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Abstract
We present a scalable and precise context-sensitive points-to analy-
sis with three key properties: (1) filtering out of unrealizable paths,
(2) a context-sensitive heap abstraction, and (3) a context-sensitive
call graph. Previous work [21] has shown that all three proper-
ties are important for precisely analyzing large programs, e.g., to
show safety of downcasts. Existing analyses typically give up one
or more of the properties for scalability.

We have developed a refinement-based analysis that succeeds
by simultaneously refining handling of method calls and heap ac-
cesses, allowing the analysis to precisely analyze important code
while entirely skipping irrelevant code. The analysis is demand-
driven and client-driven, facilitating refinement specific to each
queried variable and increasing scalability. In our experimental
evaluation, our analysis proved the safety of 61% more casts than
one of the most precise existing analyses across a suite of large
benchmarks. The analysis checked the casts in under 13 minutes
per benchmark (taking less than 1 second per query) and required
only 35MB of memory, far less than previous approaches.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization

General Terms Algorithms, Languages, Performance

Keywords Refinement, context-sensitive analysis, points-to anal-
ysis, demand-driven analysis

1. Introduction
Many applications require a precise points-to analysis, but preci-
sion is often sacrificed for the sake of scalability. In static verifi-
cation, imprecise points-to information generates many false pos-
itives; consequently, verifiers often ignore the effects of pointers
(e.g., [13]), forfeiting soundness. Automatic refactoring tools [10,
40] currently cannot reason precisely about the heap, and hence
cannot soundly perform transformations such as moving instance
fields between classes (to the best of our knowledge). Finally, cer-
tain IDE program understanding aids, such as object model visu-
alizations of complex object-oriented libraries [26], would be im-
proved by precise points-to information.

This paper presents a scalable context-sensitive points-to analy-
sis. Previous work [21, 26] has shown context sensitivity to be key
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to computing precise points-to information for Java. Our analysis
is context sensitive in three ways:

• Excludes unrealizable paths: Calls and returns are matched on
interprocedural paths [31].

• Uses a context-sensitive heap abstraction: Objects allocated
by the same statement in different calling contexts are distin-
guished.

• Constructs a context-sensitive call graph: Targets of virtual calls
are computed separately for each calling context.

As shown here and in previous work [21], all three properties are
essential for precise results on large programs. For example, an
analysis cannot distinguish the contents of different instances of
the java.util.Vector data structure for realistic programs without
these properties. (The properties are discussed further in Section 4.)
In existing context-sensitive analyses, one or more of these proper-
ties is often sacrificed for scalability. Here we present an analysis
that retains all three properties while scaling to large programs and
requiring far less memory than previous approaches.

We have developed a refinement-based approach to points-to
analysis that succeeds by simultaneously refining the two key axes
of precision for Java points-to analysis: handling of method calls,
and handling of heap accesses, i.e., reads and writes to object fields.
The refinement is driven by the heap accesses; we precisely model
those accesses deemed more important for a precise analysis re-
sult, while using an approximation technique for other accesses
that allows for skipping inspection of much of the program. As re-
finement proceeds, more field accesses are modeled precisely, and
hence more of the program is analyzed. Calls and returns are only
modeled precisely in those parts of the program not skipped due
to approximate handling of fields; refinement of field accesses ex-
poses more calls and returns for analysis, and hence automatically
yields refinement of context sensitivity.

Our refinement technique gauges precision using a client-driven
approach [12], i.e., based on whether the analysis client is satisfied
with the result. At each stage of refinement, the client is queried to
see if the current analysis result is sufficiently precise. For example,
for a client aiming to prove that a downcast of variable x to type
T cannot fail, a result showing that x can only point to T objects
suffices. The client-driven approach allows our analysis to avoid
performing excessive refinement, aiding scalability.

A key element of the success of our approach is its demand-
driven style of analysis. A demand-driven points-to analysis [14,
37] performs only the work necessary to answer a query, i.e., a re-
quest for a variable’s points-to information from an analysis client.
Through the demand-driven approach, our refinement can deter-
mine which heap accesses are key to precision for each query sep-
arately, as the statements relevant to each query are easily tracked.
Furthermore, being demand-driven allows our analysis to employ
expensive analysis techniques, e.g., a context-sensitive heap ab-
straction and call graph, in a limited fashion. Note that demand-
driven analysis alone does not yield scalability, as in practice too



much code must still be analyzed precisely; our evaluation shows
that it is the combination of refinement and demand-driven analysis
that yields scalability.

