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1 Introduction

String theory and M-theory have provided various useful tools for studying supersymmetric
field theories. For example, 5-brane webs in Type IIB string theory [1, 2] and M-theory
compactified on a Calabi-Yau threefold [3–5] have shed light on uncovering various no-
ble aspects for supersymmetric theories of eight supercharges in five and six dimensions
(5d/6d). In particular, 5-brane webs have been a useful tool for better understanding of
5d superconformal theories qualitatively as well as quantitatively. Different gauge theories
can be described by different brane systems with or without introduction of orientifold
planes. Their interplay through Hanany-Witten transitions, resolutions of an orientifold
O7−-plane to two 7-branes, and S-duality has revealed various gauge theory descriptions.

Many 6d theories on a circle with or without a twist are represented on a 5-brane web
as a 5d KK theory. 5d SU(2) gauge theory with 8 hypermultiplets in the fundamental rep-
resentation is an interesting example of a KK theory for 6d E-string theory on a circle [6–8].
As discussed in [9], the corresponding 5-brane web has a repeated spiral configuration called
Tao web diagram, which gives rise to a constant period related to the radius of the com-
pactification circle. This hence provides a diagrammatic characteristic of KK spectrum of
the theory. The E-string theory can also be described by an affine D4 quiver which consists
of an SU(2) node in the middle and four “SU(1)” nodes at each quadrivalent leg. This is a
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realization of 6d (D4, D4) conformal matter theory. Such quiver theories are described as a
5-brane web with two ON-planes. An ON-plane is the S-dual orientifold of an O5-plane [10–
13]. ON-planes are even more useful than just describing a D-type quiver theory, as SU(3)
gauge theory at higher Chern-Simons levels can be constructed with ON-planes [14].

With such various 5-brane systems, one can compute their BPS spectrum. In fact,
there has been various progress on computing partition functions of 5d/6d N = 1 super-
symmetric gauge theories. For instance, the ADHM method [15–21], the Ding-Iohara-Miki
algebra [22–25], topological vertex [26–30] and blowup equation [31–40]. In particular, the
blowup method can be applied to theories without 5-brane configurations or any Lagrangian
descriptions [39, 40].

In this paper, we attempt to develop and generalize the topological vertex which is a
computation tool based on 5-brane webs as they provide intuitive pictures, and we confirm
our result with known results obtained by other methods. Topological vertex works very
well for toric 5-brane webs but it has some challenges for non-toric webs with orientifolds.
For O7− cases, one can resolve an O7−-plane into two 7-branes [41] and hence it leads
to a non-toric 5-brane web without the orientifold plane. In such case, we can obtain
the partition function as the Higgsing [42–44]. For the O5 case [13, 14, 45–48], on the
other hand, the application of topological vertex was first proposed in [49] and further
developed in [50–53]. The 5-brane transition on an O5-plane where two 5-branes intersect
gives rise to a phase where they can be smoothly connected to the mirror images reflected
due to the O5-plane. But these are only available for unrefined cases, where the sum of
two Omega deformation parameters is set to zero, ε1 + ε2 = 0. Generalization toward the
refined topological vertex is still a difficult task. The main difficulty comes from the Omega
deformation parameters assigned to the original web and the reflected web which are not
compatible with topological vertex formulation with conventional choice of the preferred
direction which is parallel to O5-plane. To avoid this difficulty, we, instead, consider the
ON case, which one can regard as an S-dual of O5-plane [13, 54, 55]. It has a technical
advantage for generalizing to the refined case, as the preferred direction is perpendicular
to an ON-plane. A 5-brane web with an ON-plane describes a D-type quiver. For such
5-brane configurations with ON-planes, we propose new refined vertex and edge factors so
that they account for the 5-brane system reflected over an ON-plane, as a generalization
of unrefined topological vertex formalism [49].1 In fact, these new factors are not just a
computational device, it is another set of vertex and edge factors which is equally applicable
for computation of the partition function. For instance, we explicitly show that one can use
our new factors to obtain the same partition function based on a 5-brane web without an
ON-plane. We demonstrate our proposal with various theories where ON-planes are used
for constructing the corresponding 5-brane systems, which include the SU(2) theory with
8 flavors and the SU(3) theory at the CS level 7 and 9. We also present the exact form
of one- and two-instanton partition function for these theories. In particular, the refined
partition function for the SU(3) theory at the CS level 9 is recently computed based on
the blowup equation [39] and our prescription perfectly reproduces this result.

1There is an algebraic construction for a D-type quiver based on the DIM algebra [56, 57], which may
lead to refined topological vertex. Our proposal is different from this as it is a generalization of the unrefined
topological vertex to the refined one.
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Figure 1. A 5-brane web for the SU(2)0 gauge theory.

The organization of the paper is as follows: in section 2, we start with reviewing the
refined topological vertex and propose a new vertex factor that accounts the reflection due
to an ON-plane. In section 3, we apply the proposed refined topological vertex to various
gauge theories which can be realized with one or two ON-plane(s). We discuss SU(2) + 4F
as an instructive example, and then compute the partition functions for the E-string on a
circle and 5d SU(3) gauge theory at the Chern-Simons levels 7 and 9. We summarize our
result in section 4. In appendix A, we list the characters of global symmetries discussed in
the main text. In appendix B, we discuss how one can obtain the partition function of a
5-brane web without ON-planes by only using the new vertex and edge factors.

2 Refined topological vertex with ON-planes

In this section, we discuss salient feature of the refined topological vertex [28] and then we
generalize it to 5-brane systems with ON-planes.

2.1 5-brane web

A large class of 5d N = 1 supersymmetric theories can be realized through 5-brane webs
in Type IIB string theory. With the convention that (1, 0) 5-brane refers to D5-brane
and (0, 1) 5-brane refers to NS5-brane, 5d N = 1 supersymmetric field theories form a
charge conserving configuration of various (p, q) 5-branes. A simple web diagram is given
in figure 1, where D5-branes are extended along x0, x1, x2, x3, x4, x6 while NS5-branes are
extended along x0, x1, x2, x3, x4, x5 and 5-brane webs are given in a (x5, x6)-plane called the
(p, q)-plane, as summarized in table 1. In figure 1, a 5-brane web for 5d SU(2)0 gauge theory
of the vanishing discrete theta parameter is drawn. Here, the Kähler parameter along the
NS5-brane connecting two D5-branes is associated with the Coulomb branch moduli, while
the Kähler parameter between two NS5-branes is associated with a product of the instanton
factor and the Coulomb branch parameter. More precisely, the instanton factor is given
by u = e−βm0 , where m0 is the inverse gauge coupling squared and corresponds to the
distance between two NS5 branes at trivial Kähler parameter for the Coulomb branch
moduli as shown in figure 1. In a similar fashion, the instanton factor for gauge theories
of higher rank is defined. One can introduce 7-branes such that the external 5-branes are
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0 1 2 3 4 5 6 7 8 9
NS5 / ON × × × × × ×
D5 / O5 × × × × × ×

(p, q) × × × × × ϑ ϑ

7-brane / O7 × × × × × × × ×

Table 1. Worldvolume configuration of 5-brane webs. The occupation of each brane is marked
with × or ϑ, where a (p1, q1) 5-brane appears as a line on the (p, q)-plane with the slope given by
ϑ = tan−1(q1/p1).

attached. With these 7-branes, one can explicitly show various dualities by the Hanany-
Witten moves. 5-brane webs also provide a way to compute the BPS spectrum of the
theory through topological vertex [27, 28], which we shall discuss in the next subsection.

2.2 Topological vertex

The refined topological vertex is a powerful way of computing the partition functions of 5d
supersymmetric gauge theories on the Ω background, R4

ε1,ε2 × S
1. With the fugacity of Ω-

deformation parameters q = e−βε1 and t = eβε2 , the partition function Z is given as a sum of
the Young diagrams λ, µ, ν, · · · along edge factors and vertex factors for a given 5-brane web,

Z =
∑

λ,µ,ν,···

(∏
edge factor

)(∏
vertex factor

)
. (2.1)

Here, following the convention used in [58], the edge factor and vertex factor are defined as
follows. For all the internal edges of a 5-brane web, we associate each edge with a Kähler
parameter Q, an arrow, and a Young diagram (or integer partition) µ = (µ1, µ2, · · · , µ`(µ)),
where flopping the arrow corresponds to the transpose µt of the associated Young diagram
µ. The edge factor is then given as

(−Q)|µ|fnµ , (2.2)

where the framing factor function fµ takes the form: along the preferred direction,

fµ → fµ(t, q) = (−1)|µ|t
||µt||2

2 q−
||µ||2

2 = fµt(q, t)−1, (2.3)

and along the non-preferred directions,

fµ → f̃µ(t, q) = (−1)|µ|t
||µt||2+|µ|

2 q−
||µ||2+|µ|

2 = f̃µt(q, t)−1 , (2.4)

where

|µ| =
`(µ)∑
i=1

µi, ||µ||2 =
`(µ)∑
i=1

µ2
i , (2.5)

and the power n is defined as n = vin∧ vout = p1q2−p2q1 for a pair of charges vin = (p1, q1)
and vout = (p2, q2) which are connected to the edge of Q, where vin and vout are two dimen-
sional vectors (±p,±q) associated with the (p, q) charge of the corresponding brane with
± signs chosen to be compatible with the directions of the vectors.
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The vertex factor is assigned to each vertex of three out-going edges with three Young
diagrams λ, µ, ν in clockwise direction where the last Young diagram ν is reserved for Young
diagram on the edge of the preferred direction, and it is defined as

Cλµν(t,q) = q
||µ||2+||ν||2

2 t−
||µt||2

2 Z̃ν(t,q)
∑
η

(q
t

)|η|+|λ|−|µ|
2

sλt/η(t−ρq−ν)sµ/η(q−ρt−ν
t), (2.6)

where t and q are assigned to the edge associated with λ and µ, respectively, and

Z̃ν(t, q) =
`(ν)∏
i=1

νi∏
j=1

(
1− tν

t
j−i+1qνi−j

)−1
, (2.7)

and sσ/η(x) are the skew-Schur functions of an infinite vector x, e.g., t−ρq−ν =
(t

1
2 q−ν1 , t

3
2 q−ν2 , · · · ). We list some special functions that are useful in actual computa-

tion:

Rλµ(Q; t, q) :=
∞∏

i,j=1

(
1−Qti−

1
2−λjqj−

1
2−µi

)
=M

(
Q

√
t

q
; t, q

)−1

Nλtµ

(
Q

√
t

q
; t, q

)
, (2.8)

M(Q; t, q) :=
∞∏

i,j=1

(
1−Qti−1qj

)−1
, (2.9)

Nλµ(Q; t, q) :=
∞∏

i,j=1

1−Qti−1−λtjqj−µi

1−Qti−1qj

=
∏

(i,j)∈λ
(1−Qtµ

t
j−iqλi−j+1)

∏
(i,j)∈µ

(1−Qt−λ
t
j+i−1q−µi+j) . (2.10)

To evaluate the Young diagram sums along non-preferred directions, one needs to repeat-
edly use the Cauchy identities2

∑
λ

Q|λ|sλ/µ1(Q1t
−ρq−ν1)sλt/µ2(Q2q

−ρt−ν2) (2.11)

= Rν2ν1(−QQ1Q2)
∑
λ

Q|λ|sµt2/λ(QQ1t
−ρq−ν1)sµt1/λt(QQ2q

−ρt−ν2) .∑
λ

Q|λ|sλ/µ1(Q1t
−ρq−ν1)sλ/µ2(Q2q

−ρt−ν2) (2.12)

= Rν2ν1(QQ1Q2)−1∑
λ

Q|λ|sµ2/λ(QQ1t
−ρq−ν1)sµ1/λ(QQ2q

−ρt−ν2) .

Conventions. In the rest of the paper except for the beginning of section 2.3, to avoid
the cluttering of the 5-brane diagrams, we use the following convention when assigning t,
q, arrows, and Young diagrams:

(1) The preferred direction is always along the horizontal edges and the arrows associated
with it are chosen to point toward the left. The arrows along non-preferred directions
are chosen to point upward.

2These identities are slightly modified from the ones in [58].
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µ1t

q

t

q

ν1

ν2 ν4

ν3 µ1ν1

ν2 ν4

ν3

Figure 2. Convention for assignment of the arrows and the Ω-deformation parameters throughout
the paper.

(2) The Ω-deformation parameters q = e−βε1 , t = eβε2 are assigned such that t’s are
always placed above the edges associated with the preferred direction, while q’s are
placed below the edges associated with the preferred direction.

(3) We use the Greek letters µ, ν, · · · to denote the Young diagrams. If an edge is labelled
by a Young diagram, say α, then we also call the edge as edge α or brane α for
simplicity.

For instance, the 5-brane web on the right-hand side of figure 2 should be understood as
the 5-brane web with the assignments given on the left-hand side.

We also define

Rλµ(Q) ≡ Rλµ(Q; t, q), Nλµ(Q) ≡ Nλµ(Q; t, q), M(Q) ≡M(Q; t, q) (2.13)

for simplicity. The products of several Kähler parameters are expressed as a shorthand
notation, for example, Qi,j2,k ≡ QiQ

2
jQk. On the other hand, µi,j,k means µi, µj , µk for

short which we will use occasionally.

2.3 Refined topological vertex with ON-planes

The refined topological vertex formalism discussed in the previous section works well with
those 5-brane webs which do not involve orientifold planes like O5-, O7+-, or ON-planes. It
is also applicable for 5-brane web systems with O7−-planes, as an O7−-plane can be resolved
into a pair of two 7-branes, [1,−1], [1, 1] 7-branes or [2,−1], [0, 1] 7-branes [41]. Such 5-brane
configuration with the resolved 7-branes can be understood as the Higgsing [42, 59]. In
this subsection, we attempt to generalize the refined topological vertex to be applicable for
5-brane webs with orientifold planes. As discussed, unrefined topological vertex formalism
with O5/ON-planes was introduced. Let us first discuss some of relevant features of this
formalism and generalize them to refined topological vertex with an orientifold plane.

To this end, we first recall the unrefined case with an O5-plane (or an ON-plane) [49].
For the unrefined case, t = q = g, one introduces the vertex factor for the reflected image
due to the orientifold plane where the Young diagrams of the vertex factor for the reflected
image are all transposed. The vertex factor for the reflected images satisfies the following
reflection identity

Cµtλtνt = (−1)|λ|+|µ|+|ν|fλ(g)fµ(g)fν(g)Cλµν . (2.14)

This is an important identity as it gives rise to the relation between the vertex factor for
the reflected image of 5-branes due to an O5/ON-plane and that defined on 5-brane web
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without O5/ON-plane. It is therefore natural to generalize the reflection identity (2.14) to
the refined case.

