
����������
�������

Citation: Jiao, L.; Huo, L.; Hu, C.;

Tang, P.; Zhang, Z. Refined UNet V4:

End-to-End Patch-Wise Network for

Cloud and Shadow Segmentation

with Bilateral Grid. Remote Sens. 2022,

14, 358. https://doi.org/10.3390/

rs14020358

Academic Editor: Józef Lisowski

Received: 9 December 2021

Accepted: 7 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Refined UNet V4: End-to-End Patch-Wise Network for Cloud
and Shadow Segmentation with Bilateral Grid

Libin Jiao 1, Lianzhi Huo 2, Changmiao Hu 2, Ping Tang 2 and Zheng Zhang 2,*

1 Department of Computer Science and Technology, School of Mechanical Electronic and Information
Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China;
jiaolibin@cumtb.edu.cn

2 Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100101, China;
huolz@aircas.ac.cn (L.H.); hucm@aircas.ac.cn (C.H.); tangping@aircas.ac.cn (P.T.)

* Correspondence: zhangzheng@aircas.ac.cn

Abstract: Remote sensing images are usually contaminated by cloud and corresponding shadow
regions, making cloud and shadow detection one of the essential prerequisites for processing and
translation of remote sensing images. Edge-precise cloud and shadow segmentation remains challeng-
ing due to the inherent high-level semantic acquisition of current neural segmentation fashions. We,
therefore, introduce the Refined UNet series to partially achieve edge-precise cloud and shadow de-
tection, including two-stage Refined UNet, v2 with a potentially efficient gray-scale guided Gaussian
filter-based CRF, and v3 with an efficient multi-channel guided Gaussian filter-based CRF. However,
it is visually demonstrated that the locally linear kernel used in v2 and v3 is not sufficiently sensitive
to potential edges in comparison with Refined UNet. Accordingly, we turn back to the investigation of
an end-to-end UNet-CRF architecture with a Gaussian-form bilateral kernel and its relatively efficient
approximation. In this paper, we present Refined UNet v4, an end-to-end edge-precise segmentation
network for cloud and shadow detection, which is capable of retrieving regions of interest with
relatively tight edges and potential shadow regions with ambiguous edges. Specifically, we inherit
the UNet-CRF architecture exploited in the Refined UNet series, which concatenates a UNet backbone
of coarsely locating cloud and shadow regions and an embedded CRF layer of refining edges. In
particular, the bilateral grid-based approximation to the Gaussian-form bilateral kernel is applied
to the bilateral message-passing step, in order to ensure the delineation of sufficiently tight edges
and the retrieval of shadow regions with ambiguous edges. Our TensorFlow implementation of the
bilateral approximation is relatively computationally efficient in comparison with Refined UNet,
attributed to the straightforward GPU acceleration. Extensive experiments on Landsat 8 OLI dataset
illustrate that our v4 can achieve edge-precise cloud and shadow segmentation and improve the
retrieval of shadow regions, and also confirm its computational efficiency.

Keywords: edge-precise cloud and shadow segmentation; end-to-end segmentation solution;
CRF-based edge refinement

1. Introduction

Remote sensing images are usually contaminated by cloud and corresponding shadow
regions when acquired, which notoriously perturbs the recognition of land cover and
finally leads to invalid resolved results [1]; furthermore, more and more remote sensing
applications require cloud- and shadow-free images [2–6]. Cloud and shadow detection,
therefore, is one of the essential prerequisites for processing and translation of remote
sensing images [7]. Since each pixel within a remote sensing image should be identified as
the category of cloud, shadow, or background, intelligent cloud and shadow detection is in
practice formulated as a semantic segmentation task, driven by large-scale coarsely labeled
data and sophisticated neural segmentation models.
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In practice, sophisticated neural semantic segmentation fashions have been developed
as powerful network backbones for representative feature extraction are arising from well-
customized classification networks. Since the Fully-connected Convolutional Network
(FCN) [8] initiated neural semantic segmentation by reusing a well-trained backbone of a
classification network and concatenating a specified head layer for pixel-wise classification,
its successors have achieved terrific quantitative and qualitative performance in various
natural image segmentation tasks. Growing neural segmentation models can also enable
pixel-wise differentiation in other specified domains.

Edge-precise cloud and shadow segmentation, however, remains challenging due to
the inherent high-level semantic acquisition of current neural segmentation fashions: recep-
tive fields are growing rapidly to capture more comprehensive global features, or longer-
range features are combined by the cutting-edge models, which contribute more to sensing
high-level semantic information rather than low-level vision features. It is accordingly
observed that state-of-the-art models yield semantically accurate coverages but cannot
produce sufficiently edge-precise segmentation proposals. Edge-sensitive approaches refine
the segmentation performance around edges in a pipeline way, using nonlinear filters to
visually improve segmentation proposals. As a consequence, it is worth developing an
end-to-end solution to the edge-precise cloud and shadow segmentation.

We introduce a UNet-CRF architecture to address the issue of edge-precise cloud and
shadow detection, the instances of which are referred to as the Refined UNet series [1,2,7].
Refined UNet [1] is a pipeline of UNet backbone together with an offline Dense CRF post-
processing to coarsely locate cloud and shadow regions and refine their edges; Refined
UNet v2 [2] and v3 [7] are end-to-end segmentation solutions that, respectively, introduce
gray-scale and multi-channel guided Gaussian filters to facilitate the efficient bilateral
message-passing step, which get closer to our ultimate goal of discovering effective and effi-
cient end-to-end edge-precise segmentation solutions. However, it is visually demonstrated
that the locally linear kernel used in v2 and v3 is not sufficiently sensitive to potential edges,
in comparison with Refined UNet with the Gaussian-form bilateral kernel. We, therefore,
turn back to the investigation of an end-to-end UNet-CRF architecture with a Gaussian-
form bilateral kernel and its relatively efficient approximation. In this paper, we present
Refined UNet v4, an end-to-end edge-precise segmentation network for cloud and shadow
detection, which is capable of retrieving regions of interest with relatively tight edges and
potential shadow regions with ambiguous edges. Specifically, we inherit the UNet-CRF
architecture exploited in the Refined UNet series, which concatenates a UNet backbone
of coarsely locating cloud and shadow regions and an embedded CRF layer of refining
edges. In particular, the bilateral grid-based approximation to the Gaussian-form bilateral
kernel is applied to the bilateral message-passing step, in order to ensure the delineation of
sufficiently tight edges and the retrieval of shadow regions with ambiguous edges. Our
TensorFlow implementation of the bilateral approximation is relatively computationally
efficient in comparison with Refined UNet, attributed to the straightforward GPU accelera-
tion. An illustration of qualitative differences between the Refined UNet series is shown in
Figure 1. Consequently, the main contributions of this paper as listed as follows.

