(38) with respect to wb and ws yields the governing equations and
boundaryconditions.The governingequationsof the plate are given
by

52 52 wb D q=D (39)

52ws D ¡[h2=5.1 ¡ ¹/].q=D/ (40)
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Boundary Conditions in RPT-Variant I
Minimizing the total potential energy given by expression (38)

with respect to wb and ws not only yields the governing equations
but also yields the boundary conditions.

The boundary conditions of the plate are given as follows.
1) At corners .x D 0, y D 0/, .x D 0, y D b/, .x D a, y D 0/, and

.x D a, y D b/, the following holds:
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2) On edges x D 0 and a, the following conditions hold: a) the
conditions involving wb (bending component of lateral displace-
ment)
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and b) the condition involving ws (shear component of lateral dis-
placement)
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3) On edges y D 0 and b, the following conditions hold: a) the
conditions involving wb (bending component of lateral displace-
ment)

¡D

µ
@3wb

@y3
C .2 ¡ ¹/

@3wb

@x2@y

¶
D 0 or wb is speci� ed (45)

¡D

µ
@2wb

@y2
C ¹

@2wb

@x2

¶
D 0 or

@wb

@y
is speci� ed (46)

and b) the condition involving ws (shear component of lateral dis-
placement)

@ws

@y
D 0 or ws is speci� ed (47)

Comments on Equations of RPT-Variant I
1) In RPT-Variant I, there are two governingequations,which are

two uncoupled fourth-order partial diffferential equations, that is,
Eqs. (39) and (40).

2) With respect to boundary conditions, note the following:
a) In RPT-Variant I there are three boundary conditionsper edge.

Out of these, two conditions [e.g., in case of edge x D 0, condi-
tions (42) and (43)] are stated in terms of wb and its derivatives
only. The remaining condition [e.g., in case of edge x D 0, condi-
tion (44)] is stated in terms of ws and its derivatives only.

b) In RPT-Variant I, there is one condition [i.e., condition (41)]
per corner, and it is stated in terms of wb and its derivatives only.

3) The following entities of RPT-Variant I are identical, save for
the appearanceof a subscript, to the correspondingentities of CPT:
a) governingequation (39); b) edge boundary conditions (42), (43),
(45), and (46); c) corner boundary condition (41); and d) moment
expressions for Mx , My , and Mxy [i.e., expressions (17–19)]. (The
bending component wb of lateral displacement � gures in the just
mentioned equations/expressions of RPT-Variant I, whereas lateral
displacementw � gures in the correspondingequations/expressions
of the CPT.)

4) Because in the differentialequations the only differentialoper-
ator occurring is the invariant operator 52 , it indicates that explicit
solutions of the theory may also be found in terms of plane polar
and elliptical coordinates.

5) The governing equations of RPT-Variant I are somewhat anal-
ogous to those obtained Reissner’s theory1 and Mindlin’s theory.2

Howevere, because of strong similarity to the CPT, RPT equations
are easy to deal with. Moreover, in Mindlin’s approach2 and Reiss-
ner’s approach,1 the transverse shear stresses and shear strains do
not exactly satisfy the constitutiverelations. In RPT-Variant I, these
constitutive relations are exactly satis� ed.

RPT-Variant II
As noted earlier, analysis involving higher-order effects such as

shear effects is an involved and tedious process. The motivation
behind RPT-Variant II is to obtain a theory that is simple to deal
with. The simpli� cation is achieved by taking the displacement ex-
pressions of RPT and obtaining governing equations by using the
relationships (which always hold whatever may be the plate the-
ory used) between moments, shear forces, and loading on the plate.
However, the price to be paid for is that the theory becomes varia-
tionally inconsistent.

RPT-Variant II can be considered to be an improvement on the
earlier zeroth-order shear deformation theory (ZSDT) for plates.7

ZSDT for plates is strikinglysimilar to the CPT and is much simpler
than even the � rst-order shear deformation theories, and the term
zeroth-order is meant to convey this.