New vertex factor. We introduce the following refined vertex factor for reflected image
of a 5-brane web with an ON-plane or an O5-plane:

CR
λµν(t, q) = q

||µ||2+||ν||2
2 t−

||µt||2
2 Z̃ν(t, q)

∑
η

(
q

t

)−|η|+|λ|−|µ|
2

sλt/η(t−ρq−ν)sµ/η(q−ρt−ν
t).

(2.15)
Here, we used the superscript R to denote that this new vertex factor is associated with the
reflected image and also to distinguish the conventional vertex factor C. Compared with
the vertex factor C in (2.6), CR has the opposite sign in front of |η| appearing in the power
of q

t . We note that these two kinds of vertex factors are related by the following relation

CR
νtµtσt(q, t) = (−1)|µ|+|ν|+|σ|fµ(t, q)fν(t, q)fσ(t, q) Z̃σt(q, t)

Z̃σ(t, q)
Cµνσ(t, q) , (2.16)

or equivalently,

Cµνσ(t, q) = (−1)|νt|+|µt|+|σt|fνt(q, t)fµt(q, t)fσt(q, t)
Z̃σ(t, q)
Z̃σt(q, t)

CR
νtµtσt(q, t) , (2.17)

which is a refined version of the reflection identity (2.14). It is straightforward to check that
in the unrefined limit, the reflected vertex CR reduces to the usual C, and the refined re-
flection identities (2.16) and (2.17) become the unrefined identity (2.14). In figure 3, the as-
signments of Young diagrams and t, q associated with the new vertex factor CR are depicted
in comparison with those for the usual vertex factor C. As discussed earlier, in usual refined
topological vertex formalism, the Young diagrams of Cµνσ(t, q) are assigned clockwise with
the last one being the preferred direction. We follow the same rule for the new vertex factor
CR. Likewise, the assignments of t, q in the reflected image are also given clockwise as in fig-
ure 3. So, for the vertex factor CR

νtµtσt(q, t) in the reflected image, Young diagrams and t, q

are treated in the same way as those in the usual C vertex function as illustrated in figure 3.
We note that when a Young diagram along the non-preferred direction of CR is of

an empty set, CR is equal to C as the vertex factor is only nonzero for η = ø. Unlike
the unrefined case, both vertex factors C and CR are necessary for the refined case. As a
5-brane configuration away from an ON-plane looks like usual web without an ON-plane,
only vertices near an ON-plane are related to CR. Even more, we claim that CR’s appear
only on the strips of NS-branes that are next to an ON-plane and all other vertices are
assigned with C’s.

We also note that as shown in figure 3(b), the assignments of t, q are exchanged in
the reflected image of the vertex over an O5-plane which makes it more difficult to deal
with in refined topological vertex formalism, so from now on we only consider cases with
ON-planes in this paper.

New edge factors. Together with the new vertex factor CR, new edge factors naturally
follow in the refined topological vertex with ON-plane. Consider 5-brane configuration near

– 7 –
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σtσ
ν νt

µtµ

t

q

t

q

σ
ν

µ

t

q

νt
q

t

σt

µt

Cµνσ(t, q) CR
νtµtσt(q, t)

Cµνσ(t, q)

CR
νtµtσt(q, t)

(a) (b)

Figure 3. The usual vertex factor C and the reflected vertex factor CR. (a) is for the case of
ON-plane reflection and (b) is for the case of O5-plane reflection.

Q1

αt

Q2

α

Cµνσ(t, q)

αt

CR
νtµtσt(q, t) CR

νtµtσt(q, t)

vin

X X

Y Z Z

vout

vin

vout

αt

(a) (b)

ON− ON−

Q1Q2

Figure 4. Reflection of the brane α by the ON-plane.

an ON-plane, as depicted in figure 4. Figure 4(a) represents typical 5-brane configuration
with an ON-plane. On the other hand, figure 4(b) represents a 5-brane configuration with
half of 5-brane webs being reflected over an ON-plane so that the corresponding 5-brane
web appears to be smoothly connected as if there is no ON-plane. Here the new vertex
factor CR is introduced and the corresponding Young diagram is transposed accordingly.

To be more general, we introduce generic vertices X, Y, and Z in figure 4 which are
associated with either usual vertex factor C or the reflected vertex factor CR and denote
them by CX, CY and CZ. Let us first consider the case where CY is the usual vertex factor
CY = C, which is the case depicted in figure 4(a). We will consider the case where CY is
associated with CR later. To be more specific, CY is Cµνσ(t, q) where σ is assumed to be
along the preferred direction. We also introduce the Young diagram α which is one of the
Young diagrams µ, ν, σ associated with the vertex factor Cµνσ(t, q), i.e., α ∈ {µ, ν, σ}. De-
pending on whether α is along the preferred direction or not, we will have different new edge
factors. Note that Z in figure 4(b) is the reflected vertex of Y in figure 4(a). As we consider
the case CY = Cµνσ(t, q), the vertex factor associated with Z is given as CZ = CR

νtµtσt(q, t).
We now write the edge factor for the edge associated with the Young diagram αt (of

the Kähler parameter Q1Q2) in figure 4(b), which is the edge connecting the vertices X
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and Z. As Z is the reflected image of Y, this would lead to how to define or construct the
edge factor associated with Y. The product of the edge factor and vertex factors associated
with the edge between X and Z can be written as

CX · (−Q1Q2)|αt|Fαt · CZ

= CX · (−Q1Q2)|αt|Fαt · CR
νtµtσt(q, t)

= CX · (+Q1Q2)|α|
(
Fαtfα(t, q)

)( Z̃σt(q, t)
Z̃σ(t, q)

)δασ
· Cµνσ(t, q) · (· · · ) , (2.18)

where we denote by Fαt the framing factor associated with Q1Q2. In the second equality,
we used (2.15) to express CR into usual vertex factor C. As we are only interested in
finding new edge factor involving α, we neglect irrelevant α-independent parts by putting
them into the ellipsis (· · · ) in (2.18). If the Young diagram α is along the preferred diction,
namely α = σ, then δασ = 1; otherwise δασ = 0. Notice that Cµνσ(t, q) in (2.18) is nothing
but CY. This hence leads to the edge factor between the vertices X and Y in figure 4(a).
The new edge is then given by

(+Q1Q2)|α| (fα(t, q)Fαt)
(
Z̃σt(q, t)
Z̃σ(t, q)

)δασ
, α ∈ {µ, ν, σ} . (2.19)

We note that so far we consider the case where CZ = CR. In general, CZ can also be of
the usual vertex factor C. Of course, if CX and CZ are all of C, then the framing factor
Fαt is simply fnαt or f̃

n
αt . We will also discuss other CX and CZ cases later.

Consider also the case CY = CR
µνσ(t, q), which means CZ = Cνtµtσt(q, t) accordingly. In

this case, by repeating a similar calculation as (2.18) taking into account (2.17), one finds
that the resulting edge factor is still the same form as (2.19). When the order of t, q in
the argument of Y exchanges, namely CY = CR

...(q, t), the edge factor also correspondingly
changes to

(+Q1Q2)|α| (fα(q, t)Fαt)
(
Z̃σt(t, q)
Z̃σ(q, t)

)δασ
, α ∈ {µ, ν, σ} . (2.20)

We note that the analysis above is based on figure 4 in which the ON-plane is on the
right-hand side. If an ON-plane is on the left-hand side, we can still do the similar analysis
which yields that the edge factor is still given as the form of (2.19) or (2.20).

Now that we have described how new edge factor appears when we consider the edge as-
sociated with the 5-brane being reflected by an ON-plane, we try to apply our prescription
to actual computations involving an ON-plane. As a simple example, a 5-brane configura-
tion is given in figure 5 which may look like a 5-brane web for a single gauge theory, though
it is merely two copies of SU(2) theories without bifundamental matter. For purposes of
expediency, we call such theory the “D2(N1, N2)” theory which is a linear sum of SU(N1)
and SU(N2) gauge theories. For simplicity, first we consider the case when N1 = 2 and
N2 = 2, as given in figure 5. Here, the Young diagrams µ1, µ2 label the two color D5-branes
for one SU(2) and the Young diagrams µ3, µ4 label the two color D5-branes for the other
SU(2). As discussed earlier, a 5-brane configuration with an ON-plane like figure 5(a) can
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νt6
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Figure 5. 5-brane webs with an ON−-plane for D2(N1, N2) gauge theory with N1 = 2, N2 = 2.

be realized by folding the right part of a 5-brane configuration in figure 5(b) to the left and
then by gluing the edges in the middle. The 5-brane configuration before the folding is all
equipped with the conventional vertex factors C because the diagram contains two copies
of normal SU(2) webs. After the folding, on the other hand, the two vertices are reflected
and they become CR on the left. The edge factor between this two vertices also changes
due to the folding. The edge factor between the two C’s on the right of the ON-plane
together with the two C’s in figure 5(b) are given by

Cνt5ν6µ3(t, q) · (−Q3)|ν6|f̃−1
νt6

(q, t) · Cνt6øµ4(t, q)

= CR
νt6ν5µt3

(q, t) · (−Q3)|ν6|
(
t

q

) |ν6|
2
fν6(q, t) · CR

øν6µt4
(q, t) · (· · · )

= CR
νt6ν5µt3

(q, t) · (−Q3)|ν6| f̃R
ν6(q, t) · CR

øν6µt4
(q, t) · (· · · ) . (2.21)

In the second line of the above equation, (2.17) is used and edge factors that do not involve
ν6 are put into the ellipsis. In the third line, we have defined

f̃R
µ (q, t) ≡ (−1)|µ|q

||µt||2−|µ|
2 t−

||µ||2−|µ|
2 , (2.22)

which plays the role of the new framing factor function for edge that connects two CR

vertices, and one can check that this definition is also consistent for the case when ON-
plane is on the left of the web diagram. So

(−Q3)|ν6| f̃R
ν6(q, t) (2.23)

is the edge factor of edge ν6 in figure 5(a). As f̃R is the reflected correspondence of the
normal f̃ , one may think whether there is also a reflected correspondence of the preferred
direction framing factor f , but actually one can check that the reflected correspondence is
the same as the normal f .

The edge ν5 is the glued edge which has two different kinds of vertices at its two ends.
The framing factor of this edge is zero due to n = 0, but we still need to modify the edge
factor in order to get the correct partition function. It turns out that a multiplier x needs
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to be added to the Kähler parameter Q2 of ν5. Then we compute the partition function of
the web diagram in figure 5(a) with the prescription that we discussed,

ZD2(2,2) = Cνt1øµt1(q, t)Cνt2ν1µt2
(q, t)Cνt3ν2µt3

(q, t)Cøν3µt4
(q, t)Cøνt4µ1(t, q)

× Cν4νt5µ2(t, q)CR
νt6ν5µt3

(q, t)CR
øν6µt4

(q, t)(−Q1)|ν1|f̃ν1(q, t)(−Q2)|ν2|f̃ν2(q, t)

× (−Q3)|ν3|f̃ν3(q, t)(−Q1)|ν4|f̃ν4(q, t)−1(−xQ2)|ν5|(−Q3)|ν6|f̃R
ν6(q, t)

× (−Qb1)|µ1|fµ1(t, q)−1(−Qb1)|µ2|fµ2(t, q)(+Qb2)|µ3|fµ3(t, q)−1

× fµt3(q, t) Z̃µ3(t, q)
Z̃µt3(q, t)

(+Qb2)|µ4|fµ4(t, q)fµt4(q, t) Z̃µ4(t, q)
Z̃µt4(q, t)

. (2.24)

Using the extended Cauchy identities repeatedly, we can sum over the non-preferred direc-
tion Young diagrams along the vertical strips, we obtain

ZD2(2,2) = q||µ1||2+||µ3||2t||µ
t
2||

2+||µt4||2Q
|µ1|+|µ2|
b1 Q

|µ3|+|µ4|
b2

4∏
i=1

Z̃µi(t, q)Z̃µti(q, t) (2.25)

×Rµt1µ3(xQ1Q2)Rµt1µ4(xQ1Q2Q3)Rµt2µ3(xQ2)Rµt2µ4(xQ2Q3)

×
(
Rµt1µ2

(√
q

t
Q1

)
Rµt1µ2

(√
t

q
Q1

)
Rµt1µ3

(√
q

t
Q1Q2

)
Rµt1µ4

(√
q

t
Q1Q2Q3

)

×Rµt2µ3

(√
q

t
Q2

)
Rµt2µ4

(√
q

t
Q2Q3

)
Rµt3µ4

(√
q

t
Q3

)
Rµt3µ4

(√
t

q
Q3

))−1

.

By fixing

x =
√

q

t
, (2.26)

the factors Rµtiµj with i = 1, 2 and j = 3, 4 which are the bifundamental contributions
cancel, and the result turns out to be the correct partition function of D2(2, 2) gauge
theory. So the new edge factor for the edge ν5 is

(
−
√

q

t
Q2

)|ν5|
, (2.27)

and we indicate this edge factor in the figures as
√

q
tQ2 for short.

The two SU(2) nodes in figure 5(a) are drawn in the way that their sub webs do not
overlap with each other. If we move the color brane µ3 upward passing the color brane µ2,
we then end up with figure 6 in which the sub webs of the two SU(2) nodes overlap. Our
refined topological vertex prescription does not work well in this kind of overlapping case.
If we simply assume the vertices on the strip of NS-branes next to the ON-plane to be C or
CR or some modified vertices which are obtained by changing the coefficients of |η|, |λ|, |µ|
in the power of q

t in (2.15) and multiply the Kähler parameters of ν4,5,6 by some t, q factors
as we have done in fixing the x, then after summing over Young diagrams in the non-
preferred direction, we always end up with non-vanishing bifundamental contributions or
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Figure 6. 5-brane configuration for D2(2, 2) gauge theory of overlapping sub webs.

Q1

Q2

Q3

Q2

!
q
t

f̃R or f̃

C

C

CR

C

(a)

C

C

C

C

Q1

Q2

Q3

!
q
tQ2

(b)

Figure 7. Two 5-brane webs for D2(2, 2) gauge theory which are related by a series of flops.

incorrect vector contributions.3 We suspect that when µ3 is moved upward passing µ2 the
two vertices C and CR are entangled and the entangled vertices are hard to determine. So
in this paper, we will always use separated sub webs which do not overlap for computation.

From figure 5(a) we can “flop” the lower CR vertex4 or both the CR vertices into the
ON-plane and reflect back, then we obtain figure 7(a) and 7(b) respectively. Correspond-
ingly, the vertices and edge factors also change due to the flopping, we have labelled them
in figure 7. Note that when using (2.19) or (2.20) to determine the edge factor of the
reflected brane that connects C and CR in figure 7(a), if we choose C as the vertex that
is reflected by the ON-plane, then we should use f̃R as the framing factor function for F ,
if we choose CR as the vertex that is reflected by the ON-plane, then we should use f̃ as
the framing factor function for F . The derivation is just like the previous derivations that
we have done in finding out the edge factors, so we omit it here.

