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Refined vorticity statistics of

decaying rotating three-dimensional turbulence

L.J.A. van Bokhoven' , C. Cambon? | L. Liechtensteint, F.S. Godeferd?, H.J.H. Clerex’

(18 October, 2007)

The influence of background rotation on all nontrivial third-order vorticity correlations is studied
for an unbounded incompressible homogeneous turbulent flow, using pseudo-spectral direct numerical
simulation. The behaviour of third-order vorticity correlations is found to be consistent with exact
theoretical predictions presented herein for axisymmetric turbulence without mirror symmetry. Par-
ticular attention is given to the vertical vorticity skewness S, . Its dependence on the viscosity, the
initial value of the velocity gradient skewness, and the background rotation rate has been thoroughly
investigated. The initial growth rate of S,, provides evidence for a power-law behaviour propor-
tional to t% 701 for all considered cases, in agreement with recent experimental results by Morize et
al. [Phys. Fluids 17, 095105 (2005)]. It is also found that higher background rotation rates — implying
more linearity — result in lower final values of S,,,, while lower viscosities and lower initial (absolute)

values of the velocity derivative skewness both yield higher final values of S,,.
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1 Introduction

Rotating turbulence plays an important role in fields as diverse as geophysics, astrophysics
and engineering (e.g. turbomachinery and reciprocating engines with swirl and tumble). In
these applications, effects of rotation are often combined with those of mean shear, mean
strain and solid boundaries. The problem of homogeneous rotating turbulent flow without
physical boundaries must therefore be considered as a canonical flow, even though it stands
rather far from applications. A better knowledge of this particular flow is a prerequisite for
understanding more complex flows involving rotation.

Here, attention is restricted to the simplest case of rotating homogeneous turbulence,
namely unbounded divergence-free flow with zero mean-flow in the co-rotating frame of ref-
erence. In this case it is most convenient to adopt a Cartesian coordinate system (x, z2, 23)
rotating at constant angular velocity 2. We choose € = €23 > 0 without loss of generality.
In this non-Galilean coordinate frame, rotation introduces the well-known centrifugal and
Coriolis forces. Since the centrifugal force can be incorporated in the pressure term, only the

Coriolis force appears explicitly in the Navier-Stokes equations, viz.
Dy = Jpui + wjOju; = —0;p — 2Qei3pup + v@?ué , (1)

where Dy represents the total derivative, 0; the partial derivative with respect to time t,
0; the partial derivative with respect to spatial coordinate z;, u; the fluctuating velocity
in the co-rotating reference frame, p the corrected pressure divided by a mean reference
density, £ the antisymmetric Levi-Civita tensor, and v the kinematic viscosity. Note that a
summation is implied over any repeated Roman index unless explicitly stated otherwise. The

incompressibility of the flow is expressed by

Oiu; =0 . (2)
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The modification of turbulence dynamics by rotation is due to the presence of inertial waves
in rotating flows [1]. These wave motions arise from the linearised Navier-Stokes equations.
In contrast with most turbulent shear flows, however, there is no ‘production’ of turbulent
kinetic energy since the Coriolis force produces no energy. Instead, energy is redistributed by
nonlinear mechanisms such as resonant wave interactions. Accordingly, single-point modeling
is almost irrelevant to describe the dynamics of rotating turbulence whereas the spectral, or
two-point, approach is well adapted (see e.g. [2,3]).

When a Coriolis force is suddenly imposed on initially isotropic turbulence, the following
three main effects are shown. First, the energy cascade is partly inhibited which is linked
to a strongly reduced dissipation rate (such an effect can be mimicked by a modification of
the dissipation equation [3]). Second, because the dispersion relations for inertial waves are
anisotropic, the initial isotropy is broken. This breaking of isotropy is reflected by an incom-
plete transition from three-dimensional (3D) to two-dimensional (2D) structure. Third, an
asymmetry appears between cyclonic and anticyclonic fluctuating vertical (along the rotation
axis) vorticity.