• Refined UNet v4: we propose an end-to-end network for cloud and shadow segmen-
tation of remote sensing images, which can perform cloud and shadow detection in
an edge-precise way, improve the retrieval of shadow regions with potential edges,
and also enable a relatively speed-up in comparison with Refined UNet [1].

• Bilateral grid-based relatively efficient CRF inference: the bilateral grid-based message-
passing kernel is introduced to form the bilateral step in CRF inference, and it is
demonstrated that the bilateral step can be straightforwardly characterized by the
sophisticated implementations of the bilateral filter.

• Generalization to the RICE dataset: we generalize our v4 to the RICE dataset. The ex-
periment shows that our v4 can also perform edge-precise detection of regions
of interest.



Remote Sens. 2022, 14, 358 3 of 23

• Open access of Refined UNet v4: A pure TensorFlow implementation is given and
publicly available at https://github.com/92xianshen/refined-unet-v4 (accessed on 22
December 2021).

False-color Refined UNet Refined UNet v2

Refined UNet v3 Refined UNet v4 QA

Figure 1. Illustration of qualitative differences between the Refined UNet series [1,2,7]. False-color
and QA denote the false-color (Bands 5 NIR, 4 Red, and 3 Green) and label reference images. Refined
UNet v4 is visually comparable to Refined UNet, in terms of edge-precise segmentation of cloud and
shadow regions. In addition, v4 is able to retrieve more potential shadow regions with ambiguous
edges, in comparison with v2 and v3.

The rest of the paper is organized as follows. Section 2 recaps related work regarding
neural network segmentation, CRF-based refinement, and sophisticated implementations
of the bilateral filter. Section 3 presents the overall framework and the distinct contribution
of our Refined UNet v4. Section 4 introduces the experimental setups, the quantitative,
and the visual evaluations of the presented methods, Section 5 concludes the paper.

2. Related Work

We recap related literature regarding neural image segmentation, corresponding
refinement techniques, and efficient solutions to edge-preserving filters, which summarizes
innovative segmentation techniques for our edge-precise cloud and shadow differentiation.

2.1. Neural Semantic Segmentation Revisited

Neural semantic segmentation was initiated by Fully Convolutional Neural Networks
(FCN) [8] that exploited a well-trained convolutional module as its feature backbone and
yielded dense predictions at its customized head layer. More and more pretrained neural
backbone-based segmentation models thrive since then, in terms of their significant im-
provement on the quantitative scores and visual results. The upstream vision task, known as
image classification, provides fundamental structures of neural networks, and sufficient im-
age sets, ImageNet [9] for example, act as benchmarks to obtain well-trained parameters as
well. Typical neural image classifiers arise from the image classification tasks, such as VGG-
16/VGG-19 [10], MobileNets V1/V2/V3 [11–13], ResNet18/ResNet50/ResNet101 [14,15],
DenseNet [16], and EfficientNet [17], and their convolutional modules have been applied
to well-designed segmentation models.

https://github.com/92xianshen/refined-unet-v4
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It is noted that neural segmentation techniques customize its feature module to
comprehend high-level semantic information, including approaches of enlarging recep-
tive fields [18–22] and of concatenating dilated convolutions with various rates [23–28].
On the other hand, they also introduce particular fashions to preserve low-level vision
features, including feeding multi-scale input images [19,29,30], fusing intermediate fea-
ture maps [31,32], and building skip connections [14,15,18]. In addition, encoder-decoder
architectures [18,22,33,34] provide a structural solution to the dense prediction. Typical
segmentation models, such as U-Net [18], RefineNet [29], PSPNet [31], FastFCN [35],
and DeepLab series [23–26,36], achieve promising segmentation performance and will be
possibly extended to other related domains. In addition, a lightweight panoramic annular
neural net [37] and a sparse point-wise affinity map [38] were introduced to perform aerial
image segmentation. Recently, transformer-based segmentation models [39–45] are arising
because of their long-range feature extraction. The aforementioned techniques have a
great inspiration for extending neural segmentation to other related domains. However,
these techniques focus more on long-range semantic information, giving rise to significant
improvement in coarse-grained instance segmentation. The transformer-based methods,
in particular, are capable of capturing global semantic information to obtain segmenta-
tion gain at the instance level. It is speculated that their property of long-range semantic
perception, nevertheless, may discourage their acquisition of low-level visual features
and fine-grained edge refinement, illustrated by their typical results. We will discuss the
effect of long-range perception in our future work but restrict our attention to the ef-
fect of low-level visual features, and we select lightweight but effective UNet [18] as the
segmentation backbone.

2.2. Segmentation Refinement Revisited

Sophisticated segmentation models are able to capture high-level semantic informa-
tion as well as low-level vision features, which is not sufficiently compatible. Concurrent
refinement approaches can basically be grouped into online and offline categories, in terms
of performing within the forward propagation of the model or as post-processing. Typ-
ical online techniques refine low-level visual performance by manipulating the scales
of receptive fields [18–22], recycling features from the frontend [18,29,31,33,34], or intro-
ducing gradient discrepancy [46] to constrain. An exemplar of offline techniques is CRF
post-processing [23,24,30,47–51]. Besides, guided filter [52] is adopted to improve visual
performance. Innovative architectures, such as CRFasRNN [49] and learnable guided fil-
ter [53], applied particular module to refine the segmentation proposals. These techniques
offer edge-precise fashions in image segmentation tasks. We are motivated to customize
CRF to fit our one-stage edge-precise solution.

2.3. Efficient Solutions to Edge-Preserving Filters

Dense CRF [47,48] expressed the bilateral message-passing step as a Gaussian-form
convolution and applied permutohedral lattice-based convolution to its efficient solution.
We are motivated to delve into its insight of the high-dimensional Gaussian filter-based bi-
lateral message-passing step and then collect relevant techniques to fit our edge-precise de-
tection. Approximate computation for Gaussian-form bilateral filter significantly speeds up
the nonlinear filtering, using Taylor expansion [54], trigonometric range kernel approxima-
tion [55], iteration of square window-based filter [56], memory- and computation-efficient
iteration [57], linearization with fast Fourier transformation [58], and fast high-dimensional
filter [59–61], respectively. In particular, the bilateral grid [59,62,63] facilitates the im-
plementation of efficient approximate computation, which is currently applied to our
Gaussian-form bilateral message-passing step.
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3. Refined UNet V4 for Edge-Precise Segmentation

We present the overall framework of our Refined UNet v4 in this section, which
comprises the UNet backbone, embedded CRF refinement layer, and the implementation
of the bilateral grid-based bilateral message-passing step.