Important among earlier attempts to obtain fourth-orderdifferen-
tial equation for plates and yet take into account shear deformation
are Librescu’s approach4 and the present author’s ZSDT approach.7

Librescu’s approach4 makesuseofweightedlateraldisplacement,
whereas, the RPT-Variant II approach uses the lateral displacement
(which has bendingand shear components) and, therefore, the RPT-
Variant II approachis physicallymore meaningful.Also, in contrast
to Librescu’s approach, the RPT-Variant II approach utilizes, from
the formulation stage, only physically meaningful entities, for ex-
ample, lateral de� ection and shear forces.

The main differences between RPT-Variant II and ZSDT can be
stated as follows: Unlike ZSDT, in RPT-Variant II the lateral dis-
placement has components, namely, bending component and shear
component. In RPT-Variant II, the net contributionto moments Mx ,
My , and Mx y from the shear components of axial and lateral dis-
placements together is zero. Note the following important features
about RPT-Variant II:

1) The single most distinguishing feature of RPT-Variant II is
that, unlike any other RPT, the governing differential equation as
well as the expressions for moments and shear forces associated
with RPT-Variant II are identical to those associated with the CPT,
except instead of the term for lateral displacement appearing in the
equation and expressionsof the CPT the term representingbending
component of the lateral displacement appears in RPT-Variant II.

2) Also, for RPT-Variant II, as well as for ZSDT, only physically
meaningfulentities, for example, lateral de� ection and shear forces,
are involved in the description of displacement � elds.

Assumptions for RPT-Variant II
For RPT-Variant II, all of the assumptions stated earlier, except

assumption 4b, are valid. For RPT-Variant II, assumption 4b can be
worded as follows: The shear component us of displacement u and
the shear component vs of displacement v are such that they give
rise, in conjunction with ws , to the parabolic variations of shear
stresses ¿zx and ¿yz across the cross-section of the plate in such a
way that the shear stresses ¿zx and ¿yz are zero at z D ¡h=2 and at
z D h=2 and shear stresses ¿zx and ¿yz satisfy the following:

Z z D h=2

z D ¡h=2

¿zx dz D Q x ;

Z z D h=2

z D ¡h=2

¿yz dz D Q y

The contribution of us and vs toward strains ²x , ²y , and °x y is such
that in the moments Mx , My , and Mx y there is no contributionfrom
the components us and vs .

Equilibrium Equations for the Plate in Terms of Moments, Shear Forces,
and Loading

In RPT-Variant II, instead of using energy principles, use will be
made of equlibrium equations for the plate in terms of moments,
shear forces, and loading.

From the theory of elasticity point of view, the equilibriumequa-
tions to be satis� ed are

@¾x

@x
C

@¿x y

@y
C @¿zx

@z
D 0;

@¿xy

@x
C

@¾y

@y
C

@¿yz

@z
D 0

@¿zx

@x
C

@¿yz

@y
C @¾z

@z
D 0
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In the preceding equilibrium equations, body forces are assumed
to be zero. Body forces can be treated as external forces without
much loss of accuracy. It is almost an impossible task to satisfy the
equilibrium equations identically. However, from these equations,
gross equilibrium equations can be obtained. For this the � rst two
of the equilibrium equations need to be multiplied by z and then
need to be integratedwith respect to z noting that shear stresses ¿zx

and ¿yz are zero at z D h=2 and ¡h=2. The third of the equilibrium
equations needs to be integrated with respect to z and noting that
stress ¾zx D 0 at z D h=2 and ¾zx D ¡q at z D ¡h=2. This will result
in the following equations:

@ Mx

@x
C

@Mx y

@y
¡ Q x D 0 (48)

@ Mx y

@x
C

@My

@y
¡ Q y D 0 (49)

@ Qx

@x
C @ Q y

@y
C q D 0 (50)

Equations (48–50) can be construed to be the gross equilibrium
equations for any plate whether thin or thick. These equations es-
tablish certain relationships between moments, shear forces, and
loading. As such, in the context of the CPT, Eqs. (48–50) are well-
knownrelations.10 (Care needsto be takenand thenotationofRef.10
needs to be followed when interpretingthe correspondingequations
given therein on page 81.) Note that the equationshold good for any
plate theory including any higher-order plate theory.