The effects mentioned above are intimately connected and result from both linear and
nonlinear effects which interplay in a subtle way to drive the dynamics of rotating turbulence.
In this paper, we focus on the third effect using rational analysis of relevant exact dynamical
equations as well as Direct Numerical Simulation (DNS). As firstly pointed out by Bartello
et al. [4], the dominance of cyclonic vorticity can be quantified by the vertical vorticity
skewness S, = (w3)/(w3)®/?, where w; = &;;30;uy is the vorticity and (-) denotes ensemble
averaging, since the third-order vorticity correlation {w3) can distinguish by its sign cyclonic
prevalence (w3 > 0) from anticyclonic prevalence (w3 < 0). Bartello and coworkers found

a clear growth of the vertical vorticity skewness using Large Eddy Simulation (LES) with
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hyperviscosity. Although their results are questionable, because vorticity represents small
scales and is not correctly captured in a LES, they reflect an actual feature of rotating flows,
confirmed experimentally by, among others, Morize et al. [5].

Clearly, the third-order correlation (w3) plays an important role when addressing the asym-
metry between cyclonic and anticyclonic vorticity in rotating turbulence. The role of the
remaining single-point vorticity triple correlations (wjwjwg) (VTCs hereinafter) is unclear
however. Assuming axial symmetry without mirror symmetry, it can be shown very gen-
erally that the VTCs involve only two key correlations, viz. (wfws + wiws) and (w3) (see
Sect. 2). This theoretical result has been verified with DNS by analysing the time evolution
of the complete set of nontrivial third-order vorticity correlations. In addition, we have thor-
oughly investigated how the vertical vorticity skewness S,,, is affected by the viscosity, the
background rotation rate, and the initial value of the velocity derivative skewness.

Since the dynamics of rotating turbulence is driven by both linear and nonlinear effects, one
might wonder what linear theory can say about the VTCs. The so-called Rapid Distortion
Theory (RDT) is relevant here, provided that it is developed in Fourier space [2,6] in order
to render tractable the non-local relation between pressure and velocity fluctuations, see
Appendix A. Accordingly, a general solution in terms of Green's functions can be derived for
the VTCs (w;w;wg) at any time ¢, see (A11). This general solution however, is only useful
if a full description of all triads of the initial spectral vorticity distribution is at hand. The
multifold behaviour of the various triple correlations in the anisotropic case suggests to revisit
elaborated Eddy-Damped Quasi-Normal Markovian (EDQNM) theories for recovering such
information. For example, basic isotropic EDQNM can be used for initialising the vorticity
correlations in the general linear solution for the VT Cs (A11). In this sense, anisotropic multi-

point statistical theory remains a relevant alternative to DNS, providing access to much higher
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Reynolds numbers and elapsed times — with in counterpart of course less flexibility and the
need for statistical assumptions.

This paper is organised as follows. A theoretical analysis of the relevant exact dynamical
equations is presented in Sect. 2. A brief description of the numerical algorithm and pro-
cedures is given in Sect. 3. In Sect. 4 we present the time evolution of relevant statistical
quantities, such as the vorticity intensity production rate (defined in Sect. 2) and the vortic-
ity skewness S,,,. In particular, it is shown that our numerical results are consistent with the
theoretical prediction (7). We conclude in Sect. 5 with a summary of our findings and related

discussion.

2 Theory

The relevant symmetry for rotating turbulence is axial symmetry without mirror symmetry
with consequences for any statistical approach, from multi-point [2] to single-point. In this
particular case, any tensor related to single-point statistical moments can be expressed in
terms of products of the Kronecker symbol 4;;, the axial vector n, and the third-order ten-
sor £ijn. (For isotropic turbulence, only products of Kronecker symbols are required.) Every
tensorial term in the development is weighted by a ‘scalar’ which depends on the fully con-
tracted scalar product between the relevant vectors. So, the most general development of
a single-point third-order tensor T in the case of axial symmetry without mirror symmetry

would be

Tijk = Adijng + Boging + Cojpn; + Dngngng + Fegjp (3)

with the ‘scalars’ A, B, (!, D, and F' depending only on time, i.e. A(f), etc.