3.1. UNet Prediction and Conditional Random Field-Based Refinement Revisited

We first revisit the feedforward propagation of our UNet-CRF architecture for cloud
and shadow segmentation: the proposed architecture takes as input a local patch of a
seven-band high-resolution image and outputs two sorts of segmentation proposals: a
coarsely labeled proposal and an edge-refined one as well. Note that the ultimate goal of
edge-precise segmentation is to predict and refine the segmentation proposal in a one-stage
way, instead of a pipeline comprising an online coarse localization and an offline post-
process; this accounts for our intention started from Refined UNet v2 [2]. In particular, we
extract local patches and restore full segmentation proposals from patches in an offline way,
the improvement of which will be discussed in our future work. The overall framework is
illustrated in Figure 2.

Figure 2. Illustration of the overall framework of Refined UNet v4. The UNet-CRF architecture
copes with local patches extracted from original full images: the pretrained UNet yields predicted
segmentation proposals while the embedded CRF layer refines the edges. Full refined proposals
are finally restored from local patches. We make use of the bilateral grid to facilitate the nonlinear
bilateral message-passing step, which is equivalent to the Gaussian-form step in Dense CRF [47].

We now turn to the specific implementation of UNet-CRF concatenating a UNet back-
bone for coarse localization and an embedded CRF layer for edge refinement. UNet [18]
has been proven as a sophisticated model for semantic segmentation in computer vision
tasks, which contains four down-sampling blocks of “Convolution-ReLU-MaxPooling”
and four up-sampling blocks of “UpSampling-Convolution-ReLU”. In particular, residual
connections bridge intermediate feature maps with the same resolutions, which is consid-
ered as the feature reuse and shortcuts of gradient backpropagation. UNet finally yields
the categorical likelihood tensor at its head layer and returns the class of each pixel by
the indices of the maximum values along the categorical dimension. Please note that this
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architecture has been thoroughly discussed in Refined UNet [1], v2 [2], and v3 [7]; we,
therefore, briefly recap the structure of UNet and do not provide in detail any longer.

We also briefly revisit the CRF-based spatial refinement for cloud and shadow seg-
mentation. We formulate our dense classification as a conditional random field (CRF)
characterized by Gibbs distribution [47], given the multi-channel global observation I.
The formulation is given by

P(X|I) = 1
Z(I)

exp(−E(x|I)) (1)

in which E(x) denotes the Gibbs energy, X is the element-wise classification, and Z(I) is
the normalization factor.

The maximum a posteriori (MAP) element-wise classification x∗ arises when the
probability P(x|I) reaches the maximum value, given by

x∗ = arg max
x∈LN

P(x|I). (2)

Specifically, the Gibbs energy E(x|I) has the form of

E(x|I) = ∑
i

ψu(xi) + ∑
i

∑
j<i

ψp(xi, xj) (3)

in which ψu(xi) denotes the unary potential generated from the spatially coarse prediction
of the UNet backbone, and ψp(xi, xj) is the pairwise potential describing the relevance of
adjacent xi and xj.

In particular, the pairwise potential in our case has the form of

ψp(xi, xj) = µ(xi, xj)
K

∑
m=1

w(m)k(m)( f i, f j) (4)

in which µ(xi, xj) is the label compatibility function, w(m) is the weight of the mth message-
passing kernel, and k(m) is the mth Gaussian-form message-passing kernel.

In our case, Potts model [47] is employed as the label compatibility function µ(xi, xj),
having the form of µ(xi, xj) =

[
xi 6= xj

]
. Feature vectors f i and f j comprise either spatial

positions pi and pj, or both spatial positions and color intensities pi, Ii, pj, and I j, giving
rise to the form of

k( f i, f j) = w(1) exp

(
−
||pi − pj||2

2θ2
α

−
||Ii − I j||2

2θ2
β

)
+ w(2) exp

(
−
||pi − pj||2

2θ2
γ

)
. (5)

We refer to k(2)( f i, f j) as the spatial message-passing kernel, which is only related to
spatial positions pi and pj, given by

k(2)( f i, f j) = exp

(
−
||pi − pj||2

2θ2
γ

)
. (6)

On the other hand, k(1)( f i, f j) is referred to as the bilateral message-passing step with
respect to both spatial positions pi and pj and color intensities Ii and I j, which will be
thoroughly discussed in the next subsection.

The mean-field approximation [47] yields an approximated value of P(X|I) in an
efficient way, instead of computing an exact MAP result. The iterative update method thus
has such a form of



Remote Sens. 2022, 14, 358 7 of 23

Qi =
1
Zi

exp

(
−ψu(xi)− µ

K

∑
m=1

w(m) ∑
j 6=i

k(m)( f i, f j)Qj

)
. (7)

Furthermore, we finally have the potentially possible label assignment when the
update converged.

We have presented the overall framework of our proposed UNet-CRF segmentation
architecture, except for the implementation of the bilateral message-passing step. Actually,
we have comprehensively investigated multiple implementations of the bilateral step,
such as high-dimensional Gaussian filter-based offline Dense CRF in Refined UNet [1],
the grayscale guided Gaussian filter-based CRF in Refined UNet v2 [2], and the multi-
channel guided Gaussian filter-based CRF in Refined UNet v3 [7]. In this work, we turn
back to the exploration of the Gaussian-form bilateral kernel and attempt to reveal the
potentially significant difference between Gaussian-form and locally linear kernels.