Displacements in RPT-Variant II
Using expressions (17–22) in Eqs. (48) and (49), one obtains
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D ¡
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5.1 ¡ ¹/

@
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³
@2wb

@x2
C @2wb

@y2

´

@ws

@y
D ¡
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5.1 ¡ ¹/

@
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³
@2wb

@x2
C @2wb

@y2

´

From the preceding two equations, one can conclude that

ws D ¡
h2

5.1 ¡ ¹/

³
@2wb

@x2
C @ 2wb

@y2

´
(51)

Expression(51) can be written in another formusingEqs. (17), (18),
and (22):

ws D .12=5Eh/[Mx C My] (52)

Equation (52) establishes the relation between ws and wb .
Using expression (51) in expressions (20) and (21), one gets ex-

pressions for Q x and Q y as follows:

Qx D ¡D
@

@x

³
@2wb

@x2
C @2wb

@y2

´
(53)

Q y D ¡D
@

@y

³
@2wb

@x2
C @2wb

@y2

´
(54)

Using Eqs. (51–54) in Eqs. (2–4), one can write expressions for
displacements u, v, and w.

The expressionsfor displacementsu, v, and w can then be written
as

u D ¡z
@wb

@x
C

2.1 C ¹/

E

"
3

10

³
z

h

´
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³
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´3
#

Qx (55)

v D ¡z
@wb

@y
C 2.1 C ¹/

E

"
3

10

³
z

h

´
¡ 2

³
z

h

´3
#

Q y (56)

w D wb C 12

5Eh
[Mx C My ] (57)

Note that, in RPT-Variant II, the displacements u, v, and w are
expressed in terms of shear forces, bending moments, and bend-
ing component of lateral displacement, all physically meaningful
entities.

Strains and Stresses in RPT-Variant II
Expressions (55–57) can be used for obtaining expressions for

normal strains ²x , ²y , and ²z and shear strain °x y . The expressions
for the strains are

²x D ¡z
@2wb

@x2
C

2.1 C ¹/

E

"
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10

³
z

h

´
¡ 2

³
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(58)

²y D ¡z
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"
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z

h
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´3
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@ Q y
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(59)

²z D 0 (60)
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(61)

°yz D 2.1 C ¹/
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#

Q x (63)

Using expressions (58) and (59) in constitutive relations for ¾x

and ¾y as given in assumption 3 earlier, one gets expressions for
stresses ¾x and ¾y . Also, using expressions (61–63) and constitu-
tive equations for shear stress and shear strains, that is, ¿x y D G°x y ,
¿yz D G°yz , and ¿zx D G°zx , one gets expressions for ¿x y , ¿yz , and
¿zx . These expressions are
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Moments and Shear Forces in RPT-Variant II
Using expressions (64–66) in Eq. (16), one gets expressions for

moments Mx , My , and Mx y as follows:

Mx D ¡D

³
@2wb

@x2
C ¹

@2wb

@y2

´
(69)

My D ¡D

³
@2wb

@y2
C ¹

@2wb

@x2

´
(70)

Mx y D ¡D.1 ¡ ¹/
@ 2wb

@x@y
(71)

The expressions for moments in RPT-Variant II are same as those
obtained for RPT earlier.

Expressions for Q x and Q y have already been obtained in
Eqs. (53) and (53) and are as follows:

Qx D ¡D
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@2wb
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C @2wb

@y2

´
(72)

Q y D ¡D
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@y2

´
(73)

Note that expressions for moments Mx , My , and Mx y and shear
forces Qx and Q y contain only wb as an unknown function.

Using expressions (68) and (67) one observes that
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Q y D Q y (75)

Equations (74) and (75) are in tune with the amended assumption
4b mentioned in the present section.

Governing Equations in RPT-Variant II
Equilibrium equations (48–50) have been obtained earlier. Of

these equations, Eqs. (48) and (49) were utilized to obtain expres-
sions for displacements in RPT-Variant II.

Now, using shear force expressions (72) and (73) in equlibrium
equation (50), one obtains

52 52 wb D q=D (76)

Equation (76) can be considered to be the governing equation of
the plate. Governing equation (76) is strikingly similar to that of the
CPT. The only difference is that in Eq. (76) derivatives of wb are
involved,whereas in the governingequation of the CPT, derivatives
of w are involved.

Using expressions(4) and (51), the lateral displacementw can be
expressed in terms of its bending component wb as follows:

w D wb ¡ [h2=5.1 ¡ ¹/] 52wb (77)

Boundary Conditions in RPT-Variant II
Some typical boundary conditions will now be discussed for the

edge x D a. Boundary conditions for other edges will follow a sim-
ilar pattern.