If T is fully symmetric in terms of its three indices, like e.g. {(wjwjwy), then A = B = C
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and F' = 0, so that (3) simplifies to
T — A (53'_:;?’1;9 + 5;“‘?1;; + 5jkni) + Dningny, . (4)

The remaining ‘scalars’ A and D may be identified by considering particular contracted forms

of T, for instance

Tiiwng = 5A+ D, (5a)

Tiningng = 3A + D . (5h)
From these last two equations it is readily derived that

A = (Tiigng — Tijeningng) /2, (6a)

D= (5ﬂjk'Il--j_??.j??.k —3T;nk) /2. (6b)

Replacing T;j; by the single-point VTCs (w;w;wy) and setting n; = d;3 without loss of gener-

ality (index 3 refers to the axial direction) leads to
. 1 :
(wiwjwg) = (wg)-n-.,-_-n.jnk + §(w;"w3 + w-fwg} (Oijng + Oriny + Opmi — 3ningny) . (7)

In other words, in case of axisymmetry without mirror symmetry the VTCs involve only two
key correlations, viz. (w3) and (wiws + wiws).

Gence and Frick [7] have shown that for very short times all odd statistical moments of the
turbulent vorticity field (except for the first one) are instantaneously sensitive to the influence
of mean rotation, while all even moments of the fluctuating vorticity do not change at the first
order in time. (For isotropic turbulence, all odd order tensors are zero while a priori non-zero
for even order tensors.) The analysis by Gence and Frick concerns the hypothetical case of a

homogeneous and isotropic turbulence that is suddenly subjected to solid body rotation. In
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particular, they derive that

d, d o | 4
g wiws)| = gy (waws)| = 1ze(0)82, (8a)
d, 3 4
T wal],, = 5e09, (8b)

with the background rotation abruptly initialised at time ¢ = 0. For details concerning the
derivation of (8), the reader is referred to Ref. 7. [It is noted that (8) differs from the original
equation (5) in Ref. 7 by a factor of two in the right-hand side because of the unconventional
vorticity definition used therein.] Equation (8) states that for times ¢ = 01 the time derivative
of the nontrivial VT'Cs is proportional to both the rotation rate and the vorticity intensity
production rate e = (w;w;s;;) at t = 0, with s;; = %(83.-1@ + Gju;) the (symmetric) strain
rate tensor. In fact, e represents the vortex stretching term in the governing equation of the
vorticity intensity (w?), so that e > 0.

It immediately follows from (8) that the nontrivial VTCs will grow and adopt positive
values if the rotation rate is positive (€ > 0). In particular, the probability distribution
function of ws will become positively skewed, implying that large positive fluctuations in w3
are more likely to occur than large negative fluctuations in wz. The result (8) also reflects
the fact that the complex nonlocal effect of pressure fluctuation, apparent from the linearised
Poisson equation [see (A2) in Appendix A, is not involved at the first order of a Taylor
expansion in time, so that a simplified solution can be found in physical space.

The above result can be explained from a more general viewpoint, starting from the basic

equation for the fluctuating vorticity,

Dyw; = w;sij + 2Q03u; + v@fwé , (9)

obtained by taking the curl of the Navier-Stokes equations (1). The first term on the right-
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hand side of (9) represents vorticity production due to nonlinear vortex stretching, whereas
the second term represents its linear counterpart, which is specifically induced by solid body
rotation. From the vorticity equation (9), one may easily obtain the governing equations for
the single-point VTCs (w;w;wy). Under the sole assumption of homogeneity, i.e. (Dww) =
d{w)/dt, one derives that

d
7 Wiwiwr) = (Wiwjweskg) + (Wiwkgsia) T (WiwiwgSiq)