3.2. Bilateral Grid-Based Bilateral Message-Passing Step

We present in detail the bilateral grid-based approximation to Gaussian-form bilateral
message-passing step. First, we clarify the notations of the bilateral step. A flattened global
observation (remote sensing image) comprises HW color intensity vectors Ii:

{I1, I2, . . . , IHW} ∈ RHW×C. (8)

In our case, Ii contains three channels, including R, G, and B (C = 3):

Ii =
[
Ii,r, Ii,g, Ii,b

]> ∈ RC. (9)

Similarly, flattened Q comprises HW likelihood vectors Qi:

{Q1, Q2, . . . , QHW} ∈ RHW×N . (10)

But Qi is the N-dimensional vector denoting N-class classification, given by

Qi = [Qi,0, Qi,1, . . . , Qi,N−1]
> ∈ RN . (11)

We currently turn to the introduction to our bilateral approximation. For simplification,
we extract the bilateral message-passing step, given by

Q̃(1)
i = ∑

j 6=i
k(1)( f i, f j)Qj. (12)

And k(1)( f i, f j) should have the desirable bilateral form of

k(1)( f i, f j) = exp

(
−
||pi − pj||2

2θ2
α

−
||Ii − I j||2

2θ2
β

)
. (13)

To facilitate the nonlinear computation of color fraction, we approximate (12) by
the bilateral grid discussed in the fast bilateral filter [59]. Specifically, the additional
dimensions ζ are introduced to map the feature into a high-dimensional representation
(j, ζ). A Kronecker indicator δ is also employed to signify a valid transformation, given by



Remote Sens. 2022, 14, 358 8 of 23

Q̃(1)
i = ∑

j 6=i
exp

(
−
||pi − pj||2

2θ2
α

−
||Ii − I j||2

2θ2
β

)
Qj

= ∑
j 6=i

∑
ζ∈R

exp

(
−
||pi − pj||2

2θ2
α

− ||Ii − ζ||2

2θ2
β

)
δ(ζ − I j)Qj

= ∑
(j,ζ)∈S×R

j 6=i
ζ 6=Ii

gθα ,θβ
(pi − pj, Ii − ζ)qj,ζ

(14)

in which δ is defined by

δ(ζ) =

{
0, if ζ = 0

1, otherwise
(15)

and the high-dimensional mapping of Qj is defined by

qj,ζ = δ(ζ − I j)Qj. (16)

The high-dimensional transformation leads to a linear high-dimensional convolution
over S ×R, denoted by gθα ,θβ

. Consequently, the high-dimensional transformation, convo-
lution, and inverse transformation can be formulated by a pipeline of splatting, blurring,
and slicing, as discussed as follows.

3.2.1. Splat

We redefine the spatial position pj as
[

pj,h, pj,w

]>
and the color intensity I j as[

Ij,r, Ij,g, Ij,b

]>
. We also use s ∈ {h, w} to indicate the spatial axis and c ∈ {r, g, b} to

indicate the color axis. We first compute the channel-wise color discrepancy of each pixel by

∆Ij,c = Ij,c −min(I:,c). (17)

The high-dimensional coordinate ξ j of splatting is given by

ξ j =
[
ξ j,h, ξ j,w, ξ j,r, ξ j,g, ξ j,b

]>
(18)

in which

ξ j,s =

⌊ pj,s

θα
+

1
2

⌋
+ εs (19)

ξ j,c =

⌊
∆Ij,c

θβ
+

1
2

⌋
+ εc. (20)

For each Qj,n ∈ Q:,n, qξ j
computes a cumulative summation, given by

qξ j
← qξ j

+ Qj,n. (21)

3.2.2. Blur

For each axis k ∈ {h, w, r, g, b}, we perform a spatial convolution, given by

qξ j,k ←
1
2

qξ j−1,k +
1
2

qξ j+1,k . (22)

The convolution should be repeated M times.
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3.2.3. Slice

Slicing is actually a multi-dimensional linear interpolation in our case. For the jth
element, we first compute its spatially previous and next coordinates ξ−j,s and ξ+j,s, given by

ξ−j,s = max
(

0, min
(

Ls − 1,
⌊ pj,s

θα
+ εs

⌋))
(23)

and
ξ+j,s = max

(
0, min

(
Ls − 1, ξ−j,s + 1

))
, (24)

respectively, in which Ls denotes the spatial range (height H or width W).
The spatial interpolation factor is also given by

αj,s =
pj,s

θα
+ εs − ξ−j,s. (25)

Similarly, the color range (depth of each color channel) is given by

Dc =

⌊
max(I:,c)−min(I:,c)

θβ

⌋
+ 1 + 2ε, (26)

and the previous and next color coordinates are given by

ξ−j,c = max

(
0, min

(
Dc − 1,

∆Ij,c

θβ
+ εc

))
(27)

and

ξ+j,c = max
(

0, min
(

Dc − 1, ξ−j,c + 1
))

. (28)

The color interpolation factor is also given by

αj,c =
∆Ij,c

θβ
+ εc − ξ−j,c. (29)

The Q̃(1)
i,n is computed by the multi-dimensional linear interpolation, given by

Q̃(1)
i,n = (1− αj,h) ·(1− αj,w) ·(1− αj,r) ·(1− αj,g) ·(1− αj,b) ·qξ−j,h ,ξ−j,w ,ξ−j,r ,ξ−j,g ,ξ−j,b

+ (1− αj,h) ·(1− αj,w) ·(1− αj,r) ·(1− αj,g) ·αj,b ·qξ−j,h ,ξ−j,w ,ξ−j,r ,ξ−j,g ,ξ+j,b

+ (1− αj,h) ·(1− αj,w) ·(1− αj,r) ·αj,g ·(1− αj,b) ·qξ−j,h ,ξ−j,w ,ξ−j,r ,ξ+j,g ,ξ−j,b

· · ·
+ αj,h ·αj,w ·αj,r ·αj,g ·αj,b ·qξ+j,h ,ξ+j,w ,ξ+j,r ,ξ+j,g ,ξ+j,b

. (30)

4. Experiments and Discussion

We experiment with our Refined UNet v4 in the following subsections, including glob-
ally quantitative and locally visual comparisons against other methods, hyperparameter
test with respect to θα and θβ, ablation study with respect to our bilateral approximation,
its computational efficiency, and its generalization to the RICE dataset.
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4.1. Experimental Setups, Image Preprocessing, Implementation Details, and Evaluation
Metrics Revisited

We first revisit the setups of the experimental dataset inherited from [1]. Specifically,
11 seven-band high-resolution remote sensing images drawn from the Landsat 8 OLI
dataset are employed to assess the involved methods, which are acquired in Year 2016 at
Path 113 and Row 26, listed as follows.

• 2016-03-27, 2016-04-12, 2016-04-28, 2016-05-14, 2016-05-30, 2016-06-15, 2016-07-17,
2016-08-02, 2016-08-18, 2016-10-21, and 2016-11-06

We make use of Band QA as the label reference, derived from the Level-2 Pixel Quality
Assessment band. Numerical class IDs of background, fill value (−9999), shadow, and cloud
pixels are assigned to 0, 1, 2, and 3, respectively. In addition, it should be noted that QA is
referred to as the label reference instead of the ground truth because the labels of cloud
and shadow regions are graphically dilated such that they are not sufficiently precise at
the pixel level. The pipeline of image preprocessing is listed as follows: pixels of negative
values are assigned to zero, padded full images are sliced into patches of shape 512× 512,
and each patch is normalized to the interval [0, 1).