3The correct vector contribution should have the form of
(
Rαtβ(Q

√
q
t
)Rαtβ(Q

√
t
q
)
)−1

where Q is the
Kähler “distance” from the color brane α to β with the vertical position of brane α being higher than β.

4By “flop”, we mean that we deform 5-brane web near an ON-plane such that the shape of the 5-brane
web is changed so that the horizontal Kähler parameter from the ON-plane to the corresponding vertex
becomes its inverse. More precisely, the position on the ON-plane is shifted toward the 5-brane web.
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Q0

Q−1

Q−2

f̃R
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CR

CR

CR

C

C

C

ν2

ν1
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Figure 8. 5-brane configurations for general D-type quiver gauge theory with an ON-plane located
on the right.

N1 D5−branes

N2 D5−branes

Q2
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Q0

Q−1

Q−2

!
t
qQ0

f̃R

f̃R

C

C

C

CR

CR

CR

ν2

ν1

ν0

ν−1

ν−2

(a)

N1 D5−branes

N2 D5−branes

Q2

Q1

Q0

Q−1

Q−2

f̃R

f̃R

!
t
qQ0

CR

CR

CR

C

C

C

ν2

ν1

ν0

ν−1

ν−2

(b)

Figure 9. 5-brane webs for general D-type quiver gauge theory with an ON-plane located on the
left.

A general D-type quiver gauge theory with SU(N1) and SU(N2) gauge groups at
its bivalent nodes is illustrated in figure 8(a), the sub webs of the two SU nodes do not
overlap. The analysis for refinement we have done in the D2(2, 2) case can be easily
generalized to this case, here we just state the result without proof. Along the strip
of NS5-branes next to the ON-plane, we multiply the factor

√
q/t to Q0 of ν0 which is

between the two SU nodes, all the vertices and framing factors in the SU(N2) nodes are
CR and f̃R. If we flop the vertices CR into the ON-plane and reflect back, the vertices
will become C, as illustrated in figure 7.

Summary of our proposal on topological vertex with an ON-plane. 5-brane con-
figurations can be viewed as consisting of vertical strips of NS5-branes glued by horizontal
D5-branes with vertex factors and non-preferred direction edge factors living on vertical
strips and preferred direction edge factors living on D5-branes. Away from ON-planes,
such factors are the same as the usual vertex and edge factors as in the cases without
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(a) (b)

ON− ON−

Figure 10. Two phases of 5-brane webs with an ON-plane: (a) Overlapping phase of two bivalent
SU gauge groups of a D-type quiver (b) Split phase of SU gauge groups of a D-type quiver. D5-
branes in red and D5-branes in blue correspond to each SU gauge theory of two ends of bivalent node.

ON-planes. We propose that new vertex and edge factors are only presented on the strips
of NS5-branes next to an ON-plane with the following steps:

(1) Deform 5-brane webs so that bivalent sub webs have no overlapping phase.
5-brane web with an ON-plane describes a D-type quiver which has an SU gauge
theory node at each bivalent leg. A typical 5-brane web with an ON-plane for such
quiver may be drawn in a way that two sub webs for each SU gauge theory look
overlapping as depicted in figure 10(a).Such overlapping phase can be deformed to
yield two sub webs which do not have any overlapping phase as in figure 10(b). In
order for the topological vertex with an ON-plane to be applied, we require that
5-brane configuration should have no overlapping phase.

(2) Apply CR, f̃R along the strip next to ON-planes.
If the prescription (1) is satisfied, we claim that there are two kinds of vertices that
we need to assign on the strip next to an ON-plane. One is the usual topological
vertex factor C, the other one is the reflected refined topological vertex factor CR

defined in (2.15). The framing factor for the edges that connect CR’s is the new
framing factor f̃R defined in (2.22). If we draw the web diagram in the standard
way like figure 8 or figure 9, then the assignment of the vertex and framing factors
on the strip should follow that in figure 8(a) or figure 8(b) when the ON-plane is
on the right-hand side, and should follow that in figure 9(a) or figure 9(b) when the
ON-plane is on the left-hand side.

(3) Dress additional t, q factors on the edge connecting two SU sub webs.√
q
t or

√
t
q needs to be multiplied to the Kähler parameters of the edges that connect

the two SU nodes which is illustrated in figure 8 and figure 9.

(4) Introduce the new reflected edge factor to the edge reflected by an ON-
plane.
For edges that are reflected by an ON-plane as in figure 4(a), the corresponding
edge factor is given by (2.19) when the reflected vertex is associated with the vertex
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(a) (b) (c)

Figure 11. 5-brane webs for SU(2)+4F. (a) A typical 5-brane web. (b) Performing Hanany-Witten
moves to the left. (c) A 5-brane configuration as a D3-type quiver, “SU(1)”−SU(2)−“SU(1)”, after
further Hanany-Witten moves.

factor of C(t, q) or CR(t, q). When the reflected vertex is of C(q, t) or CR(q, t), the
corresponding edge factor is given by (2.20).

We also remark that we can “flop” the vertices into the ON-planes to obtain diagrams like
those given in figure 7. For such cases, C and CR become CR and C respectively after
flopping, and the edge factors also change according to the edge factors presented in figure 7.

3 Examples

In this section, we demonstrate how to apply the refined topological vertex with ON-planes
that we proposed in the previous section with instructive examples as well as some rank-2
theories whose ADHM construction is not known. We provide computational details.

3.1 5d SU(2)+4F

5d N = 1 SU(2) gauge theory with four hypermultiplets in the fundamental representation
(SU(2) + 4F) is a proper instructive example for applying topological vertex with ON-
planes as its refined partition function is well known and also this theory can be regarded
as a quiver “SU(1)”−SU(2)−“SU(1)”. A typical 5-brane configuration for SU(2)+4F is de-
picted in figure 11(a). It is easy to see that Hanany-Witten moves can deform the 5-brane
configuration so that it can be viewed as “SU(1)”−SU(2)−“SU(1)” as in figure 11(c), where
an “SU(1)” is made out of one D5-brane suspended between two NS5-branes that does not
have Coulomb branch but has the coupling [60]. One can see that together with the bi-
fundamental degrees of freedom connecting SU(2) and “SU(1)”, “SU(1)”−SU(2)−“SU(1)”
captures the same degrees of freedom as those of SU(2)+4F. As it can be also seen as a
D3-type quiver, the SU(2)+4F theory can be described with a 5-brane configuration with
an ON-plane as given in figure 12(a).

Following our proposal with ON-planes presented in the previous section, we assign
the vertex factors C and CR on 5-brane web as shown in figure 12(a). In particular,
CR is assigned to the vertex on the strip next to an ON-plane, which can be viewed
as a configuration by reflecting and gluing figure 12(b) which is one of possible 5-brane
configurations for SU(2)+4F as depicted in figure 11. It follows from figure 12 that the
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M3

M1Q1

ν2

Q2

ν4
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µ3
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µ4

ν5
µ4

ν1

µ1

µ2

Qf

Qb

Q4

CR

C

C

C

C

(a) (b)

Figure 12. A 5-brane web for SU(2)+4F as a D3-quiver, SU(1)−SU(2)−SU(1). The vertical
dotted line represents an ON−-plane.

Kähler parameters for the masses of 4 flavors Mi = e−βmi , i = 1, 2, 3, 4 can be readily
identified. For later convenience, we have defined the fourth mass withM−1

4 in figure 12(a).

The partition function for SU(2)+4F based on our proposal in the previous section
then takes the form:

ZSU(2)+4F =
∑
µ,ν

Cνt1øµt1(q, t)Cøν1µt2
(q, t)Cøνt2µ1(t, q)Cνt3ν2µt3

(q, t)Cνt4ν3µt4
(q, t)

× Cν4øµ2(t, q)Cøνt5µ3(t, q)CR
øν5µt4

(q, t)(−Qf )|ν1|f̃ν1(q, t)(−Q1)|ν2|
(
− Qf
Q1,2

)|ν3|

× f̃ν3(q, t)(−Q2)|ν4|
(
− Qf
Q1,2

√
q

t

)|ν5| (
−Qb
Q1

)|µ1| (
−Qb
Q2

)|µ2|
(−Q3)|µ3|

×
(

+
Qf,3,42

Q1,2

)|µ4|

fµt4(q, t) Z̃µ4(t, q)
Z̃µt4(q, t)

, (3.1)

where µ, ν means a collective notation for all Young diagrams associated with µi and νi,
and we have used the shorthand notation Qi,j,k2 ≡ QiQjQ2

k. Recall that if an empty set is
assigned to the new vertex factor CR in the non-preferred direction, then CR is equivalent
to usual C. Hence, in this example, we have CR

øν5µt4
(q, t) = Cøν5µt4

(q, t). After simplifying

– 16 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
6

the Young diagram sum ν along the non-preferred directions, we obtain

ZSU(2)+4F =
∑
µ

(−Q3)|µ3|
(
−Qb
Q1

)|µ1| (
−Qb
Q2

)|µ2|
(
−
Q3,42,f

Q1,2

)|µ4|

× q
1
2
∑4

i=1 ||µi||
2
t

1
2
∑4

i=1 ||µ
t
i||

2
4∏
i=1

Z̃µi(t, q)Z̃µti(q, t)

×
Rµt1µ3(Q1)Rµt1µ4(QfQ2

)Rµt3µ2(QfQ1
)Rµt4µ2(Q2)

Rµt1µ2(Qf
√

q
t )Rµt1µ2(Qf

√
t
q)

. (3.2)

We now express this partition function in terms of the gauge theory parameters. Based
on the 5-brane web in figure 12, one readily finds the map between the Kähler parameters
and the gauge theory parameters,

Qb = A2u

√
M3

M1M2M4
, Qf = A2,

Q1 = A

M1
, Q2 = AM3, Q3 = M2

A
, Q4 =

√
M3M4
M1M2

, (3.3)

where u is the instanton factor and A is the Coulomb branch parameter. By substitut-
ing (3.3) into (3.2) and using (2.8), we find

ZSU(2)+4F = Z
Nf=4
M

∑
µ1,µ2

Z
Nf=4
µ1µ2

∑
µ3

Zµ1µ2µ3(M1,M2)
∑
µ4

Zµ1µ2µ4(M3,M4) , (3.4)

where

Z
Nf=4
M =

M(A2)M(A2 t
q)

M( A
M1

√
t
q)M(AM1

√
t
q)M( A

M3

√
t
q)M(AM3

√
t
q)
, (3.5)

Z
Nf=4
µ1µ2 =

q
||µ1||

2+||µ2||
2

2 t
||µt1||

2+||µt2||
2

2 (−Au)|µ1|+|µ2|Z̃µ1(t, q)Z̃µt1(q, t)Z̃µ2(t, q)Z̃µt2(q, t)
Nµ1µ2(A2)Nµ1µ2(A2 t

q)
, (3.6)

Zµ1µ2µ3(M1,M2) =
(√

M1
M2

)|µ1|(√ 1
M1M2

)|µ2|(
− M2

A

)|µ3|

q
||µ3||

2
2 t

||µt3||
2

2

× Z̃µ3(t, q)Z̃µt3(q, t)Nµ1µ3

(
A

M1

√
t

q

)
Nµ3µ2

(
AM1

√
t

q

)
, (3.7)

Zµ1µ2µ4(M3,M4) =
(√

M3
M4

)|µ1|(√ 1
M3M4

)|µ2|(
− M4

A

)|µ4|
q
||µ4||

2
2 t

||µt4||
2

2

× Z̃µ4(t, q)Z̃µt4(q, t)Nµ1µ4

(
A

M3

√
t

q

)
Nµ4µ2

(
AM3

√
t

q

)
. (3.8)

Here, we remark some technical points. The contribution of Zµ1µ2µ3(M1,M2) to the
perturbative part of the partition function is

∑
µ3 Zøøµ3(M1,M2), so we need to sum over all

the Young diagrams µ3. This means that one sums over all the partitions associated with
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Figure 13. Sources of the extra factors.

the Young diagram µ3 from zero partition to infinite partitions. In order to compute such
an infinite summation, we take the logarithm of

∑
µ3 Zøøµ3(M1,M2) and then do a series

expansion of it with respect to M2. Practically, one can sum over the Young diagrams µ3
up to some finite box number as the upper bound such that for terms involving M2, lower
order terms do not get corrected even though one increases the upper bound, while higher
order terms do get corrected when the upper bound of |µ3| increase, that is an artifact of
a finite sum which will not be presented when we actually sum all the way to infinity. By
using this trick, we are able to find the correct lower order expansion of

∑
µ3 Zøøµ3(M1,M2),

from the expansion we find that it has the following form as the Plethystic exponential,

∑
µ3

Zøøµ3(M1,M2) = PE
[−M1M2

√
qt−A2M1M2

√
qt +AM2(M2

1 q + t)
AM1(1− q)(1− t)

]

=
M(M1M2)M(M2

M1
t
q)

M(M2
A

√
t
q)M(AM2

√
t
q)
. (3.9)

Notice thatM(M1M2) andM(M2
M1

t
q) do not depend on the Coulomb branch parameter A,

so they are the extra factors. In terms of Kähler parameters, they are given as M(Q3Qf
Q1

)
andM(Q1Q3

t
q) respectively. These extra factors can be also seen from 5-brane webs. For

instance, Q1Q3 is the distance between the two external parallel branes in the upper part
of figure 12(a), and hence it contributes to the extra factor M(Q1Q3

t
q). On the other

hand, the extra factorM(Q3Qf
Q1

) is not easy to directly see from figure 12(a). We note that
these two extra factors rather can be seen from figure 13. The function Zµ1µ2µ3(M1,M2)
is proportional to the topological string partition function of figure 13(a). The extra fac-
tors M(Q3Qf

Q1
),M(Q1Q3

t
q) correspond to the two (p, q)-strings in blue which connect the

parallel external branes. Figure 13(b) is the S-dual of figure 13(a), from figure 13(b) it is
easy to see the extra factor corresponding to the left vertical string which is M(Q1Q3

t
q).