+ 20 ((w.,-_wjﬁguk) + <£JjLUk63?l.3‘> - (wkw.,-aguj))

+ v ((wiw;Oiwk) + (wjwkdzw;) + (wrwidaw;)) . (10)

This equation can be considerably simplified under the additional assumption of axial sym-

metry without mirror symmetry. The key correlations involved [see Eq. (7)] are governed by

d ,.
a(WiWS) = <W§wq33q) + 2(WaWalgSaq)+
20 ((uZ555) + 2{wswasas)
W,5933 WiWaSas3
+v ((wi@?wg) + 2{w3w06§wa)) , (1la)
and

d
a(wg} = 3(wiDyws) = 3(wiwessq) + 6Q(w3sss) + 3v(widiws) (11b)

respectively, where the index summation convention does not apply to the Greek index
« = 1,2. In deriving (11) the relationship Jju; = si;+ %E-j_kjw,ic has been used, and also the fact
that (wjwows) = 0 in case of axial symmetry without mirror symmetry [see Eq. (7)]. The terms

2Q (+) on the right-hand side of equations (11) reflect the specific rotation-induced produc-
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tion. They appear directly proportional to componential vortex stretching terms, viz. (w2sas3)
and (w3wasaa) in (11a), and (wissa) in (11b), respectively. Throughout this paper the terms
(wiw;sk) are referred to as ‘componential vortex stretching terms’. They should not be con-
fused with the vortex stretching terms wjs;; in (9).

Note that the result of Gence and Frick (8) at the first order of time immediately follows
from (11) under the assumption of statistically isotropic initial data. After all, in case of
isotropy the componential vortex stretching terms (e.g. (w3ss3)) may be derived from the

vorticity intensity production rate e = {(w;w;s;;), via exact coefficients:
e 2
(wiwjsk) = o Okidrj + Onjori — §5kz5f.j . (12)

The advantage of (11) above (8) is to display how specific components of vortex stretching
relate to specific components of VTCs. For example, it follows from (11b) that the rotation-
induced growth of (w3) is fully controlled by the componential vortex stretching term (w?ss3).
A complete physical explanation for the link between the componential vortex stretching term
and the velocity derivative skewness is still lacking, except for the isotropic case. In that case,
one has the isotropic relationship

2 [958

(w3 s33) 2 —
wWa&a: — e = — 1
E T

R W32 S0 (13)

with W = %(w?) the global enstrophy. [Relationship (13) is discussed in detail in Sects 3
and 4.3.] As a result, (w3ss3) is positive if the velocity derivative skewness Sp,, =
((O3u3)3)/((O3u3)?)*/? is negative — provided the flow is significantly 3D. Roughly speaking,
the fact that the velocity derivative skewness is significantly negative in turn characterises
a direct cascade, in close connection with a negative third-order structure function at the

Taylor microscale. On the other hand, if the flow were closer to a 2D limit, s33 might be
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strongly reduced, and so would the rotation-induced rate of production of (wj) — all other

quantities remaining unchanged.

3 Numerical procedures

Equations (1) and (2) are solved directly using a pseudo-spectral collocation method expressed
in Fourier space following a classical scheme as in e.g. [8-10]. The computational domain uses
periodic boundary conditions, and consists of N® points in physical space. Furthermore, the
velocity field is completely de-aliased using a 2/3-truncation method in Fourier space. At
time t = 0, the velocity field is initialised with the narrow band energy spectrum F(k) o
k*e=2(/k)” with k the wave number. The energy spectrum F(k) is maximum at wave number
ki, typically one tenth of the maximum wave number of the de-aliased field. The directions of
the initial velocity vectors are distributed randomly in space and so do not correlate with each
other after initialisation. From this initially random isotropic field an isotropic precalculation
is performed up to time t;,; in order to allow for higher order velocity correlations to develop
and isotropic energy dynamics to build up. Various Eulerian temporal statistics are calculated
during the simulation at predefined time steps.