Our approach is based on insights gained through a context-
free language reachability (CFL-reachability) [29] formulation of
the analysis, which makes the interplay between heap accesses and
method calls clear. In previous work [37], we showed that context-
insensitive points-to analysis for Java is a balanced parentheses
CFL-reachability problem. We base the current technique on this
balanced-parentheses structure, using it to (1) compute an approxi-
mate analysis with various levels of refinement and (2) help deter-
mine which code requires more precise handling.
Contributions. This paper makes the following contributions:

• We observe that balanced parentheses in the CFL-reachability
formulation of context-insensitive Java points-to analysis [37]
can be used to guide refinement of both heap access and method
call handling.

• We develop a demand-driven, client-driven algorithm based on
this insight that refines handling of heap accesses and method
calls simultaneously and skips analysis of irrelevant code.

• We present an evaluation of our algorithm with three clients
and several large benchmarks. The evaluation showed that our
technique is both precise, proving 61% more casts safe than
one of the best existing analysis, and scalable, checking casts in
under 13 minutes per benchmark and only requiring 35MB of
memory, an order of magnitude less than previous approaches.

Section 2 gives a high-level overview of our technique. Sec-
tion 3 presents our CFL-reachability formulation of context-
insensitive points-to analysis for Java [37], and Section 4 defines
our context-sensitive formulation. Section 5 delineates our algo-
rithm and gives a detailed example. We evaluate our technique in
Section 6. Section 7 discusses related work, and Section 8 con-
cludes.

2. Overview
This section provides an overview of our analysis technique. Sec-
tion 2.1 defines the field-sensitive, context-sensitive points-to anal-
ysis problem; in the limit (i.e., after full refinement), our analy-
sis solves this problem precisely. Section 2.2 gives a formulation
of this points-to analysis in the context-free language reachabil-
ity framework [29], simplified to make clear the essential property
of balanced parentheses. Section 2.3 presents our algorithm for a
simplified version of the reachability problem, showing how we
exploit its balanced-parentheses structure for refinement. Finally,
Section 2.4 illustrates how the analysis works on a Java code ex-
ample. We show that in typical programs our refinement explores
nested data structures in a hierarchical progression, visiting only
a small part of the program to obtain sufficient precision for the
client.

2.1 Analysis Definition

A points-to analysis computes a points-to relation pt that maps
each pointer variable to a superset of the objects that it may point to
during execution. The possibly unbounded heap is modeled by a fi-
nite heap abstraction. We aim to compute a control-flow insensitive
points-to analysis, i.e., an analysis that treats each method as if its
control-flow graph contained all possible edges. A flow-insensitive
analysis typically abstracts the heap by representing all objects cre-
ated at a given allocation site (i.e., a new expression) with a single
abstract location. So, if variable x might point to an object created
at allocation site i modeled by abstract location oi, then oi ∈ pt(x).
Since we compute a demand-driven analysis, the work for comput-

ing pt(x) is only performed when a client issues a query for x’s
points-to set.

We define our analysis problem as computing the best possi-
ble (i.e., most precise) flow-insensitive points-to information given
certain restrictions on the analyzed program. Namely, the analysis
assumes an input program with (1) no arrays and (2) no recursive
method calls, but otherwise makes no restrictions on its structure.1

We handle the excluded program features by using approximations:
arrays are discussed in Sections 2.4 and 3, and recursion in Sec-
tion 4.3.

Computing the best possible flow-insensitive points-to informa-
tion requires handling assignments in a subset-based, field-sensitive
manner. A subset-based analysis models assignments with subset
constraints, e.g., statement x = y induces the constraint pt(y) ⊆
pt(x). A field-sensitive analysis precisely handles the semantics of
field accesses. For example, consider computing pt(z) for the fol-
lowing program:

x = new Obj(); y = new Obj();
x.f = new Obj(); // o1
y.f = new Obj(); // o2
z = x.f;

To find pt(z), the analysis must conservatively determine the pos-
sible values of the expression x.f. A field-based analysis treats
each instance field as a global variable, in this case reasoning that
any object written to the f field can be read from x.f, yielding
pt(z) = {o1, o2}. In contrast, a field-sensitive analysis reasons
separately about the instance fields of each abstract object. In this
case, since x and y cannot be aliased, the field-sensitive analysis
more precisely concludes that pt(z) = {o1}.