For fair comparisons in the experiments, we inherit the pretrained UNet backbone
from [1]. The pretrained model has been sufficiently trained and validated, and conse-
quently, the training and validation sets are not provided any longer. The embedded CRF
layer is installed as follows. It is built with the TensorFlow [64] framework. We make
use of the transformation introduced by [47] to generate unary potentials. The numbers
of iterations of mean-field approximation and blurring of the bilateral step are 10 and
2, respectively. θα and θβ are crucial hyperparameters determining the performance of
edge-precise detection, and therefore the hyperparameter test is conducted to evaluate the
effect of θα and θβ in which θα and θβ vary from 60 to 140 by 20 and 0.0625 to 0.25 by 2,
respectively. In particular, the default θα and θβ are empirically assigned to 80 and 0.0625
for both quantitative and visual evaluations, due to their significant performance gain.

We also inherit the assessment metrics from [1]. The quantitative metrics include the
overall accuracy (Acc.), Kappa coefficient (κ), mean IoU (mIoU), precision (P), recall (R),
and F1 (F1) scores. Time consumptions are also compared to assess the efficiency of each
model instance. Besides, Bands 5 NIR, 4 Red, and 3 Green are merged as RGB channels to
construct the false-color visualization.

In the comparative experiments, vanilla UNet reproduced on the training set [1] is
used as the baseline method. PSPNet [1,31] is also reproduced as a comparative model
instance. The UNet backbone, also referred to as UNet × α, and Refined UNets inherited
from [1,2,7] are used as comparative methods.

It should be noted that we have inherited plenty of setups of experiments, datasets,
and implementations for fair comparisons; in particular, we inherit the test set including
11 high-resolution remote sensing images. Therefore, please kindly refer to [1,2,7] for
more details. In addition, we generalize our v4 to the RICE dataset, in order to show
our contributions.

4.2. Quantitative Comparisons against Involved Methods

We first compare our v4 against other involved methods from the globally quan-
titative perspective. We refer to the quantitative comparisons as the global assessment
because the indicators evaluate these methods over the entire test set, leading to relatively
comprehensive conclusions. However, it should be noted that edge-precise detection is
naturally a visual contribution, which can hardly be numerically evaluated. We present
numerical evaluation due to verify if our v4 is globally comparable and acceptable. The
overall accuracy, Kappa, and mean IoU are overall indicators, and in contrast, the precision,
recall, and F1 scores are categorical indicators showing the segmentation performance
of each class. The means and the standard deviations of all indicators are presented in
Tables 1 and 2, respectively.
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Table 1. Average Time, Accuracy, Kappa, and mIoU Scores on Our Landsat 8 OLI Test Set
(Mean ± Standard Deviation, + represents that higher scores indicate better performance).

No. Models Time (s/img) 1 Acc. + (%) Kappa + (%) mIoU + (%)

1 UNet [1] - 93.1 ± 6.45 89.06 ± 9.76 65.7 ± 9.38
2 PSPNet [1] - 84.88 ± 7.59 76.51 ± 9.65 53.78 ± 5.97
3 UNet × α [2] 20.67 ± 1.96 93.04 ± 5.45 89.11 ± 7.97 71.94 ± 8.21
4 Global RFN. UNet [1] 384.81 ± 5.91 93.48 ± 5.46 89.72 ± 8.12 68.72 ± 7.5
5 RFN. UNet v2 (r = 10) [2] 61.36 ± 5.25 93.6 ± 5.5 89.93 ± 8.1 71.66 ± 8.14
6 RFN. UNet v2 (r = 80) [2] 1213.23 ± 4.97 93.38 ± 5.49 89.53 ± 8.16 67.36 ± 7.02
7 RFN. UNet v3 (r = 100) [7] 82.63 ± 8.32 93.6 ± 5.52 89.9 ± 8.21 69.2 ± 7.6
8 RFN. UNet v4 (θα = 60) 2 210.95± 14.52 93.63± 5.48 89.96± 8.14 70.18± 7.75
9 RFN. UNet v4 (θα = 80) 207.23± 13.89 93.66± 5.48 90.0± 8.16 69.97± 7.76
10 RFN. UNet v4 (θα = 100) 205.24± 13.89 93.68± 5.46 90.02± 8.14 69.79± 7.73
11 RFN. UNet v4 (θα = 120) 203.81± 13.63 93.68± 5.44 90.02± 8.13 69.65± 7.73
12 RFN. UNet v4 (θα = 140) 199.98± 13.48 93.68± 5.43 90.02± 8.13 69.49± 7.77
13 RFN. UNet v4 (θβ = 0.0625) 3 207.23± 13.89 93.66± 5.48 90.0± 8.16 69.97± 7.76
14 RFN. UNet v4 (θβ = 0.125) 202.11± 13.16 93.58± 5.41 89.85± 8.07 68.89± 7.31
15 RFN. UNet v4 (θβ = 0.25) 200.84± 13.11 93.5± 5.44 89.71± 8.12 67.63± 7.1

1 Time consumptions of inference for one full image in the test phase, s/img denotes seconds per image.
2 θβ = 0.0625. 3 θα = 80.

As shown in Table 1, no significant differences in the overall accuracy, Kappa, and mean
IoU are observed, which demonstrates that our v4 is able to achieve acceptable numerical
performance and is also comparable to the involved counterparts. We further turn to the
categorical indicators to numerically evaluate the element-wise classification. Please note
that the precision and recall scores (P and R) evaluate methods from different perspectives:
P indicates the efficacy of correct pixel classification whereas R indicates the efficacy of
comprehensive pixel retrieval. As shown in Table 2, it is natural that our v4 obtains high
precision scores but relatively low recall scores due to the used rough cloud and shadow
masks and its inherent edge-precise detection. We attribute the drop of categorical indica-
tors to our embedded CRF refinement and its edge-precise segmentation property, as fully
discussed previously: the refinement disposes of some plausible regions to obtain edge-
precise refinement, which, on the other hand, eliminates some isolated regions; besides,
the label references are not sufficiently precise at the pixel level, leading to an inferior
recall performance of edge-precise segmentation. We further focus on the indicators of
shadow detection. Interestingly, UNet × α obtains a higher R exceeding P as the adaptively
weighted loss function leads the model to identify more but redundant shadow pixels at the
same time. Edge-precise models, including Refined UNet, v2, v3, and our v4, consistently
obtain higher P scores. We also attribute this to the property of our edge-precise segmenta-
tion. Finally, we conclude that our v4 is comparable to the involved counterparts in terms
of the categorical evaluation. In addition, it should be noticed that the label references are
not sufficiently precise at the pixel level, leading to valid relative comparisons rather than
invalid absolute assessments; we shall further qualitatively evaluate our v4 from a more
typical perspective.
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Table 2. Average Precision, Recall, and F1 Scores on Our Landsat 8 OLI Test Set (Mean± Standard Deviation, + represents that higher scores indicate better performance).