At t = tin, the background rotation © = (0,0,9) is suddenly imposed upon the well-
developed isotropic turbulent velocity field. The related discontinuities at time ti,; in the
temporal derivatives of spatially averaged quantities, such as the vorticity skewness, are
ignored. In order to check consistency with the theoretical result (7), the minimal set of
components describing all VTCs in rotating turbulence is calculated for t > t,;, viz. (w%},
(wiws), (wiw?), (wiwsws), (Wiws), and (w3). In all our numerical results any ensemble average
has been approximated by a spatial average taken over the entire computational domain. The

spatial average is also denoted by the angular brackets (-).
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We have performed anisotropic computations with different (nondimensional) kinematic
viscosities v and for various background rotation rates (as expressed by the Coriolis param-
eter f = 2Q2) in order to quantify how these parameters affect the temporal evolution of the
VTCs. An overview of the performed runs and their parameters is presented in Table 1. Let
A= (15u/ (wf))” 2 represent the Taylor microscale, with u/ = (u?/3)"/? the characteris-
tic velocity. We remark that the Taylor-scale based Reynolds number Rey = u'\/v is not
maintained in decaying turbulence, so that Rey depends on ;.

The time ti,; at which anisotropy is introduced is a crucial parameter. In a conventional
DNS (such as ours), any third-order correlation is almost zero initially in connection with the
(close to) Gaussian initialisation. During the subsequent (isotropic) precalculation certain
triple correlations develop, for instance creating a significant velocity derivative skewness
Sawu,- The latter can asymptote to a negative value, reflecting a nondimensional constant rate
of enstrophy production by nonlinear vortex stretching since the normalised vortex stretching
term

o185 (wiwjsij) o
= 98 I._V-sz - _“‘)3:&3 (14)

in case of isotropy [11]. Other triple correlations such as the cubic vertical vorticity (w3)
remain zero because of isotropy. At t = #,, the isotropy is broken by rotation and certain
VTCs will develop [see (7) or (8)]. The velocity derivative skewness and the vortex stretching
term e*, on the other hand, will be rapidly and severely damped. The exact mechanism that
causes certain VTCs to grow in time is still unknown. Nevertheless, the work by Gence and
Frick [7] strongly suggests that the growth of certain VTCs is caused by linear mechanisms. If
a purely linear mechanism is assumed, then the maximum growth of the cubic vertical vortic-

ity (wg} will depend on the level of non-Gaussianity reached at the end of the precalculation,
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with two extremes: on the one hand, a very short precalculation implying small departure
from Gaussianity at ¢ = i, so that the initial peak of (w3) will be small too, and on the
other hand, a long precalculation implying maximum level of non-Gaussianity at ¢ = #;,; so
that the initial peak of (w3) will be maximum.

Since the velocity derivative skewness clearly illustrates the departure from Gaussianity of
the velocity fluctuations, reaching values of approximately —0.5 in isotropic turbulence [12],

it seems an obvious variable from which to derive time #;,;. However, only in case of isotropy

so during the precalculation — the velocity derivative skewness can be directly related to
vortex stretching [see (14)]. For times ¢ > f,;, the imposed background rotation introduces
anisotropy. The isotropic link between the velocity derivative skewness and vortex stretching
then no longer applies, and physical interpretation of the velocity derivative skewness is
complicated. Therefore, we prefer to derive tj,; from the time evolution of e*, which has
a clear physical meaning regardless of the turbulence state. Accordingly, it seems obvious
to choose time fin; such that e* is maximum. However, during a precalculation of decaying
turbulence a significant part of the turbulent kinetic energy is lost due to dissipation. In order
to have a sufficiently turbulent flow field at the end of the isotropic precalculation, time t,;
is chosen such that e*, and so also the velocity derivative skewness, has almost reached its

final value. How the choice of t;,; affects the relevant statistics is discussed in Sect. 4.