A precise points-to analysis must handle method calls in a
context-sensitive manner. A context-sensitive analysis yields results
as precise as if it were computed on a modified program with all
method calls inlined. Note that this definition of context sensitivity
affects the heap abstraction, as inlining creates copies of allocation
statements; some previous analyses did not use a context-sensitive
heap abstraction (e.g., [9, 43]), increasing scalability at the cost
of precision. Also, potential virtual call targets must be computed
context sensitively, i.e., separately for each calling context, and in
an on-the-fly manner, i.e., using precise points-to information to
compute the targets.

Note that our analysis algorithm is only fully precise in the limit,
i.e., with full refinement. Our algorithm often achieves sufficient
precision for the client without treating all code precisely. While it
is capable of providing the precision described above, the key to its
scalability is that even for demanding clients, full precision is often
not necessary.

2.2 CFL-Reachability Formulation

Our technique is based on a formulation of points-to analysis
as a context-free language reachability (CFL-reachability) prob-
lem [29], an extension of standard graph reachability that allows
for filtering of uninteresting paths. Let G be a directed graph with
edge labels taken from alphabet Σ, and let L be a context-free
language over Σ. Each path p in G is labeled with a string s(p)
in Σ∗, obtained by concatenating edge labels in order. We say
p is an L-path if s(p) ∈ L. Given nodes s and t, the single-
source/single-target L-path problem asks if G contains an L-path
from s to t; multiple-source or multiple-target problems are sim-
ilarly defined. Hence, L characterizes the paths of interest when
determining CFL-reachability. When an L-path exists from s to t,

1 We also assume no native methods or reflection in the formulation, but
they are handled by our analysis (see Section 6).



we say t is L-reachable from s, or simply, s L t; we similarly refer
to S-paths and use notation s S t for any non-terminal S in L’s
grammar.

For points-to analysis, G represents the program: its nodes
model variables and abstract locations, and its edges model dif-
ferent types of assignments. L describes paths in G corresponding
to program executions that might cause a variable to point to some
abstract location; other paths are guaranteed not to affect the points-
to relation. We define L such that if x may point to o, then o L x.
Perhaps counter-intuitively, the L-path goes from o to x rather than
from x to o, since our edges are oriented in the direction of value
flow, i.e., from the right-hand side of an assignment to the left-hand
side. Hence, computing the points-to set of a variable x is a single-
target L-path problem [29], requiring backwards reachability.

The points-to analysis of Section 2.1 can be expressed in CFL-
reachability with language LF∩RC, where LF ensures precise han-
dling of field accesses and RC ensures context sensitivity. Our pre-
vious work [37] showed that precise handling of Java heap accesses
can be formulated with LF being a language of balanced parenthe-
ses. Intuitively, field accesses are balanced since Java instance fields
cannot be accessed through lower-level pointer operations like C’s
dereference (*) and address-of (&) operators. So, if an object o2 is
written into o1.f through a field write “x.f = y”, o2 can only be
read back from o1 through some corresponding field read statement
“w = z.f” (where z points to o1). We model the flow of o2 through
the two statements in the reachability formulation with a pair of
parenthesis symbols.

While the balanced-parentheses property of LF is a recent re-
sult, context-sensitive analysis is well known to be a balanced-
parentheses problem in CFL-reachability [28, 31]. In the graph,
edges entering and exiting a method call are labeled with open and
close parentheses specific to the call site. A path in G with mis-
matched call parentheses corresponds to an unrealizable control
flow path [31], and we can use a balanced-parentheses language
to filter out such paths.

In this section, we consider a CFL-reachability formulation of
points-to analysis that is simplified in three (unsound) ways: (1)
it ignores simple copy assignments (e.g., x = y), (2) it does not
properly handle paths between field parentheses (cf. Section 3),
and (3) it does not allow partially balanced call parentheses (cf.
Section 4.2). We simplify here to make the essential properties of
the formulation clear the full sound formulation is given in Sec-
tions 3 and 4. Let ΣP be the alphabet of open and close brackets,
respectively representing heap writes and reads, and open and close
parentheses, representing method call entries and exits:

ΣP =
˘
[f , ]f | f is a field

¯
∪

˘
(i , )i | i is a call site

¯
We compute reachability with language Lscf = Lsf ∩ Rsc (s for
simplified) over ΣP , with Lsf and Rsc respectively representing
key properties of LF and RC:

Lsf : F → [f F ]f | [g F ]g | . . . | F F | (i | )i | . . . | ε
Rsc : C → (i C )i | (j C )j | . . . | C C | [f | ]f | . . . | ε

Both Lsf and Rsc allow the parentheses of the other language to
be mixed anywhere in their strings. Note that although it has a
balanced-parentheses grammar, Rsc is regular, since we assume
recursion-free programs and hence the number of open call paren-
theses in a string is bounded.