Figure 13(c) is obtained by an SL(2,Z) transformation of figure 13(b), from which we can
easily see that the other extra factorM(Q3Qf

Q1
) corresponds to the (p, q)-string in blue that

is vertically expanded on the right side.
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The same analysis applies to
∑
µ4 Zøøµ4(M3,M4). Combining these results with (3.5),

we finally obtain the full perturbative part,5

Z
SU(2)+4F
pert =M(A2)M

(
A2 t

q

)[
M
(
A

M1

√
t

q

)
M
(
AM1

√
t

q

)
M
(
A

M3

√
t

q

)
M
(
AM3

√
t

q

)

×M
(
A

M2

√
t

q

)
M
(
AM2

√
t

q

)
M
(
A

M4

√
t

q

)
M
(
AM4

√
t

q

)]−1

. (3.10)

Written as Plethystic exponential,

Z
SU(2)+4F
pert = PE

[ 1
(1− t)(1− q)

(
(q + t)A2 − χSO(8)

8v
√
qtA

)]
, (3.11)

where χSO(8)
8v is the character for the 8-dimensional vector representation of SO(8). From

here on, we use χSO(8)
n to denote the character of the n-dimensional representation of SO(8),

defined in appendix A.
Extracting the perturbative part from (3.4), one finds that the instanton part can be

expressed as

Z
SU(2)+4F
inst =

∑
µ1,µ2

Z
Nf=4
µ1µ2

(∑
µ3 Zµ1µ2µ3(M1,M2)∑
µ3 Zøøµ3(M1,M2)

)(∑
µ4 Zµ1µ2µ4(M3,M4)∑
µ4 Zøøµ4(M3,M4)

)
. (3.12)

At first sight, it appears that we need to sum over all the Young diagrams associated with
µ3, µ4 in order to obtain the coefficients of u at a fixed order because ZNf=4

µ1µ2 is proportional
to u|µ1|+|µ2|. However, the sum is truncated at finite order. Recall that the SU(2) + 4F
theory has an SO(8) global symmetry which can be further enhanced to SO(10) [6, 61],

and also notice that the individual factor
∑

µ3
...∑

µ3
...

in the parenthesis only involves M1 and

M2 which is of an SO(4) =SU(2)×SU(2) symmetry, exchangingM1 andM−1
1 as well asM2

and M−1
2 . If we Taylor expand

∑
µ3
...∑

µ3
...

with respect to M2, the lowest order is M−
|µ1|+|µ2|

2
2 ,

and it looks like the highest order could be infinity, but because of the symmetry between

M2 and M−1
2 , the highest order should be M

|µ1|+|µ2|
2

2 , so higher order terms greater than
|µ1|+|µ2|

2 would cancel with one another. We define Zµ1µ2 ≡
∑

µ3
...∑

µ3
...

and rewrite it as follows,

Zµ1µ2(M1,M2) ≡
∑
µ3 Zµ1µ2µ3(M1,M2)∑
µ3 Zøøµ3(M1,M2) =

∑
µ3 Bµ1µ2µ3M

|µ3|
2∑

µ3 Dµ3M
|µ3|
2

M
− |µ1|+|µ2|

2
2 , (3.13)

where unimportant coefficients are denoted by B, D for simplicity. The lowest order in
the Taylor expansion of the fractional factor in (3.13) is 1 and the highest order should be
M
|µ1|+|µ2|
2 , we obtain the following formula:
∑
µ3 Bµ1µ2µ3M

|µ3|
2∑

µ3 Dµ3M
|µ3|
2

M
− |µ1|+|µ2|

2
2 =

∑|µ3|≤|µ1|+|µ2|
µ3 Bµ1µ2µ3M

|µ3|
2∑|µ3|≤|µ1|+|µ2|

µ3 Dµ3M
|µ3|
2

≤|µ1|+|µ2|

M
− |µ1|+|µ2|

2
2 .

(3.14)
5After necessary flops: M(Q; t, q)→M( 1

Q
; q, t) =M( 1

Q
t
q
; t, q).
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On the right-hand side we sum over Young diagrams no greater than |µ1| + |µ2|. The
superscript of the big parentheses means that we only keep the terms whose M2 orders
are no greater than |µ1|+ |µ2| after Taylor expanding the fraction in the parentheses with
respect to M2. In this way,6 we can compute the sum over µ3 exactly by summing over
finite number of Young diagrams.

We note that one may find that even after we obtain the right-hand side of (3.14), the
result is still not very compact, although we have a finite polynomial with M2. To obtain a
compact expression, we further expand it with respect to the Coulomb branch parameter
A, again by a naive analysis that the lowest order term should be A−|µ1|−|µ2| and the
highest order term should be A2|µ1|+2|µ2|, it turns out that the actual computation yields
that the lowest order term is 1 and the highest order term is A|µ1|+|µ2|, due to drastic
cancellations in lower and higher orders. We list the results of Zµ1µ2 ’s for a few lower
orders. For one-instanton partition function, the corresponding Zµ1µ2 ’s take the form

Z{1},ø(M1,M2) = M1 +M2√
M1M2

−
( 1√

M1M2
+
√
M1M2

)√
q

t
A ,

Zø,{1}(M1,M2) =
( 1√

M1M2
+
√
M1M2

)
− M1 +M2√

M1M2

√
t

q
A . (3.15)

For two-instanton partition function, the corresponding Zµ1µ2 ’s are given by

Z{2},ø(M1,M2) = 1 + q + M1
M2

+ M2
M1
−
( 1
M1

+ 1
M2

+M1 +M2

)√
t

q
(1 + q)A

+
(

(1 + q)q
t

+
( 1
M1M2

+M1M2

)
q2

t

)
A2 ,

Z{1,1},ø(M1,M2) = 1 + 1
t

+ M1
M2

+ M2
M1
−
( 1
M1

+ 1
M2

+M1 +M2

)√
q

t

(
1 + 1

t

)
A

+
(
q + qt

t2
+
( 1
M1M2

+M1M2

)
q

t2

)
A2 ,

Z{1},{1}(M1,M2) = 1
M1

+M1 + 1
M2

+M2 −
((1 + q)(1 + t)√

qt

+
( 1
M1M2

+M1M2

)√
q

t
+
(
M1
M2

+ M2
M1

)√
t

q

)
A

+
( 1
M1

+M1 + 1
M2

+M2

)
A2 ,

Zø,{2}(M1,M2) = 1 + 1
q

+ 1
M1M2

+M1M2 −
( 1
M1

+M1 + 1
M2

+M2

)√
t

q

(
1+ 1

q

)
A

+
(
t + qt

q2 +
(
M1
M2

+ M2
M1

)
t

q2

)
A2 ,

Zø,{1,1}(M1,M2) = 1 + t + 1
M1M2

+M1M2 −
( 1
M1

+M1 + 1
M2

+M2

)√
t

q
(1 + t)A

+
(
t

q
+
(

1 + M1
M2

+ M2
M1

)
t2

q

)
A2 . (3.16)

6See also section 4.3.2 in [42] for a related discussion.
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M−1
4

M2

M3

M1Q1

ν2

Q2

ν3

ν4

µ3

Q3

µ4

ν5

νt5

Q−1
4

ν1

µ1

µ2

Qf

C

C

Qb

Figure 14. A 5-brane web for SU(2) with 4 flavors by flopping.

Now we rewrite the instanton partition function (3.12) as

Z
SU(2)+4F
inst =

∑
µ1,µ2

Z
Nf=4
µ1µ2 Zµ1µ2(M1,M2)Zµ1µ2(M3,M4) . (3.17)

By substituting the form of Zµ1µ2(M1,M2)Zµ1µ2(M3,M4) at each order of the instanton,
we can obtain the instanton partition function. For instance, the one-instanton partition
function takes the following form up to A2,

Z
SU(2)+4F
inst = 1 +

(
−
√
qtχ

SO(8)
8s

(1− q)(1− t)A+ (q + t)χSO(8)
8c

(1− q)(1− t)A
2 +O(A3)

)
u+O(u2), (3.18)

where χSO(8)
8s and χSO(8)

8c are respectively the character for the spinor and conjugate spinor
representation of SO(8), defined in appendix A. The perturbative and one-instanton results
given in (3.11) and (3.18) perfectly agree with the partition functions computed from the
conventional 5-brane web diagram for SU(2)+4F without an ON-plane, as expected. The
prescription of topological vertex in this example also coincide with the one that were found
in [56] because CR reduces to C in this case.

We also remark that there are other shape of 5-brane configurations than those that we
discussed earlier. For instance, figure 14 is another 5-brane diagram for SU(2) + 4F which
can be obtained by flopping the vertex associated with CR in figure 12(a) into the ON-
plane and reflecting back. By our proposal, the corresponding topological string partition
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function is given by

Z ′
SU(2)+4F =

∑
µ,ν

Cνt1øµt1(q, t)Cøν1µt2
(q, t)Cøνt2µ1(t, q)Cνt3ν2µt3

(q, t)Cνt4ν3µt4
(q, t)

× Cν4øµ2(t, q)Cøνt5µ3(t, q)Cνt5øµ4(t, q)(−Qf )|ν1|f̃ν1(q, t)(−Q1)|ν2|

×
(
− Qf
Q1,2

)|ν3|

f̃ν3(q, t)(−Q2)|ν4|
(
Qf
Q1,2

√
q

t

)|ν5|

fνt5(t, q)
(
−Qb
Q1

)|µ1|

×
(
−Qb
Q2

)|µ2|
(−Q3)|µ3|

(
−
Qf,3,42

Q1,2

)|µ4|

. (3.19)

After summing over ν, we obtain

Z ′
SU(2)+4F =

∑
µ

(
−Qb
Q1

)|µ1| (
−Qb
Q2

)|µ2|
(−Q3)|µ3|

(
−
Qf,3,42

Q1,2

)|µ4|

× q
1
2
∑4

i=1 ||µi||
2
t

1
2
∑4

i=1 ||µ
t
i||

2
4∏
i=1

Z̃µi(t, q)Z̃µti(q, t)

×
Rµt1µ3(Q1)Rµt1µ4(QfQ2

)Rµt3µ2(QfQ1
)Rµt4µ2(Q2)

Rµt1µ2(Qf
√

q
t )Rµt1µ2(Qf

√
t
q)

, (3.20)

which is exactly the same as (3.2). This confirms that our proposal for the topological
vertex with ON-planes also works well for the flopped diagrams.

3.2 5d SU(2)+8F: E-string theory as 5d affine D4 quiver

In this subsection, we apply our proposal to a 5-brane system with two ON-planes. As
shown in the previous subsection, SU(2)+4F can be realized with an ON-plane. Now we
add four more flavors to the 5-brane configuration which yields a 5-brane web for SU(2)+8F
whose UV completion is realized as the E-string theory. There are several different ways of
representing the E-string theory on a circle using Type IIB 5-brane web. As SU(2) + 8F,
the corresponding 5-brane web is given by a Tao web diagram which does not involve any
orientifolds [9]. As Sp(1) + 8F, one can represent it with two O7−-planes [60] or with two
O5-planes [49]. In particular, as an affine D4-quiver

SU(2)

SU(1)

SU(1)

SU(1)

SU(1)
, (3.21)

one can use a 5-brane with two ON-planes as depicted in figure 15. We use this 5-brane web
to compute the partition function by our proposal of topological vertex with ON-planes.
As its partition function is non-trivial, this case would be another good example for testing
our proposal.
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M6

M5
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8

Q1

ν1

Q2

ν3

ν2

µ3

Q3

µ4

ν4
µ4

Q4Q6
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Q5
ν5

µ1

µ2
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Qb

C
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C
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Figure 15. A 5-brane web for E-string theory on a circle as affine D4-quiver.

As one can see, figure 15 is similar to the SU(2) + 4F web diagrams discussed in the
previous section, the left and right hand sides of figure 15 are two copies of the right hand
side of the diagram in figure 12(a). The eight mass parameters Mi = e−βmi , i = 1, · · · , 8
can be accordingly labelled in the 5-brane web diagram, where two CR are introduced to
the vertex nearest to each ON-plane. By using our proposal with ON-planes, we write the
topological string partition function for SU(2)+8F as

ZSU(2)+8F=
∑
µ,ν

Cøνt1µ1(t,q)Cνt2ν1µt3
(q,t)Cνt3ν2µt4

(q,t)Cν3øµ2(t,q)Cøνt4µ3(t,q)

×CR
øν4µt4

(q,t)Cνt5øµt1(q,t)Cν5νt6µ5(t,q)Cν6νt7µ6(t,q)Cøν7µt2
(q,t)

×CR
øνt8µ5

(t,q)Cøν8µt6
(q,t)(−Q1)|ν1|

(
− Qf
Q1,2

)|ν2|

f̃ν2(q,t)(−Q2)|ν3|

×
(
− Qf
Q1,2

√
q

t

)|ν4|

(−Q5)|ν5|
(
− Qf
Q5,6

)|ν6|

f̃−1
ν6 (q,t)(−Q6)|ν7|

(
− Qf
Q5,6

√
t

q

)|ν8|

×
(
− Qb
Q1,5

)|µ1|

fµ1(t,q)
(
− Qb
Q2,6

)|µ2|

fµ2(t,q)−1(−Q3)|µ3|
(

+
Q3,f,42

Q1,2

)|µ4|

fµt4(q,t)

× Z̃µ4(t,q)
Z̃µt4(q,t)

(
+
Q82,f,7
Q5,6

)|µ5|

fµ5(t,q)
Z̃µt5(q,t)
Z̃µ5(t,q)

(−Q7)|µ6|. (3.22)
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After simplifying the sum over ν, we express the partition function as

ZSU(2)+8F =
∑
µ

Rµt1µ3(Q1)Rµt1µ4(
Qf
Q2

)Rµt1µ5(Q5)Rµt1µ6(
Qf
Q6

)Rµt3µ2(
Qf
Q1

)Rµ4µ2(Q2)Rµt5µ2(
Qf
Q5

)Rµt6µ2(Q6)

Rµt1µ2(Qf
√

q
t )Rµt1µ2(Qf

√
t
q )

× (−Q3)|µ3|(−Q7)|µ6|
(
Qb
Q1,5

)|µ1|( Qb
Q2,6

)|µ2|(
−
Q3,42,f

Q1,2

)|µ4|(
−
Q7,82,f

Q5,6

)|µ5|

× q||µ2||2+ 1
2

∑6
i=3
||µi||2 t||µ

t
1||

2+ 1
2

∑6
i=3
||µti||

2
6∏
i=1

Z̃µi(t, q)Z̃µt
i
(q, t) . (3.23)

From the web diagram in figure 15, the map between the Kähler parameters and the gauge
theory parameters is given as follows:

Qb = A2u

√
M3M7

M1M2M4M5M6M8
, Qf = A2,

Q1 = A

M1
, Q2 = AM3, Q3 = M2

A
, Q4 =

√
M3M4
M1M2

,

Q5 = A

M5
, Q6 = AM7, Q7 = M8

A
, Q8 =

√
M6M7
M5M8

, (3.24)

where A is the Coulomb branch parameter and u is the instanton factor. After extract-
ing the M factors and factorizing the remaining parts, as demonstrated in the previous
subsection, we can write the partition function as