4 Numerical results

In what follows we present the time evolution of various Fulerian quantities during the
anisotropic computation unless stated otherwise. Wherever convenient we use the scaled,
shifted time 7 = (t — ting) f/(27), with f = 2Q the Coriolis parameter, to simplify the com-

parison between runs for which anisotropy is introduced at distinct times #,;, and also to
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simplify the comparison with recent experimental results [5,13].

We first investigate how viscosity affects the time evolution of the kinetic energy and rele-
vant nondimensional numbers in presence of background rotation. Beforehand, it is remarked
that the energy decay in absence of rotation usually is well described by a power-law {7".
Theoretical predictions range from n = 6/5 for unbounded turbulence [14] to n = 2 for
domain-bounded turbulence [15]. Exponents in the range 1-1.4 are encountered in the litera-
ture for wind-tunnel experiments. Figure 1 shows a natural plot of the (monotonic) decay of
the kinetic energy F = % (u?) for various viscosities v. Rotation is known to inhibit the energy
transfer to the viscous scales, and the energy decay rate is seen to be reduced accordingly. In
order to gain insight into the power-law behaviour of the kinetic energy a plot on logarithmic
scales is needed. The runs depicted in Fig. 1 however, are inadequate for investigating the
asymptotic time limit ¢ > #,; as they cover too short a time period. (The present study is
focussed on the initial behaviour of third-order statistics, so that most computations only
concern the initial period of decay.) Instead, consider cases C1 and C2. These computations
have been specially prolonged to study the long-time asymptotic behaviour of the kinetic
energy. Figure 2 shows a doubly logarithmic plot of the energy decay in the isotropic case
(labeled Cref) and in the rotating cases C1 and C2, respectively. In absence of rotation, the
10/7

energy decay is proportional to the power-law ¢/, consistent with the above-mentioned

predictions. In presence of rotation, the energy decay rate appears to incline towards the

57 in the asymptotic limit £ > #;,;. The energy decay rate in the rotating case

power-law {~
is thus reduced by a factor two relative to its value in the non-rotating case. This result is in
perfect agreement with the numerical and theoretical analysis by Squires et al. [16]. Moreover,

the exponent n = 5/7 for the asymptotic energy decay in presence of rotation could indicate

a k=2 energy spectrum for large wave numbers [17,18).
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Next, consider the time dependence of the nondimensional numbers Rey and Reoy, =
u'/(290)), see Figs 3(a) and (b), respectively. In contrast with the decrease of Rey dur-
ing the isotropic precalculation (not shown), Fig. 3(a) shows that sufficiently strong back-
ground rotation (as in cases A, C3 and D) results in a growth of Rey. This implies that the
Taylor microscale A grows faster than the kinetic energy decays. The Taylor-based Rossby
number decays monotonically [Fig. 3(b)], which is characteristic for decaying rotating tur-
bulence [3,19,20]. Furthermore, Roy < 1 for all times and in all cases which means that
background rotation is dominant over nonlinear effects for all times and in all cases.

Similar time evolutions of F, Re, and Roy have been obtained for the remaining runs (not
shown) with one exception: for the lowest background rotation rate considered here (case C1)
the Taylor-based Rossby number Roy(ti,;) > 1, which illustrates that background rotation
is not yet dominant over nonlinear effects (so-called weakly rotating turbulence). In this
particular case, Rey initially continues to fall off with time.

We now discuss the effect of rotation on the energy spectrum. Figure 4 shows the energy
spectrum at the start (f = tini) as well as at the end (¢ = t5) of the anisotropic computation.
From left to right, the panels correspond to cases A, C3, and D, respectively. The energy
spectrum at time ¢y for the corresponding isotropic (reference) computations is also plotted.
Comparison of the energy spectra at time ¢y for every reference and rotating case reveals that
E(k) is almost conserved in presence of rotation for k < k; while steeper for wave numbers
k > k;. Rotation inhibits the direct energy cascade in the inertial range, i.e. energy transfer
towards the larger wave numbers is reduced, and so energy is almost conserved at the smaller
wave numbers. In addition, note that none of the energy spectra in Fig. 4 display clear power-
law behaviour in the inertial range, neither in absence nor in presence of rotation. Taking into

consideration that all cases concern decaying turbulence, hence quite low Reynolds number,
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this result is not very surprising.