The worst-case time and space complexity of Lscf-reachability
is exponential, motivating our refinement-based technique. CFL-
reachability problems can be solved by a general algorithm in
O(Γ3N3) time [29], where Γ is the size of L and N is the number
of nodes in G. For our problem, |Rsc| (and hence, Γ) is exponential
in the size of the program, since its size is proportional to the num-
ber of paths in the program’s call graph. Demand-driven analysis

has the same worst-case bound; we found it not to scale in practice,
leading us to investigate refinement.

2.3 Refinement Algorithm

Here we present our refinement-based algorithm for solving
a simplified version of a Lscf-reachability problem, as defined in
Section 2.2. In particular, we focus on showing that a node x is not
Lscf-reachable from a node y; our refinement algorithm is designed
to quickly prove such unreachability properties. The key idea is
to focus effort on parts of the graph likely to have unbalanced
parentheses, handling the rest of the graph approximately (in fact
by skipping over it entirely). We refine by approximating for less
of the graph, eventually yielding a precise answer.
Simplified Problem. To focus on the key ideas of our technique,
we consider the following additional simplification of the single-
source/single-target Lscf-reachability problem (beyond using the
simplified Lsf and Rsc languages): given a single path p from
node o to node x with edge labels chosen from ΣP (defined in
Section 2.2), the analysis must determine if p is a Lscf-path, i.e., if
o Lscf x.

To model how refinement improves performance, we add the
following optimality constraint to the problem: if p is not an Lscf-
path, the algorithm should determine this fact while minimizing the
number of edges inspected. As a trivial example, if the first edge e
of p is a closed parenthesis, the algorithm should conclude that p is
not an Lscf-path by inspecting only e. This constraint allows us to
illustrate how our refinement technique can quickly show that some
nodes in an approximate points-to set for a variable x are in fact
unreachable from x, increasing precision. Note that our algorithm
does not necessarily visit the minimal number of edges, but it often
does less work than the straightforward technique of traversing p
directly.

All of the ideas described here for the simplified problem gen-
eralize to points-to analysis for arbitrary programs. In the general
reachability problem, we are given a variable x, and then must find
all o such that o Lscf x. Furthermore, for each o, we must consider
all paths from o to x, not just one. For an acyclic graph, both of
these generalizations can be viewed as solving multiple instances
of the simplified problem. We address cyclic graphs when present-
ing the full algorithm in Section 5.

Figure 1(a) gives an example input path for our simplified prob-
lem (the dashed edges will be explained shortly). The path is not
an Lscf-path, as the [g and ]j and (2 and )3 parentheses are mis-
matched. We will illustrate how our analysis can discover this fact
without inspecting the entire path.
Our Approach. Our technique tries to minimize work through ap-
proximation and refinement. For the simplified problem, an approx-
imate analysis must answer correctly when p is an Lscf-path, but
can answer incorrectly when it is not; for points-to analysis, this ap-
proach yields an over-approximation of the points-to relation. Re-
finement gradually removes the imprecision of this analysis, even-
tually yielding the correct answer when p is not an Lscf-path.

The key idea behind our technique is to focus analysis effort on
parts of p where parentheses are likely to be unbalanced. A path
p may have many unbalanced parentheses (i.e., open parentheses
without a balancing close parenthesis or vice-versa), but proving
the existence of just one such parenthesis is sufficient to show that
p is not an Lscf-path. In particular, for an edge e with label [f
not deemed likely to be unbalanced, the analysis approximates by
assuming that (1) some ]f edge e′ balances e, and that (2) the path
between e and e′ is from Lscf. These assumptions allow the analysis
to skip inspection of the edges between e and e′, focusing on other
parts of p likely to contain unbalanced parentheses.
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(d) Path on second pass with t5
]g−→ t6 edge.