ZSU(2)+8F = Z
Nf=8
M

∑
µ1µ2

Z
Nf=8
µ1µ2

∑
µ3

Zµ1µ2µ3(M1,M2)
∑
µ4

Zµ1µ2µ4(M3,M4)

×
∑
µ5

Zµ1µ2µ5(M5,M6)
∑
µ6

Zµ1µ2µ6(M7,M8) , (3.25)

where

Z
Nf=8
M =M(A2)M

(
A2 t

q

)[
M
(
A

M1

√
t

q

)
M
(
AM1

√
t

q

)
M
(
A

M3

√
t

q

)
M
(
AM3

√
t

q

)

×M
(
A

M5

√
t

q

)
M
(
AM5

√
t

q

)
M
(
A

M7

√
t

q

)
M
(
AM7

√
t

q

)]−1

, (3.26)

Z
Nf=8
µ1µ2 =

q||µ2||2t||µ
t
1||

2
Z̃µ1(t, q)Z̃µt1(q, t)Z̃µ2(t, q)Z̃µt2(q, t)u|µ1|+|µ2|

Nµ1µ2(A2)Nµ1µ2(A2 t
q)

, (3.27)

and Zµ1µ2µi(Mj ,Mk) are the same as those defined in (3.7) and (3.8) ,

Zµ1µ2µi(Mj ,Mk) = q
||µi||

2
2 t

||µt
i
||2

2 Zµi(t,q)Zµti(q, t)Nµ1µi

(
A

Mj

√
t

q

)
Nµiµ2

(
AMj

√
t

q

)

×
(
−Mk

A

)|µi|( 1√
MjMk

)|µ2|(√
Mj

Mk

)|µ1|

. (3.28)
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The perturbative part of the partition function then takes the form

Z
SU(2)+8F
pert′ = Z

Nf=8
M

∑
µ3

Zøøµ3(M1,M2)
∑
µ4

Zøøµ4(M3,M4)

×
∑
µ5

Zøøµ5(M5,M6)
∑
µ6

Zøøµ6(M7,M8) . (3.29)

Plugging in (3.9), dropping the extra factors and flopping necessary factors, we obtain the
perturbative part in terms of the gauge theory parameters:

Z
SU(2)+8F
pert =

M
(
A2)M(

A2 t
q

)
∏8
i=1M

(
A
Mi

√
t
q

)
M
(
AMi

√
t
q

) . (3.30)

Expressed as the Plethystic exponential, it is given by

Z
SU(2)+8F
pert = PE

[ 1
(1− t)(1− q)

(
(q + t)A2 − χ16

√
qtA

) ]
, (3.31)

where we denote by χn the characters of the n-dimensional irreducible representation of
SO(16). See also appendix A for their explicit forms.

By extracting the perturbative part from (3.25), we find the instanton part has the
following structure:

Z
SU(2)+8F
inst+extra =

∑
µ1,µ2

(
Z
Nf=8
µ1µ2

∑
µ3 Zµ1µ2µ3(M1,M2)∑
µ3 Zøøµ3(M1,M2)

∑
µ4 Zµ1µ2µ4(M3,M4)∑
µ4 Zøøµ4(M3,M4)

×
∑
µ5 Zµ1µ2µ5(M5,M6)∑
µ5 Zøøµ5(M5,M6)

∑
µ6 Zµ1µ2µ6(M7,M8)∑
µ6 Zøøµ6(M7,M8)

)
, (3.32)

where extra factors are included. From figure 15 we can see that there are four upper and
four lower parallel external branes which are also parallel to the two ON-planes, so there
will be infinitely many different strings connecting these external parallel branes. They
contribute to the extra factors in (3.32) if the corresponding distances between the branes
depend on the instanton factor. With the definition in (3.13), (3.32) is rewritten as

Z
SU(2)+8F
inst+extra =

∑
µ1,µ2

Z
Nf=8
µ1µ2 Zµ1µ2(M1,M2)Zµ1µ2(M3,M4)Zµ1µ2(M5,M6)Zµ1µ2(M7,M8) .

(3.33)
By plugging in the expressions of Zµ1µ2 ’s, for up to two-instanton, (3.15) and (3.16), we
can obtain the instanton partition function which includes the extra factors.

As the Omega deformation parameters capture the left-right spin content [jl, jr] of the
theory under SU(2)l × SU(2)r, which is [28, 62, 63] defined as

[jl, jr] :=
(−1)2jl+2jr+1

(
(tq)−jl + · · ·+ (tq)jl

)(
( t
q)−jr + · · ·+ ( t

q)jr
)

(t1/2 − t−1/2)(q1/2 − q−1/2)
, (3.34)

we express the partition function as the GV invariant with [jl, jr] and the characters χ for
the flavor symmetry. The perturbative part is then re-expressed as

Z
SU(2)+8F
pert = PE

[ [
0, 1

2

]
A2 + χ16 [0, 0]A

]
. (3.35)
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The instanton partition function which includes the extra factors can be written as

Z
SU(2)+8F
inst+extra = PE

[ ∞∑
n=1

dn(A,Mi, t, q)un
]
, (3.36)

with
dn(A,Mi, t, q) =

∞∑
m=0

dn,m(Mi, t, q)Am , (3.37)

where the mass Mi terms are organized as the characters χn of SO(16), whose explicit
forms are given in appendix A. As the extra factor is the part that does not depend on the
Coulomb branch parameter A, the extra factor is expressed as Zextra = PE

[∑∞
n=1 dn,0u

n
]
.

Discarding this extra factor, we find the instanton part is given by

Z
SU(2)+8F
inst = PE

[ ∞∑
n,m=1

dn,mA
mun

]
, (3.38)

where, up to u3 and A2, the explicit forms of dn,m with n ≤ 3,m ≤ 2 are given as follows:

d1,1 = χ128 [0, 0] , (3.39)

d1,2 = χ128

[
0, 1

2

]
,

d2,1 = χ16

[1
2 ,

1
2

]
+
(
χ560 + χ16

)
[0, 0] ,

d2,2 =
[
1, 3

2

]
+
(
χ120 + 1

) [1
2 , 1

]
+
[1

2 , 0
]

+
(
χ1820 + χ120 + 2

) [
0, 1

2

]
,

d3,1 = χ128

[1
2 ,

1
2

]
+
(
χ1920 + χ128

)
[0, 0] ,

d3,2 = χ128

[
1, 3

2

]
+
(
χ1920 +2χ128

) [1
2 , 1

]
+χ128

[1
2 , 0

]
+
(
χ13312+χ1920+3χ128

) [
0, 1

2

]
.

The result completely agrees with the known refined partition function [9, 39, 64]. We
note that there has been several partition function computations for SU(2)+8F based the
topological vertex [9, 49, 65], but all these attempts are computed in the unrefined limit
t = q. The result (3.38) is the first example that correctly reproduces the refined result
based on topological vertex formalism.

3.3 5d SU(3) theory at CS level 7

In this subsection, we consider yet another non-trivial theory of rank-2. It was proposed
in [14] that pure SU(3) theories at various Chern-Simons (CS) level κ can have 5-brane
webs with ON-plane(s). Such 5-brane webs can be understood as a Higgsing from D-type
quivers. We first consider the example of κ = 7, denoted as SU(3)7. It is obtained by
Higgsing the D4-type quiver

SU(3)1SU(2)

SU(2)

SU(2) (3.40)
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µ8
µ9

Qn
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(a) (b)

Figure 16. (a) The D4-type quiver theory. (b) SU(3) theory at CS level 7.

Qd

Q12,3,e3

Qd2,n2,t4

Q12,3,d2

Qn2,5

Q6

Q1

Q12,2,3,e

Qn2,5,t2

Q3

Q4

Qc

Qm

Qt
µ1

µ2

µ3

µ4

µ5

µ6

µ7
µ8

µ9

ν1
Qn

ν2

ν3

ν4

ν5
ν6

ν7

ν8

ν9
f̃R

ν10

ν11

ν12

ν13

ν14

C

C

CR

CR

Figure 17. The D4-type quiver theory with separated SU(2) sub webs on the right.

where the middle node is an SU(3) theory at the CS level 1, the corresponding web diagram
is illustrated in figure 16(a). Here, the Higgsing procedure is as follows: a Higgsing of
an SU(2) gives rise to an antisymmetric hypermultiplet (AS) to SU(3), increasing the
CS level of SU(3) by 3

2 [14]. As we have three SU(2), we get SU(3) 11
2

+ 3AS after the
Higgsing, in figure 16(a) it corresponds to shrink Qm, Qc, Qn, Qd, Qt, Qe. Finally, since
an antisymmetric hypermultiplet transforms as 3̄, the decoupling of an antisymmetric
hypermultiplet further increases the CS level of SU(3) by 1

2 . Hence, decoupling all the AS
which means flopping Q4, Q5, Q6 downward to infinity yields SU(3)7 whose web diagram
is illustrated in figure 16(b).

However, if we start from figure 16(a) to compute the topological string partition
function, the two SU(2) sub webs on the right side are overlapping. In order to use our
ON proposal, we have to swap the positions of the brane µ9 and µ5 in the web diagram to
make the sub webs of the two SU(2) nodes separated which corresponds to figure 17. Due
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to this swapping, the Kähler parameters in figure 16(a) change into the Kähler parameters
in figure 17. Then, by our proposal of topological vertex with ON-planes, the input data
of topological vertex for figure 17 is:

Z ′
D4 =

∑
µ,ν

Cøνt1µ1(t,q)Cνt2ν1µt8
(q,t)Cνt3ν2µt5

(q,t)Cν3νt4µ2(t,q)Cν4νt5µ3(t,q)Cνt6ν5µt9
(q,t)Cøν6µt6

(q,t)

×Cøνt7µ8(t,q)Cν7νt8µ5(t,q)CR
νt9ν8µt9

(q,t)CR
øν9µt6

(q,t)Cν10øµt1(q,t)Cν10νt11µ7(t,q)

×Cνt12ν11µt2
(q,t)Cνt13ν12µt3

(q,t)Cν13øµ4(t,q)Cν14øµt7(q,t)Cøν14µt4
(q,t)(−Qn)|ν1|

×
(
−
Q12,3,d

Qn2,5

)|ν2|

f̃ν2(q,t)
(
− Qn,5
Q1,3,d

)|ν3|

(−Q3)|ν4|f̃ν4(q,t)−1
(
−
Qd,n,t2

Qe,3,1

)|ν5|(
−

Q12,3,e3

Qd2,n2,t4,6

)|ν6|

×f̃ν6(q,t)
(
−
Q12,3,d

Qn2,5

)|ν7|

f̃ν7(q,t)−1
(
−
Qn2,t2,5

Q12,3,e

√
q

t

)|ν8|(
−

Q12,3,e3

Qd2,n2,t4,6

)|ν9|

f̃R
ν9

(q,t)

×(−Qm)|ν10|
(
− Q1

Qm

)ν11

(−Q3)|ν12|f̃ν12(q,t)
(
− Qc,1
Qm,4

)|ν13|(
−
Qc,3,12

Qm2,4

)|ν14|

f̃ν14(q,t)

×
(
−

Q12,2,e

Qn2,t2,m,d

)|µ1|(
−
Q12,2,3,e

Qn2,5,t2

)|µ2|

fµ2(t,q)−1
(
−
Q12,2,3,e

Qn2,5,t2

)|µ3|

fµ3(t,q)(−Qd)|µ8|

×
(
−
Q12,3,d2

Qn2,5

)|µ5|

fµ5(t,q)2
(
Q12,3,e3

Qd2,n2,t4

)|µ9|

fµ9(t,q)−2fµt9(q,t) Z̃µ9(t,q)
Z̃µt9(q,t)

Q
|µ6|
6

×fµt6(q,t) Z̃µ6(t,q)
Z̃µt6(q,t)

(−Qc)|µ7|(−Q4)|µ4|. (3.41)

After summing over the non-preferred direction Young diagrams, the result is

Z ′
D4 =

∑
µ

Z ′
D4
µ1µ2µ3Z

D4
µ1µ2µ3µ7µ4Z

′D4
µ1µ2µ3µ8µ5Z

′D4
µ1µ2µ3µ9µ6 (3.42)

where

Z ′
D4
µ1µ2µ3

=Wµ1(t,q)
(
−

Q12,2,e

Qn2,t2,m,d

)|µ1|

Wµ2(t,q)
(
−
Q12,2,3,e

Qn2,5,t2

)|µ2|

fµ2(t,q)−1Wµ3(t,q)

×
(
−
Q12,2,3,e

Qn2,5,t2

)|µ3|

fµ3(t,q)×
[
Rµt1µ2

(
Q1

√
q

t

)
Rµt1µ2

(
Q1

√
t

q

)
Rµt1µ3

(
Q1,3

√
q

t

)
×Rµt1µ3

(
Q1,3

√
t

q

)
Rµt2µ3

(
Q3

√
q

t

)
Rµt2µ3

(
Q3

√
t

q

)]−1
, (3.43)

ZD4
µ1µ2µ3µ7µ4

=Wµ7(t,q)(−Qc)|µ7|Wµ4(t,q)(−Q4)|µ4|Rµt1µ7(Qm)Rµt7µ2

(
Q1

Qm

)
×Rµt7µ3

(
Q1,3

Qm

)
Rµt1µ4

(
Q12,3,c

Qm,4

)
Rµt2µ4

(
Q1,3,c

Qm,4

)
Rµt3µ4

(
Q1,c

Qm,4

)
×
[
Rµt7µ4

(
Qc,3,12

Qm2,4

√
q

t

)
Rµt7µ4

(
Qc,3,12

Qm2,4

√
t

q

)]−1
, (3.44)

Z ′
D4
µ1µ2µ3µ8µ5

=Wµ8(t,q)(−Qd)|µ8|Wµ5(t,q)
(
−
Q12,3,d2

Qn2,5

)|µ5|

fµ5(t,q)2Rµt1µ8(Qn)

×Rµt8µ2

(
Q1

Qn

)
Rµt8µ3

(
Q1,3

Qn

)
Rµt1µ5

(
Q12,3,d

Qn,5

)
Rµt5µ2

(
Qn,5
Q1,3,d

)
Rµt5µ3

(
Qn,5
Q1,d

)
×
[
Rµt8µ5

(
Q12,3,d

Qn2,5

√
q

t

)
Rµt8µ5

(
Q12,3,d

Qn2,5

√
t

q

)]−1
, (3.45)
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Z ′
D4
µ1µ2µ3µ9µ6