It follows that our low Reynolds number results show a clear steepening of the slopes of
the spectra, induced by rotation, but that they give no definitive quantitative information to
compare to classical power laws predicted or obtained at high Reynolds number. Nevertheless,
it is useful to briefly discuss such power laws as follows. Yang and Domaradzki [24] found
a transition from F(k) ~ k=2 (in agreement with the scaling E(k) ~ veQk=2 [18], with
¢ the energy dissipation rate) at moderate rotation rates, to F(k) ~ k=3 at the largest
elapsed times and highest rotation rates. The latter prediction is not consistent with purely
2D rotating turbulence in which E(k) ~ Q2,73 but agrees with theoretical and numerical
results in wave-turbulence [25,26]. Slopes between —2 and —3 have also been found by Morize
et al. [17], and the experimental investigation by Van Bokhoven [27] supports a slope of —3.
Both measurements, however, only give access to a spectrum E(kj), with &, the horizontal
wave number, which is closer (without being the same) to the conventional one-dimensional
spectrum based on wuy or us than to the spherically averaged energy spectrum F(k). If the
turbulence is strongly anisotropie, the slope in the inertial range can differ for these two types

of spectra.

4.1 Vortex stretching term and vorticily skewness

The time evolution of the (normalised) vortex stretching term e* [see (14)] and the vorticity
skewness S, in cases A, C3 and D (so different viscosities) is depicted in Fig. 5. Clearly, the
vortex stretching term develops during the isotropic precalculation (¢ < #;,;) and collapses
when the anisotropic body force is applied (t > tjy;). Furthermore, it is seen that higher
viscosities (i.e. lower spatial resolution) require longer precalculations to attain the same value

of e*. In cases A and C3, the initial increase of S, [Fig. 5(b)] is found to be proportional
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to the power-law 70701 This power-law behaviour is less apparent in case D, most likely
related to the short precalculation as argued further below. For later times [7 2 1], S.,
wiggles about a positive value, reflecting the dominance of cyclonic vorticity. Figure 5(b)
reveals that a lower viscosity results in a higher final value of S,,. This implies (see Table 1)
that if both Rey(tini) and Rox(fini) are higher — so a lower degree of linearity — then the
final value of S,, will be higher. Although it seems likely that a lower viscosity v results in
a more developed vorticity skewness, the different final values of 5,,, may as well be ascribed
to slight differences in e*(t,;), see below.

Consider the effects of the duration of the isotropic precalculation on the time evolution of
Sus- It immediately follows from Fig. 6(a) that shorter precalculations yield smaller e*(#i,;).
The vorticity skewness S, [Fig. 6(b)] shows evidence of power-law behaviour proportional to
70501 for ¢ < 1, and wiggles about a positive value for 7 2 1. Moreover, careful analysis
of Fig. 6(b) suggests that the initial (7 < 1) power-law behaviour is affected by the duration
of the precalculation: both very short and very long precalculations result in a smaller power-
law exponent. It thus seems likely that the less apparent power-law behaviour of S, in case
D [Fig. 5(b)] is related to the short duration of the precalculation. Returning to Fig. 6(b),
the amplitude of the initial peak of S, is seen to depend on the initial Reynolds and Rossby
number in such a way that if both Rey(tini) and Rox(tini) are decreased by increasing tiy;, this
results in a larger peak amplitude. Furthermore, the final value of S, appears to depend on
tini in the following manner: shorter precalculations, implying higher Rey(tini) and Roy(tini),
result in higher final values of S,,,. Thus, as already noted, the behaviour displayed in Fig. 5(b)
may partly be ascribed to slight differences in e* at time t;,;.