Figure 1. Paths to illustrate the behavior of our refinement algorithm.

Refinement-based Lsf-reachability. We first consider computing
Lsf-reachability using refinement, ignoring method call parenthe-
ses for now (i.e., the Rsc language). Our algorithm selectively skips
subpaths of p using so called match edges. A match edge, shown
as a dashed edge in Figure 1(a), connects the source of some [f
edge to the sink of any ]f edge; initially, all possible match edges
are added to the graph. (We assume appropriate data structures ex-
ist so that match edges can be added without inspecting the entire
path.) When traversing p to check if it is an Lsf-path, following a
match edge from node s to node t corresponds to assuming s Lsf t,
in order to focus effort elsewhere. Note that using match edges to
handle accesses of field f is equivalent to a field-based handling of
f (see Section 2.1) [37].

Our analysis approximates Lsf-reachability by computing
reachability over a language Lsfr (r for refinement) that includes
match edges:

Lsfr : T → [f T ]f | [g T ]g | . . . | match | T T | (i | )i | . . . | ε

Lsfr is identical to Lsf except for the additional match production.
Thus, Lsfr is a superset of Lsf, and computing Lsfr-reachability
approximates Lsf-reachability.

The refining Lsfr-reachability algorithm uses match edges to

skip subpaths of p whenever possible. Given edges t
[f−→ u, v

]f−→
w, and t

match−−−→ w, our analysis always assumes t Lsfr w, and uses
the match edge to avoid inspecting the subpath from u to v. If p
contains multiple ]f edges, t will have multiple outgoing match
edges, and the analysis must try to use each one before concluding
that p is not an Lsf-path.

Figure 1(b) shows the Lsfr-path discovered by our analysis when
given Figure 1(a) as input. The analysis is able to skip much of the
original path using the t0

match−−−→ t8 edge. However, x is not Lsf-
reachable from o, so the analysis result with Lsfr-reachability is
incorrect (but sound), necessitating refinement.

Refinement of the approximation of Lsfr-reachability is accom-
plished by removing match edges from the graph, forcing check-

ing of more parentheses on the original path. Given edge t
[f−→ u,

if outgoing match edges from t are removed, our algorithm must
check for a path labeled [f T ]f from t, possibly reducing the ap-
proximation caused by the match edges. Figure 1(c) shows the sub-
path of Figure 1(a) explored after removing the t0

match−−−→ t8 edge.
This removal exposes the unbalanced parenthesis [g , leading the
analysis to conclude that p is not an Lsf-path. Note that the unbal-
anced parenthesis is discovered without analyzing the whole path
(the t3 ; t5 subpath was skipped).
Refinement-based (Lsf ∩Rsc)-reachability. We now discuss how
our analysis computes Lscf-reachability (recall Lscf = Lsf ∩ Rsc),
which requires also checking for balanced method call parentheses.
First, notice that this checking must be approximated when using
match edges: since a match edge can skip over an arbitrary se-
quence of method call edges, call parentheses are only checked on

subpaths with no match edges. Consider the path of Figure 1(b).
While it may be tempting to conclude that (1 and )3 are mis-
matched, (1 is in fact balanced on the original path. The analy-
sis handles match edges by assuming that any possible sequence
of call parentheses may appear on the skipped subpath. For Fig-
ure 1(b), the analysis assumes that )1(3 may have been skipped
by the match edge, and hence approximately answers that p is an
Lscf-path.

Removal of match edges allows for simultaneous refinement
of method call and field parentheses handling, as it exposes more
of both of them for checking. For instance, if we balance the field
parentheses in Figure 1(a) by changing the label of the t5 → t6
edge to ]g , we can still use refinement to find the unbalanced
method call parenthesis (2 without inspecting the whole path.
While the first pass of our analysis would still discover the path
of Figure 1(b) after this modification, the second pass would find
the path in Figure 1(d), as the graph would now have a t2

match−−−→ t6

edge. Thus, the removal of the t0
match−−−→ t8 edge exposes the mis-

matched (2 and )3 parentheses, allowing the analysis to conclude
that x is not Lscf-reachable from o. Again, the path was shown to
be unbalanced without inspecting all of its edges, illustrating the
performance benefits of refinement.