=Wµ9(t,q)
(
−
Q12,3,e3

Qd2,n2,t4

)|µ9|

fµ9(t,q)−2Wµ6(t,q)(−Q6)|µ6|Rµt1µ9

(
Qd,n,t2

Qe

)
×Rµt2µ9

(
Qd,n,t2

Q1,e

)
Rµt3µ9

(
Qd,n,t2

Q1,3,e

)
Rµt1µ6

(
Q12,3,e2

Qd,n,t2,6

)
Rµt2µ6

(
Q1,3,e2

Qd,n,t2,6

)
×Rµt3µ6

(
Q1,e2

Qd,n,t2,6

)[
Rµt9µ6

(
Q12,3,e3

Qd2,n2,t4,6

√
q

t

)
Rµt9µ6

(
Q12,3,e3

Qd2,n2,t4,6

√
t

q

)]−1
. (3.46)

We have defined
Wµ(t, q) ≡ t

||µt||2
2 q

||µ||2
2 Z̃µt(q, t)Z̃µ(t, q) (3.47)

for convenience, this factor is universal for every color brane.
However, in order to do the Higgsing and decoupling, it is much more convenient to

use figure 16(a). So, we transform the result obtained from figure 17 to the one that
corresponds to figure 16(a) by using the following formula [66]:

Rµtν(Q−1; t, q)→ (Q−1)|µ|+|ν|fµ(t, q)−1fν(t, q)Rνtµ(Q; t, q) , (3.48)

which can be derived from

Nµν

(√
t

q
Q−1; t, q

)
= (Q−1)|µ|+|ν|fµ(t, q)−1fν(t, q)Nνµ

(√
t

q
Q; t, q

)
, (3.49)

M
(√

t

q
Q−1; t, q

)
→M

(√
t

q
Q; t, q

)
, (3.50)

where → means “equal up to a flop”. We use (3.48) to exchange the order of indices of
Rµt5µ2 ,Rµt5µ3 ,Rµt2µ9 and Rµt3µ9 which are affected by the swapping of color branes from
figure 17 to figure 16(a). This procedure also generates Q factors and framing factors
which will be rearranged into the Z’s of (3.42). We then have

ZD4 =
∑
µ

ZD4
µ1µ2µ3Z

D4
µ1µ2µ3µ7µ4Z

D4
µ1µ2µ3µ8µ5Z

D4
µ1µ2µ3µ9µ6 , (3.51)

where

ZD4
µ1µ2µ3 =Wµ1(t,q)

(
−

Q12,2,e
Qn2,t2,m,d

)|µ1|

Wµ2(t,q)(−Q2)|µ2|fµ2(t,q)−1Wµ3(t,q) (3.52)

×(−Q2)|µ3|fµ3(t,q)×
[
Rµt1µ2

(
Q1

√
q

t

)
Rµt1µ2

(
Q1

√
t

q

)
Rµt1µ3

(
Q1,3

√
q

t

)

×Rµt1µ3

(
Q1,3

√
t

q

)
Rµt2µ3

(
Q3

√
q

t

)
Rµt2µ3

(
Q3

√
t

q

)]−1
,

ZD4
µ1µ2µ3µ7µ4 =Wµ7(t,q)(−Qc)|µ7|Wµ4(t,q)(−Q4)|µ4|Rµt1µ7(Qm)Rµt7µ2

(
Q1
Qm

)
(3.53)

×Rµt7µ3

(
Q1,3
Qm

)
Rµt1µ4

(
Q12,3,c
Qm,4

)
Rµt2µ4

(
Q1,3,c
Qm,4

)
Rµt3µ4

(
Q1,c
Qm,4

)

×
[
Rµt7µ4

(
Qc,3,12

Qm2,4

√
q

t

)
Rµt7µ4

(
Qc,3,12

Qm2,4

√
t

q

)]−1
,
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ZD4
µ1µ2µ3µ8µ5 =Wµ8(t,q)(−Qd)|µ8|Wµ5(t,q)(−Q5)|µ5|Rµt1µ8(Qn) (3.54)

×Rµt8µ2

(
Q1
Qn

)
Rµt8µ3

(
Q1,3
Qn

)
Rµt1µ5

(
Q12,3,d
Qn,5

)
Rµt2µ5

(
Q1,3,d
Qn,5

)
Rµt3µ5

(
Q1,d
Qn,5

)

×
[
Rµt8µ5

(
Q12,3,d
Qn2,5

√
q

t

)
Rµt8µ5

(
Q12,3,d
Qn2,5

√
t

q

)]−1
,

ZD4
µ1µ2µ3µ9µ6 =Wµ9(t,q)(−Qe)|µ9|Wµ6(t,q)(−Q6)|µ6|Rµt1µ9

(
Qd,n,t2

Qe

)
(3.55)

×Rµt9µ2

(
Q1,e
Qd,n,t2

)
Rµt9µ3

(
Q1,3,e
Qd,n,t2

)
Rµt1µ6

(
Q12,3,e2

Qd,n,t2,6

)
Rµt2µ6

(
Q1,3,e2

Qd,n,t2,6

)

×Rµt3µ6

(
Q1,e2

Qd,n,t2,6

)[
Rµt9µ6

(
Q12,3,e3

Qd2,n2,t4,6

√
q

t

)
Rµt9µ6

(
Q12,3,e3

Qd2,n2,t4,6

√
t

q

)]−1
.

We can see from the above results that the Q factors and framing factors generated
through (3.48) compensate the Q factors and framing factors7 corresponding to the color
branes µ2,µ3,µ5 and µ9 in figure 17 to make the recombined Q factors and framing factors
correspond to the original unswapped web diagram in figure 16(a). And now, the forms
of (3.54) and (3.55) are exactly like the form of (3.53). Then we take the Higgsing limit
which means that Qm,Qc,Qn,Qd,Qt,Qe in figure 16(a) shrink and take some t, q related
values in the limit. For Qm,Qc,Qn,Qd their limits are found in [44], which is

√
q
t for all of

them. As the right hand side of the middle SU(3) node in figure 16(a) has two separate
SU(2) nodes, we can find8 that Qd in one node corresponds to Qe in the other node, simi-
larly Qn in one node corresponds to Qn,d,t2

Qe
in the other node, so Qe →

√
q
t and Qt → 1 in

the Higgsing limit.
In the partition function (3.51) there are three factors which come from the three

SU(3)-SU(2) bifundamental contributions:

Rµt1µ7(Qm)Rµt1µ8(Qn)Rµt1µ9

(
Qd,n,t2

Qe

)
. (3.56)

After dropping theM’s from the R’s, the remaining is

Nµ1µ7

(
Qm

√
t

q

)
Nµ1µ8

(
Qn

√
t

q

)
Nµ1µ9

(
Qd,n,t2

Qe

√
t

q

)
. (3.57)

Then we plug in the Higgsing limit values for the Kähler parameters, we obtain

Nµ1µ7(1; t, q)Nµ1µ8(1; t, q)Nµ1µ9(1; t, q) . (3.58)

By using the following formula which is found in [44]:

Nµα(1; t, q) 6= 0, only if µ < α , (3.59)
7Here the framing factors are the F• in (2.18) which are framing factors of the unreflected branes.
8By observation from figure 16(a), Qd is the length of color brane µ8, Qe is the length of color brane µ9,

Qn is the distance between µ1 and µ8,
Q
n,d,t2
Qe

is the distance between µ1 and µ9.
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the non-zero contributing Young diagrams are now restricted to be µ7,8,9 4 µ1. After
taking this Higgsing limit, the partition function ZD4 in (3.51) can now be written as

Z ′′
D4 = ZD4

M
∑
µ

Zκ=7
µ1µ2µ3

∏
i=7,8,9

Zµ1µ2µ3µi

∏
j=4,5,6

Z
Qj
µ1µ2µ3µj+3µj

 , (3.60)

where

ZD4
M =

M(Q1)M(Q3)M(Q1,3)M(Q3
t
q )

M(1)3M(Q1
t
q )2M(Q1,3

t
q )2

∏
j=4,5,6

M(Q12,3
Qj

√
t
q )M(Q12,3

Qj
t3/2

q3/2 )

M(Q12,3
Qj

√
t
q )M(Q1,3

Qj

√
t
q )M(Q1

Qj

√
t
q )
, (3.61)

Zκ=7
µ1µ2µ3

=
q

||µ1||2
2 +||µ2||2 t

||µt1||2

2 +||µt3||
2∏

i=1,2,3Z̃µi(t,q)Z̃µt
i
(q,t)

(
−Q12,2

t3/2

q3/2

)|µ1|
Q
|µ2|+|µ3|
2

Nµ1µ2(Q1)Nµ1µ2(Q1
t
q )Nµ1µ3(Q1,3)Nµ1µ3(Q1,3

t
q )Nµ2µ3(Q3)Nµ2µ3(Q3

t
q )

, (3.62)

Zµ1µ2µ3µi=q
||µi||2

2 t
||µt
i

||2

2 Z̃µi(t,q)Z̃µt
i
(q,t)

(
−
√

q

t

)|µi|
Nµ1µi(1)Nµiµ2

(
Q1

t

q

)
Nµiµ3

(
Q1,3

t

q

)
(3.63)

for i = 7, 8, 9, and

Z
Qj
µ1µ2µ3µj+3µj = q

||µj ||
2

2 t
||µt
j
||2

2 Z̃µj (t, q)Z̃µtj (q, t)(−Qj)
|µj |

×
Nµ1µj (

Q12,3
Qj

√
t
q)Nµ2µj (

Q1,3
Qj

√
t
q)Nµ3µj (

Q1
Qj

√
t
q)

Nµj+3µj (
Q12,3
Qj

√
t
q)Nµj+3µj (

Q12,3
Qj

t3/2

q3/2 )
(3.64)

for j = 4, 5, 6 . We note that from the web diagram in figure 16(b), the map from Kähler
parameters to gauge theory parameters is given by

Q1 = A2
1

A2
, Q2 = A2

2
A3

1
u, Q3 = A2

2
A1
, (3.65)

where A1 and A2 are the Coulomb branch parameters, u is the instanton factor.
Now we compute the perturbative part of the partition function which corresponds to

µ1,2,3 = ø, and because µ7,8,9 4 µ1, µ7,8,9 are also empty in this case.

Z ′′
D4
pert = ZD4

M
∑
µ4

ZQ4
øøøøµ4

∑
µ5

ZQ5
øøøøµ5

∑
µ6

ZQ6
øøøøµ6 . (3.66)

We first sum over ZQ4
øøøøµ4 from zero to some finite Young diagram boxes number of µ4, and

then series expand it with respect to Q1 andQ4. There are both negative power and positive
power terms of Q4 in the expansion, but when we increase the upper bound of the boxes
number of µ4, lower positive power terms of Q4 disappear, in the limit that the upper bound
of boxes number of µ4 goes to infinity, all the positive power terms of Q4 will disappear
and only negative power terms of Q4 remain which are not changing once the upper bound
exceeds some finite number, then we take the limit that Q4 goes to ∞, we obtain

Z0 ≡ lim
Q4→∞

∑
µ4

ZQ4
øøøøµ4 = PE

[
Q1(1 +Q3)t
(1− q)(1− t)

]
. (3.67)
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Because ZQ5 , ZQ6 have the same form as ZQ4 , they will have the same limit (3.67) when
Q5, Q6 → ∞. Substitute (3.67) into (3.66), take the decoupling limit, transform Kähler
parameters into gauge theory parameters and drop the factors that do not depend on A1
or A2, we obtain the perturbative part of SU(3)7:

Z
SU(3)7
pert =

M(Q1)M(Q3)M(Q1,3)M(Q3
t
q)

M(Q1
t
q)2M(Q1,3

t
q)2 Z3

0

= PE
[

q + t

(1− q)(1− t)

(
A2

1
A2

+A1A2 + A2
2

A1

)]
. (3.68)

The instanton part of (3.60) is

Z ′′
D4
inst =

∑
µ1,µ2,µ3

(
Zκ=7
µ1µ2µ3

∏
j=4,5,6

∑
µj+3

Zµ1µ2µ3µj+3

∑
µj Z

Qj
µ1µ2µ3µj+3µj∑
µj Z

Qj
øøøøµj

) . (3.69)

We define

Zµ1µ2µ3 ≡ lim
Q4→∞

∑
µ7

(
Zµ1µ2µ3µ7

∑
µ4 Z

Q4
µ1µ2µ3µ7µ4∑

µ4 Z
Q4
øøøøµ4

)
. (3.70)

Because µ7 4 µ1, the summation over µ7 is finite, while the summation over µ4 is up to
infinity. In order to compute Zµ1µ2µ3 , we first sum over µ4 up to a finite boxes number in
the numerator and denominator of (3.70), then we expand the whole expression (3.70) with
respect to Q1 and Q4. There are both negative power and positive power terms of Q4 ap-
pearing in the expansion, but when we increase the upper bound of the boxes number of µ4,
lower order positive power terms of Q4 disappear, in the limit that the upper bound of boxes
number of µ4 goes to infinity, all the positive power terms of Q4 will disappear and only neg-
ative power terms of Q4 remain which are not changing once the upper bound exceeds some
finite number. Higher order terms of Q1 also disappear because their coefficients contain
only positive power terms of Q4. Then we take the limit that Q4 goes to∞, we will obtain
Zµ1µ2µ3 expanded with respect to Q1 up to finite order. Because ZQ5 , ZQ6 have the same
form as ZQ4 , they will have the same limit (3.70) when Q5, Q6 → ∞. Because Zκ=7

µ1µ2µ3 is
proportional to Q|µ1|+|µ2|+|µ3|

2 , Young diagram assignments that satisfy |µ1|+ |µ2|+ |µ3| = 1
contribute to one-instanton partition function, and the corresponding Z’s are

Z{1},ø,ø = 1− q

t
Q1(1 +Q3) ,

Zø,{1},ø = 1 +Q1

(
Q3 −

t

q

)
,

Zø,ø,{1} = 1 +Q1

(
1− t

q
Q3

)
. (3.71)

Young diagram assignments that satisfy |µ1|+ |µ2|+ |µ3| = 2 contribute to two-instanton
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partition function, then the corresponding Z’s are given as follows:

Z{2},ø,ø = 1− q(1 + q)
t

Q1(1 +Q3) + q3

t2
Q2

1(1 +Q3 + qQ3 +Q2
3) ,

Z{1,1},ø,ø = 1− q(1 + t)
t2

Q1(1 +Q3) + q2

t4
Q2

1(t +Q3 + tQ3 + tQ2
3) ,

Z{1},{1},ø = 1 +Q1

(
1− 1

t
− t

q
+Q3 −

q

t
(t +Q3)