Note that the lateral displacementw, moments Mx , My , and Mx y ,
and shear forces Q x and Q y are all explicitly expressed in terms of
the bending component wb of lateral displacement by expressions
(77), (69), (70), (71), (72), and (73), respectively.

If edge x D a is simply supported, then the following conditions
hold:

[w]x D a D 0; [Mx ]x D a D 0

If edge x D a is free, then the following conditions hold:

[Mx ]x D a D 0;

µ
Qx C

@ Mx y

@y

¶

x D a

D 0

If edge x D a is clamped, then two types of boundary conditions
analogous to those discussed by Timoshenko and Goodier11 in the
context of two-dimensional theory of elasticity approach for beam
analysis are feasible. In both types, displacement w is zero at the
edge x D 0. In one type, slope @w=@x is zero, whereas in the other
type, slope [@u=@z]z D 0 is zero at the edge. (This results in the spec-
i� cation of the derivative @wb=@x at the edge.) The boundary con-
ditions are either

[w]x D a D 0;

µ
@w

@x

¶

x D a

D 0

or

[w]x D a D 0
µ

@wb

@x

¶

x D a

D ¡3.1 C ¹/
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µ
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³
@2wb

@x2
C @2wb

@x2

´¶

x D a

Comments on Equations of RPT-Variant II
Unlike any other re� ned plate theory, the governing differential

equation as well as the expressions for moments and shear forces
associatedwith RPT-Variant II are identical to those associatedwith
the CPT except that instead of the term for lateral displacement ap-
pearing in the equation and expressions of the CPT the term repre-
senting the bending component of the lateral displacement appears
in RPT-Variant II. The governing equation is a fourth-order ordi-
nary differential equation. The bending component of the lateral
de� ection is the only unknown function.

Because in the differentialequation the only differential operator
occurring is the invariant operator 52, it indicates that explicit so-
lutions of the theory may also be found in terms of plane polar and
elliptical coordinates.

Example
An example is given to demonstrate the usefulnessof RPT, RPT-

Variant I, and RPT-Variant II; the results will be compared with
other theories.

Consider a plate (of length a, width b, and thickness h) of a
homogeneous isotropic material. The plate occupies in 0¡x¡y¡z
Cartesian coordinate system a region de� ned by expressions (1).
The plate has simply supportedboundaryconditionsat edges x D 0,
a and y D 0, b. The plate is loaded on surface z D ¡h=2 by a lateral
load of intensity q.x/ acting in the z direction given by

q.x/ D qo sin.¼ x=a/ sin.¼ y=b/ (78)

Solution of the Example by RPT
By using Eqs. (25), (26), and (78), the governing equations for

the example problem when RPT is utilized are then obtained as

52 52 wb D .qo=D/ sin.¼ x=a/ sin.¼ y=b/ (79)

1
84

¡
52 52ws

¢
¡ [5.1 ¡ ¹/=h2]

¡
52ws

¢

D .qo=D/ sin.¼ x=a/ sin.¼ y=b/ (80)

The boundary conditions for the example problem when RPT is
utilized can be stated as

wb D 0 on x D 0; a (81)
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D 0 on x D 0; a (82)

ws D 0 on x D 0; a (83)
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¶
D 0 on x D 0; a (84)
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wb D 0 on y D 0; b (85)

¡D

µ
@2wb

@y2
C ¹

@2wb
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¶
D 0 on y D 0; b (86)

ws D 0 on y D 0; b (87)

¡D

µ
@2ws

@y2
C ¹

@2ws

@x2

¶
D 0 on y D 0; b (88)

Governingequations(79)and (80)and boundaryconditions(81–88)
can be easily satis� ed if the solution is assumed to be a Navier-type
solution. It is easy to show that the solution of the problem, when
RPT is utilized, is given by

w D wb C ws (89)

where

wb D ..1=f[¼ 4=12.1 ¡ ¹2/].h2=a2 C h2=b2/2g//.qoh=E /

£ sin.¼ x=a/ sin.¼ y=b/ (90)

ws D ..1=f[5¼ 2=12.1 C ¹/].h2=a2 C h2=b2/ C [¼ 4=1008.1 ¡ ¹2/]

£ .h2=a2 C h2=b2/2g//.qoh=E/ sin.¼ x=a/ sin.¼ y=b/ (91)

Once the expressions for w, wb , and ws , that is, expressions (89–

91), of the problem are obtained, the other entities such as displace-
ments, strains, stresses, moments, and shear forces can be obtained
by using appropriate expressions, that is, from expressions (2), (3),
(5), (6), (8–15), and (17–21).