2.4 Refinement on Java programs

Section 2.3 showed how our algorithm is able to save work by
skipping inspection of certain subpaths, with the ability to refine to
a precise answer. Here, we show what these skipped paths corre-
spond to in typical programs, i.e., we show what code is typically
analyzed at a particular approximation level, and what code is not
visited at all. In particular, the analysis typically only applies full
sensitivity for classes whose object contents must be distinguished
to precisely answer a query, e.g., to find the contents of a particular
Vector object. We will show that both field and context sensitivity
are necessary for sufficiently precise results, and that encapsulation
allows us to analyze only a small amount of code precisely.

We use the example in Figure 2, a partial implementation of an
AddrBook class with a Vector of names, to illustrate the effects of
refinement. We consider an analysis client that aims to statically
prove that downcasts cannot fail, in particular the downcast to
String at line 27. To prove this cast safe with points-to analysis,
it suffices to show that the name variable can only point to String
objects.

Figures 3(a) through 3(c) give an abstract view of the anal-
ysis result at each refinement stage while computing pt(name).
Each graph shows how the analysis computes points-to sets of the
fields read to obtain the value assigned to name: AddrBook.names
at line 23, Vector.elems at line 10, and finally arr (a pseudo-field
for modeling array accesses) at line 11. Ovals in the graphs enclose
points-to sets; pt(name) is shown on the right. A dashed arrow indi-
cates a pointer from some class not shown in Figure 2. Figure 3(c)



1 class Vector {
2 Object[] elems; int count;
3 Vector() { t = new Object[10];
4 this.elems = t; }
5 void add(Object p) {
6 t = this.elems;
7 t[count++] = p; // writes t.arr
8 }
9 Object get(int ind) {

10 t = this.elems;
11 return t[ind]; // reads t.arr
12 } ...
13 }
14 class AddrBook {
15 private Vector names;
16 AddrBook() { t = new Vector();
17 this.names = t; }
18 void addEntry(String n, ...) {
19 t = this.names; ...;
20 t.add(n);
21 }
22 void update() {
23 t = this.names;
24 for (int i = 0; i < t.size(); i++) {
25 Object name = t.get(i);
26 // is this cast safe?
27 String nameStr = (String)name;
28 ...
29 }
30 }
31 }
32 void useVec() {
33 Vector v = new Vector();
34 Integer i1 = new Integer();
35 v.add(i1);
36 Integer i2 = (Integer)v.get(0);
37 }

Figure 2. Example code for illustrating our algorithm.

shows that after two passes of refinement, the analysis proves that
pt(name) contains only String objects, shown as diamonds.

The initial analysis result, shown in Figure 3(a), is imprecise due
to match edges, which cause merging of field contents for all fields.
In the graphs of Figure 3, a dashed box indicates that field contents
for objects inside the box have been merged due to match edges.
For example, Figure 3(a) indicates that the arr fields for arrays
from Vector.elems as well as those from some other data structure
have been merged; fields elems and names are similarly collapsed.
match edges cause merging since the analysis uses them to jump
from a field read to all writes of the field, ignoring which object’s
field is being accessed. When computing pt(name), the analysis
finds that name gets its value from a read of the arr field at line 11
of Figure 2. Through match edges, the analysis then concludes that
any object written into arr can flow to name, essentially merging the
contents of all arrays.

While imprecise, the initial analysis skips inspection of field
accesses deeper than those of arr, thereby finishing quickly and
allowing time for more precise analysis. The gray shading in the
graphs of Figure 3 indicates which of the shown field dereferences
are inspected by that pass of the analysis. In Figure 3(a), only
accesses of the arr field are inspected, while fields elems and
names are skipped. This occurs because when the analysis reaches
the array read at line 11 of Figure 2, it can jump immediately
to the array write at line 7 using a match edge, and to all other
array writes (not shown) using other match edges. Through this

(a) Initial analysis result.

(b) Result after distinguishing Object[] contents.

(c) Result after also distinguishing Vector contents.

Figure 3. Analysis result at different stages of approximation for
proving safety of the cast at line 27 of Figure 2.

skipping, the analysis saves times by avoiding analysis of other
code in Vector and AddrBook and code that uses AddrBook objects.