)
+ 1

t
Q2

1(1 +Q3)(t− qQ3) ,

Z{1},ø,{1} = 1 +Q1

(
1− q

t
+Q3

(
1− q− 1

t
− t

q

))
− 1

t
Q2

1(1 +Q3)(q− tQ3) ,

Zø,{1},{1} = 1 + q− t

q
Q1(1 +Q3) +Q2

1

(
tQ3 + t2

q2Q3 −
t + (t− 1)Q3 + tQ2

3
q

)
,

Zø,{2},ø = 1 + 1 + q

q2 Q1(q2Q3 − t) +Q2
1

(
Q2

3 −
(1 + q)t

q2 Q3 + t2

q3

)
,

Zø,{1,1},ø = 1 + 1 + t

qt
Q1(qQ3 − t2) +Q2

1

(
t3

q2 +Q2
3 −

(t + t2)Q3
q

)
,

Zø,ø,{2} = 1 + 1 + q

q2 Q1(q2 − tQ3) +Q2
1

(
1− t

q2Q3 −
t

q
Q3 + t2

q3Q
2
3

)
,

Zø,ø,{1,1} = 1 + 1 + t

qt
Q1(q− t2Q3) +Q2

1

(
1 + t3

q2Q
2
3 −

t(1 + t)Q3
q

)
. (3.72)

So the instanton partition function of SU(3)7 is

Z
SU(3)7
inst =

∑
µ1,µ2,µ3

Zκ=7
µ1µ2µ3Z

3
µ1µ2µ3 , (3.73)

where Zκ=7
µ1µ2µ3 is defined in (3.62). Summing over the Young diagrams, one can express

the instanton partition function as an expansion of Q2. Here we write it as a PE:

Z
SU(3)7
inst = 1 +

∑
n=1

ZnQ
n
2 = PE

[∑
n=1

fκ=7
n (Q1, Q3; t, q)Qn2

]
, (3.74)

where Zn is the n-instanton partition function up to an overall factor (A2
2/A

3
1)n due

to (3.65). By substituting (3.62) and (3.71) into (3.73), we can obtain the one-instanton
partition function, then by (3.74), we have the exact form of the one-instanton part:

fκ=7
1 = t

(1− q)(1− t)q

(
Q2

1(qQ1(1 +Q3)− t)3

(1−Q1)(1−Q1Q3)(qQ1 − t)(qQ1Q3 − t)

+ (q + qQ1Q3 −Q1t)3

(1−Q1)(1−Q3)(qQ3 − t)(Q1t− q)

+ (q + qQ1 −Q1Q3t)3

(1−Q3)(1−Q1Q3)(q−Q3t)(q−Q1Q3t)

)
. (3.75)
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To compare this with the known result from the blowup [39], we expand (3.75) with
respect to Q1 and Q3, which gives

fκ=7
1 = q+ t

(q−1)(t−1)

[
1+Q1 +

(
q

t
+ t

q

)
Q3 +Q2

1 +
(
q

t
+ t

q
+1
)
Q1Q3 +

(
q2

t2
+ t2

q2 +1
)
Q2

3

+Q3
1 +
(
q

t
+ t

q
+1
)
Q2

1Q3+
(
q2

t2
+ t2

q2 +q

t
+ t

q
+1
)
Q1Q

2
3 +
(
q2

t2
+ t2

q2 +q

t
+ t

q
+2
)
Q2

1Q
2
3

+
(
q3

t3
+ t3

q3 +q

t
+ t

q

)
Q3

3 +
(
q

t
+ t

q
+1
)
Q3

1Q3 +
(
q3

t3
+ q2

t2
+ t3

q3 + t2

q2 + q

t
+ t

q
+1
)
Q1Q

3
3

+
(
q2

t2
+ t2

q2 + q

t
+ t

q
+2
)
Q3

1Q
2
3 +
(
q3

t3
+ q2

t2
+ t3

q3 + t2

q2 + 2q
t

+ 2t
q

+1
)
Q2

1Q
3
3

+
(
q3

t3
+ q2

t2
+ t3

q3 + t2

q2 + 2q
t

+ 2t
q

+2
)
Q3

1Q
3
3

]
+O(Q4

1,Q
4
3) , (3.76)

where O(Q4
1, Q

4
3) denotes terms either of order Q4

1 or higher or of Q4
3 or higher. We express

this in terms of the spin state [jl, jr] defined in (3.34),

fκ=7
1 =

[
0, 1

2

]
+
[
0, 3

2

]
Q3 +

[
0, 5

2

]
Q2

3 +
[
0, 1

2

]
Q1 +

([
0, 1

2

]
+
[
0, 3

2

])
Q1Q3

+
([

0, 3
2

]
+
[
0, 5

2

])
Q1Q

2
3 +

[
0, 1

2

]
Q2

1 +
([

0, 1
2

]
+
[
0, 3

2

])
Q2

1Q3

+
([

0, 1
2

]
+
[
0, 3

2

]
+
[
0, 5

2

])
Q2

1Q
2
3

+
[
0, 7

2

]
Q3

3 +
([

0, 5
2

]
+
[
0, 7

2

])
Q1Q

3
3 +

([
0, 3

2

]
+
[
0, 5

2

]
+
[
0, 7

2

])
Q2

1Q
3
3

+
[
0, 1

2

]
Q3

1 +
([

0, 1
2

]
+
[
0, 3

2

])
Q3

1Q3 +
([

0, 1
2

]
+
[
0, 3

2

]
+
[
0, 5

2

])
Q3

1Q
2
3

+
([

0, 1
2

]
+
[
0, 3

2

]
+
[
0, 5

2

]
+
[
0, 7

2

])
Q3

1Q
3
3 +O(Q4

1, Q
4
3) . (3.77)

This agrees with the blowup result in [39].

By substituting (3.72) into (3.73), we can obtain the two-instanton partition function.
As a PE form (3.74), we can obtain the exact form fκ=7

2 .9 Here, we expand fκ=7
2 to order

9As the exact form fκ=7
2 is rather long, we put the exact form into a Mathematica file attached as

supplementary material.
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Q2
1Q

2
3:

fκ=7
2 = 1

(1− q)(1− t)

[(
q3

t2
+ t3

q2 + q2

t
+ t2

q
+ q + t

)
Q3 +

(
q3

t2
+ t3

q2 + 2q2

t
+ 2t2

q
+ 2q

+ 2t
)
Q1Q3 +

(
q5

t3
+ q4

t2
+ q4

t3
+ q4

t4
+ 2q3

t2
+ q3

t3
+ q2

t2
+ t5

q3 + t4

q2 + t4

q3 + t4

q4 + 2t3

q2

+ t3

q3 + t2

q2 + q3

t
+ 2q2

t
+ q2 + t3

q
+ 2t2

q
+ qt + q

t
+ t

q
+ 2q + t2 + 2t + 1

)
Q2

3

+
(
q3

t2
+ t3

q2 + 2q2

t
+ 2t2

q
+ 3q + 3t

)
Q2

1Q3 +
(
q5

t3
+ 2q4

t2
+ 2q4

t3
+ q4

t4
+ 5q3

t2
+ 2q3

t3

+ 2q2

t2
+ t5

q3 + 2t4

q2 + 2t4

q3 + t4

q4 + 5t3

q2 + 2t3

q3 + 2t2

q2 + 2q3

t
+ 6q2

t
+ 2q2 + 2t3

q
+ 6t2

q

+ 2qt + 2q
t

+ 2t
q

+ 6q + 2t2 + 6t + 2
)
Q1Q

2
3 +

(
q5

t3
+ 2q4

t2
+ 2q4

t3
+ q4

t4
+ 6q3

t2
+ 2q3

t3

+ 3q2

t2
+ t5

q3 + 2t4

q2 + 2t4

q3 + t4

q4 + 6t3

q2 + 2t3

q3 + 3t2

q2 + 3q3

t
+ 9q2

t
+ 3q2 + 3t3

q
+ 9t2

q

+ 3qt + 3q
t

+ 3t
q

+ 10q + 3t2 + 10t + 3
)
Q2

1Q
2
3

]
+O(Q3

1, Q
3
3) . (3.78)

In terms of the spin state, it is given by

fκ=7
2 =

[
0, 52

]
Q3+

([
0, 52

]
+
[
0, 72

]
+
[1

2 ,4
])
Q2

3+
([

0, 32

]
+
[
0, 52

])
Q1Q3 (3.79)

+
([

0, 32

]
+3
[
0, 52

]
+2
[
0, 72

]
+
[1

2 ,3
]
+
[1

2 ,4
])
Q1Q

2
3+
([

0, 12

]
+
[
0, 32

]
+
[
0, 52

])
Q2

1Q3

+
([

0, 12

]
+3
[
0, 32

]
+4
[
0, 52

]
+2
[
0, 72

]
+
[1

2 ,2
]
+
[1

2 ,3
]
+
[1

2 ,4
])
Q2

1Q
2
3+O(Q3

1,Q
3
3),

which agrees with the two-instanton part from the blowup result [39].

3.4 5d SU(3) theory at CS level 9

We consider 5d SU(3) theory at CS level 9 without flavor, denoted as SU(3)9, which is a
KK theory arising from 6d SU(3) theory on a circle with a Z2 twist [67–69]. Its refined
partition function is computed in [39] via bootstrapping the BPS spectrum based on the
blowup equation [31, 70, 71]. From the perspective of topological vertex, the partition
function for 6d SU(3) theory with a Z2-twist is obtained in [52] based on 5-brane web
with two Õ5-planes, and that for the 5d SU(3)9 is also obtained in the S-dual frame [50].
However these partition functions based on topological vertex are limited to the unrefined
case where ε1 + ε2 = 0.10 We here, however, compute the refined Nekrasov partition
function for 5d SU(3)9 theory, using our proposal for the refined topological vertex with
ON-planes. The corresponding 5-brane web requires two ON-planes and can be obtained

10In [52], the refined elliptic genus for 6d SU(3) theory with a Z2 twist is also computed via the ADHM
method.
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Qd

QeQa

Q6

Q7Q5

Q1

Q2

Q3

Q4

Qc Qm

QtQs
µ1

µ2

µ3
µ4 µ6

µ7µ5

µ8 µ10
µ11µ9

Qn

Q1

Q2

Q3

µ1

µ2

µ3

(a) (b)

Figure 18. (a) A 5-brane web for the affine D4-type quiver with two ON-planes on the left and
right. (b) SU(3) with CS 9 obtained by Higgsing and decoupling.

from the Higgsing of the following affine D4-type quiver [14],

SU(3)1

SU(2)

SU(2)

SU(2)

SU(2) (3.80)

Here, the middle node is the SU(3) theory at the CS level 1 and the corresponding web
diagram is depicted in figure 18(a). The Higgsing procedure is similar to the SU(3)7 case
discussed in the previous section: a Higgsing of an SU(2) gives rise to an antisymmetric
hypermultiplet (AS) to SU(3), increasing the CS level of SU(3) by 3

2 [14]. As we have
four SU(2), we get SU(3)7 + 4AS after the Higgsing. Finally, since an antisymmetric
hypermultiplet transforms as 3̄, the decoupling of an antisymmetric hypermultiplet further
increases the CS level of SU(3) by 1

2 . Hence, decoupling all the AS yields SU(3)9 whose
web diagram is shown in figure 18(b).

As in the previous section where we have computed the partition function of SU(3)7
theory, we start from the web diagram in figure 18(a). The two SU(2) sub webs on the
right and the two SU(2) sub webs on the left are both overlapping, in order to compute
by our proposal for topological vertex with ON-planes, we need to swap the positions of
relevant branes to make the SU(2) sub webs separated. From the Higgsing and decoupling
processes of obtaining the SU(3)7 theory, we know that in the Higgsing limit of figure 18(a),
Qm, Qc, Qa, Qn, Qd, Qe →

√
q
t and Qs, Qt → 1, in the decoupling limit, Q4, Q5, Q6, Q7 →

∞. As the procedures are exactly like the procedures done in the previous section on
SU(3)7, we omit the detailed computation process and just list the results. From the web
diagram in figure 18(b), the Kähler parameters are expressed in terms of the gauge theory
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parameters as

Q1 = A2
1

A2
, Q2 = A2

2
A4

1
u, Q3 = A2

2
A1
, (3.81)

where A1 and A2 are the Coulomb branch parameters and u is the instanton factor. Notice
that Q2

1Q2 = u and hence any terms with (Q2
1Q2)n do not explicitly depend on the Coulomb

branch parameters and they are the extra factor, which will be modded out when expressing
the partition function.

The perturbative part of the partition function is

Z
SU(3)9
pert =

M(Q1)M(Q3)M(Q1,3)M(Q3
t
q)

M(Q1
t
q)3M(Q1,3

t
q)3 Z4

0

= PE
[

q + t

(1− q)(1− t)

(
A2

1
A2

+A1A2 + A2
2

A1

)]
. (3.82)

The instanton part of the partition function with extra factors included is

Z
SU(3)9
inst+extra =

∑
µ1,µ2,µ3

Zκ=9
µ1µ2µ3Z

4
µ1µ2µ3 , (3.83)

where

Zκ=9
µ1µ2µ3 ≡

q||µ2||2t||µ
t
1||

2+||µt3||2
∏
i=1,2,3 Z̃µi(t, q)Z̃µti(q, t)

(
Q12,2

t2

q2

)|µ1|
Q
|µ2|+|µ3|
2

Nµ1µ2(Q1)Nµ1µ2(Q1
t
q)Nµ1µ3(Q1,3)Nµ1µ3(Q1,3

t
q)Nµ2µ3(Q3)Nµ2µ3(Q3

t
q)
, (3.84)

and Zµ1µ2µ3 is the same one that appears in (3.73). We now expand this instanton part
with respect to Q2 which is the Kähler parameter proportional to the instanton factor u. As
discussed in the previous section, Zκ=9

µ1µ2µ3 is proportional to Q|µ1|+|µ2|+|µ3|
2 (or u|µ1|+|µ2|+|µ3|)

and leads to the instanton expansion. We then organize the sum of the n-instanton part
Zn as a PE:

Z
SU(3)9
inst+extra = 1 +

∑
n=1

ZnQ
n
2 = PE

[∑
n=1

fκ=9
n (Q1, Q3; t, q)Qn2

]
. (3.85)

By summing over the Young diagram assignments in (3.83) with the corresponding Z’s
defined in (3.70), order by order in Q2, one can obtain fn. We list a few fn below. In
particular, the exact one-instanton part f1 is given as follows:

fκ=9
1 = t

(1− q)(1− t)q2

(
Q2

1 (−qQ1(1 +Q3) + t)4

(1−Q1)(1−Q1Q3)(qQ1 − t)(qQ1Q3 − t)

+ (q + qQ1Q3 −Q1t)4

(1−Q1)(1−Q3)(qQ3 − t)(tQ1 − q)