No. Models
Background (0) Fill Value (1) Shadow (2) Cloud (3)

P. + (%) R. + (%) F1 + (%) P. + (%) R. + (%) F1 + (%) P. + (%) R. + (%) F1 + (%) P. + (%) R. + (%) F1 + (%)

1 UNet [1] 92.84 ± 5.81 81.83 ± 24.23 84.91 ± 20.54 100 ± 0 100 ± 0 100 ± 0 63.65 ± 38.27 5.35 ± 6.17 9.38 ± 10.27 80.39 ± 19.34 99.43 ± 0.87 87.45 ± 15.1
2 PSPNet [1] 65.49 ± 19.62 98.57 ± 2.18 77.06 ± 15.04 100 ± 0 95.97 ± 0.19 97.94 ± 0.1 46.81 ± 24.98 7.83 ± 5.95 12.74 ± 9.14 94.09 ± 17 48.22 ± 22.81 60.99 ± 22.56
3 UNet × α [2] 93.34 ± 4.88 81.52 ± 15.3 86.35 ± 11.04 100 ± 0 100 ± 0 100 ± 0 34.74 ± 14.77 54.31 ± 18.72 40.43 ± 14.74 87.28 ± 18.78 95.96 ± 3.63 90.12 ± 13.77
4 Glo. R. UNet [1] 89.89 ± 7.39 85.94 ± 17.66 86.86 ± 12.33 99.88 ± 0.07 100 ± 0 99.94 ± 0.04 35.43 ± 20.26 17.87 ± 12.07 21.21 ± 11.89 87.6 ± 19.15 95.87 ± 3.2 90.15 ± 14.13
5 v2 (r = 10) [2] 91.99 ± 5.74 84.51 ± 16.24 87.29 ± 11.35 100 ± 0 100 ± 0 100 ± 0 40.64 ± 19.88 39 ± 13.77 36.79 ± 12.26 87.93 ± 18.83 95.83 ± 3.99 90.37 ± 13.89
6 v2 (r = 80) [2] 89.57 ± 7.59 86.42 ± 18.25 86.75 ± 12.45 100 ± 0 100 ± 0 100 ± 0 32.22 ± 22.74 11.27 ± 8.16 13.85 ± 6.73 87.69 ± 19.01 95.06 ± 4.63 89.8 ± 13.99
7 v3 (r = 100) [7] 90.48 ± 6.92 86.14 ± 17.9 87.16 ± 12.33 100 ± 0 100 ± 0 100 ± 0 37.79 ± 21.17 20.12 ± 10.38 23.46 ± 8.92 87.83 ± 18.98 95.69 ± 4.13 90.22 ± 13.99
8 v4 (θα = 60) 1 90.94± 6.41 85.61± 17.12 87.27± 11.93 100.0± 0.0 100.0± 0.0 100.0± 0.0 38.85± 20.76 26.22± 11.37 28.72± 10.58 87.82± 18.89 95.88± 3.73 90.35± 13.95
9 v4 (θα = 80) 90.75± 6.5 85.83± 17.26 87.28± 12.03 100.0± 0.0 100.0± 0.0 100.0± 0.0 39.04± 21.08 24.32± 11.44 27.47± 10.79 87.8± 18.9 95.88± 3.7 90.34± 13.96
10 v4 (θα = 100) 90.59± 6.59 86.01± 17.34 87.29± 12.07 100.0± 0.0 100.0± 0.0 100.0± 0.0 39.16± 21.81 22.85± 11.53 26.33± 11.07 87.83± 18.9 95.82± 3.77 90.33± 13.95
11 v4 (θα = 120) 90.48± 6.65 86.11± 17.47 87.28± 12.18 100.0± 0.0 100.0± 0.0 100.0± 0.0 39.29± 22.06 21.75± 11.46 25.57± 11.46 87.82± 18.9 95.72± 3.87 90.27± 13.95
12 v4 (θα = 140) 90.35± 6.7 86.24± 17.48 87.28± 12.2 100.0± 0.0 100.0± 0.0 100.0± 0.0 39.34± 22.51 20.69± 11.46 24.61± 11.46 87.82± 18.89 95.72± 3.89 90.27± 13.93
13 v4 (θβ = 0.0625) 2 90.75± 6.5 85.83± 17.26 87.28± 12.03 100.0± 0.0 100.0± 0.0 100.0± 0.0 39.04± 21.08 24.32± 11.44 27.47± 10.79 87.8± 18.9 95.88± 3.7 90.34± 13.96
14 v4 (θβ = 0.125) 89.94± 7.02 86.42± 17.58 87.12± 12.1 100.0± 0.0 100.0± 0.0 100.0± 0.0 38.89± 21.76 18.6± 9.84 22.41± 8.08 87.94± 18.95 95.05± 4.5 90.01± 13.99
15 v4 (θβ = 0.25) 89.54± 7.6 86.86± 17.99 87.01± 12.23 100.0± 0.0 100.0± 0.0 100.0± 0.0 34.92± 22.95 11.57± 7.5 14.71± 6.74 87.81± 18.99 95.09± 4.48 89.93± 13.99

1 θβ = 0.0625. 2 θα = 80.



Remote Sens. 2022, 14, 358 13 of 23

4.3. Visual Comparisons against Involved Methods

Next, we visually evaluate our Refined UNet v4 against other involved methods. It
should be noted that the Refined UNet series [1,2,7] contribute to the edge refinement of
cloud and shadow regions, which can be visually verified. Therefore, the visualizations are
regarded as the principal evaluation rather than the quantitative indicators. Please note
that we further restrict our attention to the segmentation performance around the edges of
cloud and shadow regions, instead of merely considering coarsely locating the regions of
interest; it is the distinguishing contribution of our current work. In order to illustrate the
distinct contributions of our v4, the examples of full images and local patches with default
θα = 80 and θβ = 0.0625 are exhibited in Figures 3–6. As shown in Figures 3 and 4, seg-
mentation proposals are compared and evaluated in a full-resolution visual way. Naturally,
all mentioned methods obtain visually similar segmentation proposals from the global
perspective, which supports the conclusion that compared to other involved methods, our
v4 can achieve comparable segmentation efficacy.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3. Typical visual examples of full images (1). (a,i) False-color (Bands 5 NIR, 4 Red, and 3
Green) images, (b,j) Reproduced PSPNet [1,31], (c,k) UNet × α [1], (d,l) Global Refined UNet [1],
(e,m) Refined UNet v2 [2], (f,n) Refined UNet v3 [7], (g,o) Refined UNet v4, (h,p) QA reference. All
comparative methods and our Refined UNet v4 have achieved similar coarse predictions for cloud
and shadow regions, which demonstrates that our v4 is comparable to the reproduced instances of
Refined UNets and other sophisticated models.
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(a) False-color (b) PSPNet (c) UNet × α (d) Refined UNet