Solution of the Example by RPT-Variant I
By usingEqs. (39), (40), and (78), the governingequationsfor the

example problem when RPT-Variant I is utilized are then obtained
as

52 52 wb D .qo=D/ sin.¼ x=a/ sin.¼ y=b/ (92)

52ws D ¡[h2=5.1 ¡ ¹/].qo=D/ sin.¼ x=a/ sin.¼ y=b/ (93)

The boundary conditions for the example problem when RPT-
Variant I is utilized can be stated as

wb D 0 on x D 0; a (94)
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@y2

¶
D 0 on x D 0; a (95)

ws D 0 on x D 0; a (96)

wb D 0 on y D 0; b (97)

¡D

µ
@ 2wb

@y2
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@2wb

@x2

¶
D 0 on y D 0; b (98)

ws D 0 on y D 0; b (99)

Governingequations(92)and (93)and boundaryconditions(94–99)
can be easily satis� ed if the solution is assumed to be a Navier-type
solution. It is easy to show the solution of the problem when RPT
is utilized is given by

w D wb C ws (100)

where

wb D
1

[¼ 4=12.1 ¡ ¹2/].h2=a2 C h2=b2/2
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E
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(101)

ws D 1

[5¼ 2=12.1 C ¹/].h2=a2 C h2=b2/

qoh

E
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¼x

a
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¼y

b
(102)

Once the expressions for w, wb , and ws , that is, expressions (100–

102), of theproblemare obtained,the otherentitiessuch as displace-
ments, strains, stresses, moments, and shear forces can be obtained
by using appropriate expressions, that is, from expressions (2), (3),
(5), (6), (8–15), and (17–21).

Solution of the Example by RPT-Variant II
By using Eqs. (76) and (78), the governing equation for the ex-

ample problem when RPT-Variant II is utilized is obtained as

52 52wb D .qo=D/ sin.¼ x=a/ sin.¼ y=b/ (103)

The boudary conditions for the example problem when RPT-
Variant II is utilized can be stated as

wb D 0 on x D 0; a (104)
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D 0 on x D 0; a (105)

wb D 0 on y D 0; b (106)
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¶
D 0 on y D 0; b (107)

Governing equation (103) and boundary conditions (104–107) can
be easily satis� ed if the solution is assumed to be a Navier-type
solution. It is easy to show that the solution of the problem, when
RPT is utilized, is given by

wb D 1
[¼ 4=12.1 ¡ ¹2/].h2=a2 C h2=b2/2

qoh
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¼y

b
(108)

When expressions (108) and (77) are used, lateral displacement w
can be written as

w D 12.1 ¡ ¹2/

¼ 4[.h=a/2 C .h=b/2]2

»
1 C ¼ 2[.h=a/2 C .h=b/2]

5.1 ¡ ¹/

¼

£
qoh

E
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¼x
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¼y

b
(109)

Once the expressions for w and wb , that is, expressions (109) and
(108), of the problem are obtained, the other entities such as dis-
placements, strains, stresses, moments, and shear forces can be
obtained by using appropriate expressions, that is, from expres-
sions (55), (56), (59), and (61–73).

Numerical Results
To obtain the numerical results, in the example the following is

assumed:

a D 1; b D 1; h D 0:1; ¹ D 0:3

The exact results for the problem under consideration are avail-
able in Ref. 12, and details of the exact theory are given in Ref. 13.
The results for the problem under consideration using ZSDT for
plates are available in Ref. 7.

Comparisonof resultsby different theorieswith respect to central
de� ection, maximum tensile � exural stress, and maximum shear
stress is presented in Tables 1–3.