+ (q + qQ1 − tQ1Q3)4

(1−Q3)(1−Q1Q3)(tQ3 − q)(tQ1Q3 − q)

)
. (3.86)
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To compare this with the result from the blowup [39], we expand f1 with respect to Q1, Q3,
which gives

fκ=9
1 = q + t

(1− q)(1− t)

[
1 +Q1 +

(
q

t
+ t

q

)
Q3 +

(
1 + q2

t2
+ t2

q2

)
Q2

3

+
(

1 + q

t
+ t

q

)
Q1Q3 +

(
1 + q2

t2
+ q

t
+ t

q
+ t2

q2

)
Q1Q

2
3 +

(
1 + 2 t

q
+ t2

q2

)
Q2

1

+
(

1 + q

t
+ t

q

)
Q2

1Q3 +
(

2 + q2

t2
+ q

t
+ t

q
+ t2

q2

)
Q2

1Q
2
3

+Q3
1 +

(
q

t
+ t

q
+ q3

t3
+ t3

q3

)
Q3

3 +
(

1 + q

t
+ t

q

)
Q3

1Q3

+
(

1 + q3

t3
+ q2

t2
+ q

t
+ t

q
+ t2

q2 + t3

q3

)
Q3

3Q1 +
(

2 + q2

t2
+ q

t
+ t

q
+ t2

q2

)
Q3

1Q
2
3

+
(

1 + q3

t3
+ q2

t2
+ 2q

t
+ 2t

q
+ t2

q2 + t3

q3

)
Q3

3Q
2
1

+
(

2 + q3

t3
+ q2

t2
+ 2q

t
+ 2t

q
+ t2

q2 + t3

q3

)
Q3

1Q
3
3

]
+O(Q4

1, Q
4
3) . (3.87)

As Q2
1Q2 = u does not depend on the Coulomb branch parameters, the term proportional

to Q2
1 in (3.87) contributes to the extra factor. Separating out such extra factor, we

rewrite (3.87) in terms of the spin state [jl, jr] defined in (3.34),

fκ=9
1 =

[
0, 12

]
+
[
0, 32

]
Q3+

[
0, 52

]
Q2

3+
[
0, 12

]
Q1+

([
0, 12

]
+
[
0, 32

])
Q1Q3

+
([

0, 32

]
+
[
0, 52

])
Q1Q

2
3+
([

0, 12

]
+
[
0, 32

])
Q2

1Q3+
([

0, 12

]
+
[
0, 32

]
+
[
0, 52

])
Q2

1Q
2
3

+
[
0, 72

]
Q3

3+
([

0, 52

]
+
[
0, 72

])
Q1Q

3
3+
([

0, 32

]
+
[
0, 52

]
+
[
0, 72

])
Q2

1Q
3
3

+
[
0, 12

]
Q3

1+
([

0, 12

]
+
[
0, 32

])
Q3

1Q3+
([

0, 12

]
+
[
0, 32

]
+
[
0, 52

])
Q3

1Q
2
3

+
([

0, 12

]
+
[
0, 32

]
+
[
0, 52

]
+
[
0, 72

])
Q3

1Q
3
3+O(Q4

1,Q
4
3)+(extra factor). (3.88)

This agrees with the blowup result in [39] where the terms up to Q2
1Q

2
3 are presented at

the first order of Q2.
The contribution at order Q2

2 leads to two-instanton partition function. Summing
over Young diagrams in (3.83) with the corresponding Z’s in (3.72) and combining (3.85)
and (3.86), we can obtain the exact form of f2. As the exact form of f2 is rather long,11 we
expand the form with respect to Q1, Q3 up to Q2

1Q
2
3 to compare it with the known result,

11The exact form of f2 for the SU(3)9 theory is presented in a Mathematica file attached as supplementary
material.
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as follows:

fκ=9
2 = 1

(1− q)(1− t)

[(
q + q3

t2
+ q2

t
+ t + t2

q
+ t3

q2

)
Q3 +

(
1 + 2q + q2 + q4

t4
+ q3

t3

+ q4

t3
+ q5

t3
+ q2

t2
+ 2q

3

t2
+ q4

t2
+ q

t
+ 2q

2

t
+ q3

t
+ 2t + t

q
+ qt + t2 + t2

q2 + 2 t
2

q
+ t3

q3

+ 2 t
3

q2 + t3

q
+ t4

q4 + t4

q3 + t4

q2 + t5

q3

)
Q2

3 +
(

2q + q3

t2
+ 2q

2

t
+ 2t + 2 t

2

q
+ t3

q2

)
Q1Q3

+
(

2+6q + 2q2 + q4

t4
+ 2q

3

t3
+ 2q

4

t3
+ q5

t3
+ 2q

2

t2
+ 5q

3

t2
+ 2q

4

t2
+ 2q

t
+ 6q

2

t
+ 2q

3

t

+6t +2 t
q

+2qt +2t2 +2 t
2

q2 +6 t
2

q
+2 t

3

q3 +5 t
3

q2 +2 t
3

q
+ t4

q4 +2 t
4

q3 +2 t
4

q2 + t5

q3

)
Q1Q

2
3

+
(

3q + q3

t2
+ 2q

2

t
+ 3t + 2 t

2

q
+ t3

q2

)
Q2

1Q3 +
(

3 + 10q + 3q2 + q4

t4
+ 2q

3

t3
+ 2q

4

t3

+ q5

t3
+ 3q

2

t2
+ 6q

3

t2
+ 2q

4

t2
+ 3q

t
+ 9q

2

t
+ 3q

3

t
+ 10t + 3 t

q
+ 3qt + 3t2 + 3 t

2

q2 + 9 t
2

q

+ 2 t
3

q3 + 6 t
3

q2 + 3 t
3

q
+ t4

q4 + 2 t
4

q3 + 2 t
4

q2 + t5

q3

)
Q2

1Q
2
3

]
+O(Q3

1, Q
3
3) , (3.89)

which can be rewritten as

fκ=9
2 =

[
0, 52

]
Q3+

([
0, 52

]
+
[
0, 72

]
+
[1

2 ,4
])
Q2

3+
([

0, 32

]
+
[
0, 52

])
Q1Q3 (3.90)

+
([

0, 32

]
+3
[
0, 52

]
+2
[
0, 72

]
+
[1

2 ,3
]
+
[1

2 ,4
])
Q1Q

2
3+
([

0, 12

]
+
[
0, 32

]
+
[
0, 52

])
Q2

1Q3

+
([

0, 12

]
+3
[
0, 32

]
+4
[
0, 52

]
+2
[
0, 72

]
+
[1

2 ,2
]
+
[1

2 ,3
]
+
[1

2 ,4
])
Q2

1Q
2
3+O(Q3

1,Q
3
3),

which agrees with the two-instanton part from the blowup result [39]. Notice that there is
no extra factor in (3.90), which is because the extra factor at order Q2

2 comes from terms
proportional to Q4

1.
The instanton partition function at higher order n ≥ 3 can be obtained in the same

way. It is to repeat the same computation with |µ1| + |µ2| + |µ3| = n. One can also
express the partition function in terms of the gauge theory parameters by substituting the
Kähler parameters with the Coulomb branch parameters and instanton factor in (3.81),
after dropping the extra factors.

4 Conclusion

In this paper, we generalized refined topological vertex formalism so that it is applicable
for 5-brane webs with ON-planes. 5-brane system with an ON-plane describes a D-type
quiver gauge theory. In order for a 5-brane web with an ON-plane to correctly account for a
D-type quiver, there should be no bifundamental contributions between two gauge theories
belonging to bivalent nodes of a D-type quiver. To this end, we proposed a new vertex
factor CR for the reflected vertices over an ON-plane and also new associated edge factors.
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Such new vertex and edge factors ensures the resulting partition functions correctly capture
the BPS spectrum of a D-type quiver gauge theory. It is also worthy of noting that one
can use only this new vertex factor and edge factor for usual 5-brane webs to obtain the
same partition function obtained with the conventional vertex and edge factors as shown
in appendix B. This means that there are two different types of vertex and edge factors,
yielding the same partition function. It may also support our proposal that introducing the
new vertex and edge factors associated with the 5-brane web reflected over an ON-plane
would be a natural procedure to distinguish original domain from the reflected domain of
5-brane system with an ON-plane.

Through the Higgsing, 5-brane configurations with ON-plane(s) can give rise to 5-brane
webs for SU(3) gauge theories at higher Chern-Simons level. We computed the refined par-
tition function for SU(3)7 and SU(3)9 theories and confirmed that the results perfectly agree
with the blowup computation [39]. We also checked our proposal against 6d E-string theory
on a circle, which requires two ON-planes, which also agree with other known results. These
are the first examples that the refined partition functions are obtained based on 5-brane
webs with ON-plane. We also present the exact form of one- and two-instanton partition
functions of these theories. For theories of higher rank gauge groups or of more complicated
matter that can be described by a 5-brane web with an ON-plane [46], one can apply our
new vertex and edge factors to obtain their partition functions in a straightforward way.

From the perspective of the S-duality, 5-brane configuration with an O5-plane can
be understood as an S-dual configuration of that with an ON-plane. It is natural to
generalize our proposal to 5-brane systems with an O5-plane, which describes 5d SO/Sp
gauge theories. Though our new CR is compatible with O5-plane, the preferred direction
is assigned along the edges associated with W-bosons, and the resulting partition function
become an expansion of Coulomb branch parameters, rather than an instanton expansion.
A naive attempt for refining topological vertex with an O5-plane seems more challenging
because those branes which are reflected over an O5-plane are of the same Ω background
parameters along the same edge. Hence, it is an interesting direction to pursue to generalize
the refined topological vertex so that it is applicable to 5-brane system with an O5-plane.
These would shed some light on the partition functions from newly obtained 5-brane webs
which involve G2 gauge theories, SO gauge theories with spinor matter, and Sp or SU
gauge theories of hypermultiplets in the rank-3 antisymmetric representations.

It would be also interesting to study the relation between our proposal for a D-type
quiver theory and algebraic constructions based on Ding-Iohara-Miki algebra where the
presence of an ON-plane is discussed either from the point of view of the reflection states [56]
or as the introduction of a new twisted vertex [57].
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A Characters

The characters for the fundamental weights of SO(8) χSO(8)
dim are given as follows:

χ
SO(8)
8v =

8∑
i=1

X2
i ,

χ
SO(8)
28 =

8∑
i=1

8∑
j>i

X2
i X

2
j ,

χ
SO(8)
8s = 1

2

( 4∏
i=1

(Xi +Xi+4) +
4∏
i=1

(Xi −Xi+4)
)
,

χ
SO(8)
8c = 1

2

( 4∏
i=1

(Xi +Xi+4)−
4∏
i=1

(Xi −Xi+4)
)
, (A.1)

where Xi ∈
{
M

1/2
1 , . . . ,M

1/2
4 ,M

−1/2
1 , . . . ,M

−1/2
4

}
with the flavor mass fagacities Mi =

e−βmi .
The characters for the fundamental weights of SO(16) χdim are given as follows:

χ16 =
16∑
i=1

Y 2
i ,

χ120 =
16∑
i=1

16∑
j>i

Y 2
i Y

2
j ,

χ560 =
16∑
i=1

16∑
j>i

16∑
k>j

Y 2
i Y

2
j Y

2
k ,

χ1820 =
16∑
i=1

16∑
j>i

16∑
k>j

16∑
l>k

Y 2
i Y

2
j Y

2
k Y

2
l ,

χ4368 =
16∑
i=1

16∑
j>i

16∑
k>j

16∑
l>k

16∑
m>l

Y 2
i Y

2
j Y

2
k Y

2
l Y

2
m,

χ8008 =
16∑
i=1

16∑
j>i

16∑
k>j

16∑
l>k

16∑
m>l

16∑
n>m

Y 2
i Y

2
j Y

2
k Y

2
l Y

2
mY

2
n ,
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χ128 = 1
2

( 8∏
i=1

(Yi + Yi+8) +
8∏
i=1

(Yi − Yi+8)
)
,

χ128 = 1
2

( 8∏
i=1

(Yi + Yi+8)−
8∏
i=1

(Yi − Yi+8)
)
, (A.2)

where Yi ∈
{
M

1/2
1 , . . . ,M

1/2
8 ,M

−1/2
1 , . . . ,M

−1/2
8

}
.

The characters for higher dimensional irreducible representations can be expressed in
terms of the product of the characters of these fundamental weights. For instance, among
those that appear in (3.39),

χ1920 + χ128 = χ16 · χ128 ,

χ1920 + χ128 = χ16 · χ128 ,

χ13312 + χ1920 + χ128 = χ120 · χ128 . (A.3)

B Reflected 5-brane web with CR and f̃R

In the main text, we have introduced new vertex factor CR and framing factor f̃R which
account for vertex and framing factors that are reflected over an ON-plane. For a 5-brane
web with an ON-plane, one needs to choose the fundamental region, as there is reflected
5-brane configuration over the ON-plane. Because of the equivalence between the original
5-brane web and the reflected image, the partition function based on either the original
5-brane web or the reflected one should be equivalent. In other words, even though one
performs the topological vertex computation based on reflected web diagram with CR and
f̃R factors, the resulting partition function should not make any difference. The new factors
CR, f̃R and conventional C, f̃ are on an equal footing.

As a concrete example, let us consider a D4-type quiver with SU(3)1 at the center node
connected to tree SU(2) nodes, which is discussed in subsection 3.3. The corresponding
5-brane configuration is presented in figure 17. The corresponding reflected 5-brane con-
figuration can be easily depicted as given in figure 19, where the role of C, f̃ and CR, f̃R

exchanged, compared to the original 5-brane web in figure 17. In particular, C, f̃ only
appear on the strip next to an ON-plane on the left. Note that the preferred direction
framing factor f in the reflected web diagram is the same as that in the unreflected web
diagram as is mentioned in the main text. One can check that the partition function based
on this reflected 5-brane web is the same as the one discussed in subsection 3.3.

It naturally follows that even for a 5-brane web without an ON-plane, one can use the
new factors CR and f̃R, instead of using the conventional factors C and f̃ . For instance,
consider a 5-brane web for SU(2)+1F given in figure 20. Here in the figure, we have assigned
the new vertex and framing factors CR, f̃R. Note that four vertex factors out of the five
CR’s in fact reduce to the usual vertex factor C because one of their legs in non-preferred
direction is external, and hence effectively we have only one CR factor presented. One can
check that the partition function computation with this CR and f̃R is straightforward and
the result is the same as the partition function obtained with C and f̃ .
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f̃
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C
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Figure 19. Reflected 5-brane configuration for a D4-type quiver theory discussed in figure 17.

CR

CR

CR

CR

CR

f̃R f̃R

Figure 20. Web diagram of SU(2) + 1F denoted by CR and f̃R.
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