(e) Refined UNet v2 (f) Refined UNet v3 (g) Refined UNet v4 (h) QA

(i) False-color (j) PSPNet (k) UNet × α (l) Refined UNet

(m) Refined UNet v2 (n) Refined UNet v3 (o) Refined UNet v4 (p) QA

Figure 4. Typical visual examples of full images (2).

We further zoom in on some typical patches to observe the distinguishing contri-
butions of our v4. As shown in Figures 5 and 6, notable superiority can be intuitively
concluded. The reproduced PSPNet fetches cloud and shadow regions with extremely
high confidence, which appears to be the innermost areas of interest. The UNet backbone
conversely preserves ambiguous cloud and shadow regions, no matter the pixel belongs
to cloud or snow. The previous Refined UNet series and our v4 make sufficient effort to
refine the edges of cloud and shadow regions, but they perform in the different ways:
Refined UNet v2 and v3 mainly contribute to the removal of isolated pixels and regions of
interest, but they also aggressively eliminate some small regions that should be preserved;
Refined UNet and our v4 are more sensitive to edges than v2 and v3 due to the regions
of interest with tight edges, particularly for some cloud regions. On the other hand, v4
retrieves more shadow regions than v2 and v3, which evidences that v4 performs well on
this hardly identified category. We attribute this to the superiority of the edge sensitivity of
the Gaussian-form bilateral kernel over the locally linear kernel. In conclusion, our v4 is
an end-to-end edge-precise solution satisfying the ultimate goal of neural segmentation,
which is regarded as an encouraging improvement of the Refined UNet series.
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Unfortunately, it is visually observed that comprehensive shadow detection is not
sufficiently satisfied in our current work, and we can attribute this remaining issue to the
approximation to the bilateral kernel discussed in the previous investigation [59]. We, there-
fore, will explore multiple approximations and suggest that all the crucial hyperparameters
should be assigned in terms of the performance of the corresponding validation set when
used in practice.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. Typical visual examples of local patches (1). (a,i) False-color (Bands 5 NIR, 4 Red, and 3
Green) images, (b,j) Reproduced PSPNet [1,31], (c,k) UNet × α [1], (d,l) Global Refined UNet [1],
(e,m) Refined UNet v2 [2], (f,n) Refined UNet v3 [7], (g,o) Refined UNet v4, (h,p) QA reference. Our
Refined UNet v4 is able to yield tight and edge-precise segmentation proposals that are visually
similar to that of Refined UNet [1], and it can also preserve ambiguous shadow regions, which
qualitatively supports the distinguishing contributions.
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(a) False-color (b) PSPNet (c) UNet × α (d) Refined UNet

(e) Refined UNet v2 (f) Refined UNet v3 (g) Refined UNet v4 (h) QA

(i) False-color (j) PSPNet (k) UNet × α (l) Refined UNet

(m) Refined UNet v2 (n) Refined UNet v3 (o) Refined UNet v4 (p) QA

Figure 6. Typical visual examples of local patches (2).

4.4. Hyperparameter with Respect to θα and θβ

We further evaluate the segmentation performance of our v4 with respect to its key
hyperparameters θα and θβ. As previously discussed in Dense CRF [47,48] and Refined
UNet [1], a higher θα and a smaller θβ yield more edge-precise segmentation proposals,
and we will verify the aforementioned hypothesis by conducting experiments of varying
parameters. Specifically, θα and θβ vary from 60 to 140 by 20 and 0.0625 to 0.25 by 2,
respectively. We first investigate the statistical variations of evaluation metrics, as shown in
Tables 1 and 2. We first discuss the segmentation performance with respect to θα. According
to lines 8 to 12 in Table 1, there are no significant differences observed for overall accuracy
and Kappa, whereas mean IoUs drop slightly. As reported in Table 2, the precision scores
of interest keep stable but the recall scores of shadow decrease significantly. We attribute
this drop to the inherent property of shadow refinement: CRF with a higher θα is able to
refine edges of shadow regions effectively but it also removes more ambiguous isolated
areas; intuitively, it performs more conservatively. Second, we turn to the discussion with
respect to θβ. According to lines 13 to 15 in both Tables 1 and 2, a smaller θβ obtains higher
overall and categorical indicators, leading to a significantly better segmentation result.
We attribute this performance to the nature of our bilateral step that smaller θβ is more
sensitive to edges, which tends to preserve possible edges and potential regions.

In addition, we verify this hypothesis from the locally visual perspective. We observe
the visual variation in one particular patch, shown in Figure 7. As illustrated, CRF with a
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smaller θβ delineates edges of regions of interest more precisely and retrieves more shadow
regions, which confirms the property that a smaller θβ is able to preserve possible edges and
potential regions. Whereas a larger θβ is not edge-sensitive enough; it alternatively removes
more isolated pixels and regions such that it visually smooths the proposals. However, θα

has a limited effect on the edge refinement, leading to similar segmentation proposals. We
can confirm the hypothesis that a smaller θβ gives rise to better segmentation results.

2016-04-12 θβ = 0.0625 θβ = 0.125 θβ = 0.25

θα = 60 θα = 80 θα = 100

θα = 120 θα = 140 QA

Figure 7. Typical visual examples in the hyperparameter test. We experiment with two key parameters
θα and θβ and visually evaluate their effects. CRF with a smaller θβ is more sensitive to edges, leading
to more edge-precise proposals and tolerant preservation of potential shadow regions. On the other
hand, θα has a visually insignificant effect on the edge refinement.