Table 1 Comparison of results for central de� ection

Error with respect
Theory Central de� ectiona to exact theory, %

RPT 296.0568 qoh=E 0.6183
RPT-Variant I 296.0674 qoh=E 0.6219
RPT-Variant II 296.0674 qoh=E 0.6219
ZSDT for plate 296.0674 qoh=E 0.6219
CPT 280.2613 qoh=E ¡4.7500
Exact plate theory 294.2375 qoh=E 0.0

aThat is, w at x D 0:5 and y D 0:5.
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Table 2 Comparison of results for maximum
tensile � exural stress ¾x

Maximum tensile Error with respect
Theory � exural stress ¾x

a to exact theory, %

RPT 19.94322 qo ¡0.5041
RPT-Variant I 19.94334 qo ¡0.5035
RPT-Variant II 19.94334 qo ¡0.5035
ZSDT for plate 19.94334 qo ¡0.5035
CPT 19.75763 qo ¡1.4300
Exact plate theory 20.04426 qo 0.0

aAt x D 0:5, y D 0:5, and z D 0:05.

Table 3 Comparison of results for maximum
shear stress ¿zx at midpoint of edge x = 0

Maximum shear Difference with
stress ¿zx at midpoint respect to RPT

Theory of edge x D 0a results, %

RPT 2.385722 qo 0.0
RPT-Variant I 2.387324 qo 0.0671
RPT-Variant II 2.387324 qo 0.0671
ZSDT for plate 2.387324 qo 0.0671
CPT 2.387324 qo 0.0671
Exact plate theory Not quoted ——

aThat is, at x D 0, y D 0:5, and z D 0.

The following can be noted about the numerical results:
1) For central de� ection, it can be seen from Table 1 that a) the

results from variationally consistent RPT are very accurate (er-
ror 0.6183%); b) the results using variationally consistent RPT-
Variant I, as well as variationally inconsistent RPT-Variant II and
ZSDT for plates are all identical and are also very accurate (er-
ror 0.6219%); and c) in accuracy, results obtained using RPT are
superior (by a very slender margin) to the results obtained by RPT-
Variant I, as well as variationally inconsistent RPT-Variant II and
ZSDT for plates.

2) For maximumtensile � exuralstress, it can be seen from Table 2
that a) the results from variationally consistent RPT are very accu-
rate (error ¡0.5041%); b) the results using variationally consistent
RPT-Variant I as well as variationally inconsistent RPT-Variant II
and ZSDT for plates are all identical and are also very accurate
(error ¡0.5035%); and c) in accuracy, in contrast to the preced-
ing observation for the central de� ection, the results obtained by
RPT-Variant I, as well as variationally inconsistent RPT-Variant II
and ZSDT for plates, are superior (by a very slender margin) to the
results obtained by RPT.

3) For maximum transverse shear stress, the results are given in
Table 3. In this connection, note the following points: a) the re-
sults from the exact theory are not available; b) the results for the
CPT are quoted in Table 3. Note that in the case of CPT transverse
shear stresses cannot be obtained by using shear stress to shear
strain constitutive relations, and these are required to be obtained
in a circuitous manner. In CPT, � rst stresses ¾x , ¾y , and ¿x y are ob-
tained. These stresses are substituted in the equilibrium equations
of the three-dimensional theory of elasticity, and then integrating
the equations and � nding the constants of integrations, one obtains
the expressions for transverse shear stresses ¿zx and ¿yz . In contrast
with the CPT, the transverse shear stresses can be obtained directly
by the use of shear stress to shear strain constitutive relations, when
RPT and its variants are used; c) note that while studyingexact solu-
tions of rectangular bidirectional composites and sandwich plates,
Pagano14 mentions (page 29 of Ref. 14) that “Although CPT appre-
ciably underestimatesthe maximum de� ection at relativelysmall S,
the stress � eld given by the CPT is in very favorableagreementwith
that given by elasticity theory.” In the preceding quote, S denotes
span to depth ratio of a square plate; and d) results of variationally
consistent RPT-Variant I, as well as results of variationally incon-
sistent RPT-Variant II and ZSDT for plates, are identical and hardly
differ (difference of 0.0671%) with respect to the result of RPT,
and in view of the remark by Pagano,14 just quoted, the results are
believed to be accurate.

From the discussionabout the numericalresults,there are surprise
� ndings.