Finally, Fig. 7 shows the time evolution of €* and S,, for various background rotation

rates, viz. [ = 2Q = 0.5, 2.57, 5.07 and 10.07 (cases C1-C4). Except for case C1, where no
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clear initial peak is observed, it follows that the amplitude of the initial peak of S,, depends
on the initial Rossby number, such that a smaller Roy(#,;) vields a larger peak amplitude.
Furthermore, Fig. 7 shows that a lower background rotation rate — implying higher Roy(#ini)
— results in a larger final value of 5,,. This result expresses the fact that the asymmetry
between cyclonic and anticyclonic structures is more pronounced at low rotation rates than
at high rotation rates. Furthermore, it is useful to remark that similar results have been

obtained with lower resolution (N = 144) calculations.

4.2  Single-point third-order vorticity correlations and pdfs of vorticity

Figure 8 shows the time evolution of all nontrivial VTCs for various background rotation
rates. The following three observations are made: i) the normalised quantities (w$)/(w3)%/2,
(wiw?) /(w?)®/? and (wiwaws)/(w3)3/? are much smaller than unity and fluctuate around zero;
i) (w?ws), (wiws) and (w3) are clearly nonzero; and iii) the ratio (wfws)/(w3ws) (not shown)
is found to fluctuate around unity. These results are all consistent with relationship (7).
Additional information concerning the vorticity field may be derived from the probability
distribution functions (pdfs) of the vorticity components, denoted by plw;(t)]. The pdf p(ws)
is of particular interest in consideration of the rotation-induced asymmetry between cyclonic
and anticyclonic structures. At a given instance of time, the pdfs p(w;) may be obtained by
binning the values of w;(x) for all space points x to some relevant predefined range of vorticity
values — here, the range [min(w;), max(w;)] is divided into 50 bins. The tails of the pdfs have
been slightly smoothed to suppress noise effects. In what follows, the time dependence of
the pdfs of vorticity is studied for decaying homogeneous turbulence, both with and without

rotation.

To start with, consider the time dependence of p(w;) in the isotropic case Cref [Fig. 9(a)].
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The thick and thin lines represent p(w;) (consult the legend of the mentioned figure for
details) at ¢ = 4 and ¢ = &, respectively. For a given time, the pdfs of different vorticity
components collapse which illustrates the isotropy of the turbulence. Furthermore, the purely
decaying turbulence behaves in a self-similar manner. After all, consider the normalised pdf
p(wi)o(w;) as a function of w;/o(w;), with o(w;) the standard deviation of the distribution
p(w;) [Fig. 9(b)]. The normalised pdfs associated with distinct times collapse for the range
|wi] < 5o (w;).

The above procedure has been repeated for cases C1 and C2 to study the effect of rotation
on a decaying (initially isotropic) vorticity distribution. The pdfs have now been computed
for times ¢t = t;,; = 4 (already discussed above) and t = t, > t;,;, where {,. represents the time
at which the Taylor-based Reynolds number reaches a value of approximately 44. (Perhaps
needless to remark, but time ¢, varies with the rotation rate.) By matching the Reynolds
number rather then the numerical or scaled time, one simplifies the comparison between cases
with different rotation rates, addressed further on. Panels (a) and (b) of Fig. 10 show the
normalised pdfs of vorticity for cases C1 and C2, respectively. [Note that Fig. 9(b) cannot be
directly compared to either panel of Fig. 10 because of the difference in Reynolds number.]
At time t,, the normalised pdfs of the horizontal vorticity components [Fig. 10(a,b)] still
collapse despite the presence of rotation. Their shape has slightly changed though compared
to time ;. It is important to note that the horizontal vorticity field has not developed
any significant nonzero skewness [see also Fig. 8(a)|. The normalised pdf of the vertical
vorticity component (chain-dotted line), on the other hand, reveals an unmistakable positive
skewness [see also Fig. 8(f)