4.5. Ablation Study with Respect to Our Gaussian-Form Bilateral Approximation

We verify the effect of our CRF layer and the bilateral approximation to its Gaussian-
form bilateral kernel with the ablation study in this subsection. As we discussed previously,
the UNet backbone achieves coarse-grained location of regions of interest and the embed-
ded CRF layer significantly delineates the corresponding edges; in particular, the bilateral
kernel plays an important role in edge refinement. We, therefore, present the illustrations
to verify the effect of our CRF layer and the approximation to its Gaussian-form bilateral
kernel, shown in Figure 8. As shown in Figure 8, the UNet backbone is effectively able
to coarsely locate regions of interest but fails in fine-grained refinement and preserves
redundant isolated pixels and regions. UNet-CRF without bilateral message-passing steps
performs similarly but removes in part redundant detection noises. Instead, our full v4 is
able to achieve the edge-precise detection of regions of interest and to denoise the proposal
as well, in terms of significant visual superiority. The ablation study confirms that our CRF
layer and the approximation to Gaussian-form bilateral kernel have dramatically visual
contributions to the edge-precise cloud and shadow detection.
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(a) False-color (b) UNet backbone (c) V4 w/o bilateral (d) V4

Figure 8. Illustrations of our ablation study. (a) False-color (Bands 5 NIR, 4 Red, and 3 Green) images,
(b) The UNet backbone (UNet × α) [1], (c) Refined UNet v4 without the bilateral kernel, (d) Refined
UNet v4. The UNet backbone can coarsely locate cloud and shadow regions, and v4 without the
bilateral kernel helps remove redundant isolated detection pixels and regions. Our full v4, instead,
effectively achieves edge-precise detection and denoises proposals.

4.6. Computational Efficiency of Refined UNet v4

We evaluate the time consumption of our v4 in this subsection. We first compare the
consumption of our v4 with Refined UNet, v2, and efficient v3. As indicated in Table 1, our
v4 is relatively efficient in comparison with Refined UNet but is unfortunately left behind
v3. We attribute this to our naïve implementation of the bilateral message-passing step,
which should be improved in future work. Considering that our v4 visually outperforms v2
and v3 with guided Gaussian filter-based bilateral steps, we believe that the edge-precision
gain of v4 exceeds its computational cost.

We further evaluate the consumption with respect to the key hyperparameters θα and
θβ. As indicated in Table 1, θα has a significant effect on computational cost, concluded
by the drop in the time consumptions. It is surely because a higher θα leads to relatively
sparse sampling of splatting and a lower-scale convolution of blurring, which produces
the time-saving result. Alternatively, it is observed from Table 1 that θβ slightly affects the
computational consumption; its nature is likewise attributed to the scales of sampling of
splatting and of the convolution of blurring. Considering that a lower θβ induces more edge-
precise segmentation proposals, we also believe that the edge-precision gain with lower θβ

matters a lot more compared to the possible slight increase of the computational cost.
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4.7. Generalization to RICE Dataset

We generalize our Refined UNet v4 to the cloud and shadow detection on the RICE
dataset [65] that is available at https://github.com/BUPTLdy/RICE_DATASET (accessed
on 21 December 2021). We train the UNet backbone from scratch and infer the cloud
and shadow regions with the full v4. The experimental setups are listed as follows: the
input resolution is 512× 512. The loss function is the adaptively weighted categorical
cross-entropy function, introduced in [1]. The initial learning rate, the regularization factor,
the decay step, and the batch size in the training phase are 0.0001, 0.0001, 100, and 1,
respectively. The optimizer is ADAM [66]. We observe that the validation loss and accuracy
converge after 50 epochs so we stop training early and secure the parameters of the UNet.
In the inference phase, we empirically assign θα, θβ, and θγ to 80, 0.0625, and 3, respectively.
Please also refer to our GitHub repository for more training and inference details.

Figure 9 illustrates the natural images, detection proposals from UNet, refined propos-
als from v4, and detection references, respectively. We can find that our v4 is sufficiently
sensitive to the edges and yields proposals with tight edges. It should be also noted that
we refer to the used labels as references rather than ground truths because these labels are
also not sufficiently precise at the pixel level. However, our v4 also yields edge-precise
proposals, partially contributing to the weakly supervised cloud and shadow detections.

(a) Natural (b) UNet backbone (c) RFN. UNet v4 (d) Reference

Figure 9. Detection generalization to RICE dataset. (a) Natural images, (b) UNet backbone, (c) Refined
UNet v4, (d) Reference. Visually, our v4 yields edge-precise proposals for cloud and shadow regions
even though our training labels are not sufficiently precise at the pixel level. Comprehensive retrievals
of shadow regions with ambiguous edges and cirrus regions, however, remain challenging.

https://github.com/BUPTLdy/RICE_DATASET
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Unfortunately, we have to admit that our v4 can rarely identify all the regions of
interest in a comprehensive way: some shadow regions with ambiguous edges remain
missing in our detection proposals, and some cirrus regions are hardly identified by both
our model and even artificial differentiation. This is possibly attributed to the inherent
segmentation property of our v4, which will be considered in our future improvement.

5. Conclusions

In this paper, we present Refined UNet v4, an end-to-end segmentation network for
edge-precise detection of cloud and shadow regions. Our v4 inherits the pretrained UNet
backbone to coarsely locate the cloud and shadow regions and subsequently concatenates a
dedicated CRF layer to refine the edges of the regions of interest; the aforementioned steps
form an end-to-end segmentation solution, which enables cloud and shadow segmentation
in a one-stage way. In particular, the bilateral grid-based high dimensional filter is adopted
to facilitate the relatively efficient bilateral message-passing step of the embedded CRF layer,
leading to a balanced trade-off between edge-precision and computational consumption.
The extensive experiments are conducted on the test set drawn from the Landsat 8 OLI
remote sensing dataset, comprehensively evaluating our v4 from both quantitative and
visual perspectives. The quantitative evaluations indicate that our v4 is comparable to
its counterparts of the Refined UNet series, while the visual evaluations highlight its
merits on the edge-precision of cloud and shadow detection: tight edges and relatively
sufficient shadow retrieval. In addition, the hyperparameter tests demonstrate that the
range parameter (θβ) has a significant visual impact on the sensitivity of edge sensing:
a smaller θβ preserves more regions of interest and delineates more precisely, whereas
a larger θβ is not edge-sensitive enough; it alternatively removes more isolated pixels
and regions such that it visually smooths the proposals. The ablation study confirms
that our bilateral approximation to the bilateral message-passing step plays a crucial role
in obtaining edge-precise proposals. We test and compare the time consumption of the
involved methods, indicating that our v4 is relatively computationally efficient compared
with the global Refined UNet; we attribute this nature to the straightforward GPU support
of its TensorFlow implementation. We finally generalize our model to the RICE dataset
and conclude that our model has a relatively satisfactory generalization and reproductivity.
On the other hand, we are also concerned about the learnability of UNet-CRF architecture,
which will be discussed in our future work.
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