1) The results given by RPT-Variant I and RPT-Variant II are
identical.This is despite the followingdifferences:a) RPT-Variant I
is a variationally consistent theory, whereas RPT-Variant II is vari-
ationally inconsistent;b) in RPT-Variant I, there are two governing
differential equations (one is of fourth order, and the other one is of
second order), whereas in RPT-Variant II, there is only one differen-
tial equationof fourth order; and c) in RPT-Variant I, there are three
boundary conditions per edge, whereas in RPT-Variant II, there are
only two boundary conditionsper edge.

2) Results for in-plane stress ¾x given by RPT-Variant II is su-
perior to the corresponding results given by RPT. This is despite
the following differences: a) RPT is a variationally consistent the-
ory, whereas RPT-Variant II is variationallyinconsistent;b) in RPT,
there are two governingdifferentialequations(both of fourth order),
whereas in RPT-Variant II, there is only one differential equation
of fourth order; and c) in RPT, there are four boundary conditions
per edge, whereas in RPT-Variant II, there are only two boundary
conditions per edge.

The precedingsurprising� ndings lend support to the doubts, � rst
raised by Levinson,9 about the so-called superiority of variation-
ally consistent methods. He was perplexed that results obtained by
a variationally consistent theory were not superior to the results
obtained by another variationally inconsistent theory, even though
both the theories shared same kinematic and stress assumptions.
On page 129 of Ref. 9, Levinson remarks, “It then may become
necessary to evaluate the worth of an approximate theory by its
performance over a spectrum of criteria rather than the single crite-
rion of (variational) consistency.” The numerical example studied,
therefore, not only brings out the effectiveness of the theories pre-
sented, but also, albeit unintentionally, supports the doubts about
the so-called superiority of variationally consistent methods.

Conclusions
In the paper, simple and easy to use RPT and its variants RPT-

VariantI andRPT-VariantII arepresented.The RPT is avariationally
consistent theory. Equations of the theory are analogous to those
obtainedby Green followingReissner’s approach,1 butdue to strong
similaritywith the CPT, theRPT presentedis easier to use. The RPT-
Variant I is a variationally consistent theory and is simpler than the
RPT. The governing equations are analogous to those obtained by
Mindlin2 and Reissner,1 but due to strong similarity with the CPT,
the RPT-VariantI is easier to use.The RPT-VariantII unlikeRPT and
RPT-Variant I, is a variationallyinconsistenttheory.It is the simplest
amongst the theories presented here. In fact, efforts involved in
getting the solutions using this theory are only marginally higher
than the efforts involved in CPT. It is capable of dealing with two
typesof clamped end conditions(this has similarity to the two types
of clamped end conditions involved in the two-dimensional theory
of elasticity approach for beam analysis). The most striking feature
is that, unlike any other re� ned plate theory, the governingequation
as well as the expressions for moments and shear forces associated
with the RPT-Variant II are identical to those associated with the
CPT, save for the appearance of a subscript.

For the theories presented the following can be said about them
in common:

1) The theories have strong similarity with the CPT, with respect
to appearancesand forms of some equations and expressions.

2) The transverse shear stresses and shear strains satisfy the con-
stitutive relations at all of the points.

3) Transverse shear stresses satisfy zero shear stress conditions
at the top and bottom surfaces of the plate.

4) Unlike Mindlin’s theory,2 there is no need of shear coef� cient.
5) The bending stresses have nonlinear components.
6) The CPT comes out as a special case of the formulations.

Therefore, in the context of � nite element solution of thin plate
problems, � nite elements based on the theories will be free from
shear locking.

7) The theoriesare easy to use. (In fact, the efforts involved in get-
ting the solutionby the RPT-Variant II approachare only marginally
higher than the efforts involved in CPT.)
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8) The effectiveness of the theories is demonstrated through an
example. Results obtained are accurate. (The numerical results ob-
tained in the case of square plate, even when thickness-to-sideratio
is 0.1, are marginally different from those obtained using exact the-
ory.)

9) Surprisingly, the answers obtained by both the variants of
the theory, one of which is variationally consistent and the other
inconsistent, are the same. The numerical example studied, there-
fore, not only brings out the effectivenessof the theories presented,
but also, albeit unintentionally, supports the doubts, � rst raised by
Levinson, about the so-called superiorityof variationallyconsistent
methods.
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