Our analysis refines by removing all match edges for all fields
of some class T, with the goal of distinguishing the contents of dif-
ferent instances of T. For the example, we remove match edges
for accesses to arr after the first pass, yielding the result in Fig-
ure 3(b). The dashed box around Object arrays has disappeared,
and the analysis now distinguishes the arr field of arrays stored in
Vector.elems (i.e., the internal arrays of Vectors), from other ar-
rays in the program. The elems field is still merged across Vectors
because of match edges; hence, the analysis concludes that name
can point to any object stored in the internal array of any Vector,
still too imprecise a result for the cast-checking client. However,
the match edges on elems allow the analysis to skip inspection of
accesses to names and code that uses AddrBooks, again saving time
and allowing for more refinement.

In its third pass, our analysis succeeds in showing safety of
the downcast by removing match edges on elems, which exposes
calls to the methods of Vector for context-sensitive handling. With
match edges on elems present, the analysis would exit Vector’s
methods on a match edge (e.g., from the read of elems at line 10
in get() to the write at line 4 in Vector()), skipping an unknown
sequence of calls and returns and hence forcing approximation of
context sensitivity. Context sensitivity for calls to these methods
is required to distinguish contents of different Vector instances
(see Section 4 for details). After removing match edges on elems,
the analysis yields the result in Figure 3(c), showing that name
only gets its value from a Vector stored in AddrBook.names; since
such Vectors only contain Strings, this is sufficient to show the
downcast at line 27 cannot fail, and the analysis terminates.

Our refinement technique exploits encapsulation in object-
oriented code for better performance. In Figure 2, the names field
is encapsulated, i.e., the field and the Vector it points to cannot
be directly accessed outside the AddrBook class; similarly, Vector
encapsulates its elems field. When fields are encapsulated, match



1 x = new Obj(); // o1
2 z = new Obj(); // o2
3 w = x;
4 y = x;
5 y.f = z;
6 v = w.f;

(a) Code example
(b) Graph representation

Figure 4. A small code example and its graph representation for
CFL-reachability-based points-to analysis. Line numbers from (a)
are given on corresponding edges in (b). Dashed edges in (b)
indicate the existence of a flowsTo-path from the source to the sink.

edges for those fields can only connect accesses in the same class,
limiting the scope of our analysis. For example, with match edges
present for elems in Figure 3(b), the analysis processed code in
Vector, but not code in AddrBook that uses a Vector. Furthermore,
encapsulated fields allow the refinement to explore data structures
in a hierarchical progression: in the example, we explore the ar-
ray, then the Vector pointing to the array, and finally the AddrBook
pointing to the Vector. Note that our analysis exploits encapsula-
tion without any code annotations, instead discovering encapsula-
tion automatically. When fields are not encapsulated, our analysis
can still provide precise results, but it may run slower, as more code
needs to be analyzed with full precision.

3. Context-Insensitive Points-To Analysis
In this section, we formulate field-sensitive, context-insensitive
points-to analysis for Java in CFL-reachability, adapted from [37].
Section 2.2 presented a simplified language Lsf for this problem;
here we present a language LF that differs primarily by soundly
handling paths between parentheses. We first describe how to con-
struct a graph G representing the pointer-manipulating statements
of a program P . Then, we define LF such that computing LF-
reachability over G yields the desired points-to analysis. We extend
the formulation to context-sensitive points-to analysis in Section 4.
Program representation. We first describe how given a program
P , the graph G for points-to analysis is constructed. Nodes in G
represent variables and abstract locations, while edges represent
four canonical assignment forms: (1) allocation statements x = new
T(), (2) copy statements x = y, (3) heap reads x = y.f, and (4)
heap writes x.f = y. We represent these statement types in G with
the following edges:

x = new T() =⇒ o
new−−→ x

x = y =⇒ y
assign/assignglobal−−−−−−−−−−→ x

x = y.f =⇒ y
getfield[f ]−−−−−→ x

x.f = y =⇒ y
putfield[f ]−−−−−→ x

Note that all edges are oriented in the direction of value flow. We
use the assignglobal label for copy assignments where either x or
y is a global variable (i.e., a static field), and the assign label other-
wise; both are treated as assign edges here, but the context-sensitive
analysis handles assignglobal edges specially (see Section 5). The
source of a new edge is the corresponding abstract location node.
For getfield[f] and putfield[f] edges, the field f is part of the edge
label. Loads and stores to array elements are modeled by collaps-
ing all array elements into a field arr; for example, x.a[i]=y is
translated to tmp=x.a; tmp.arr=y;. Figure 4(b) gives G for the
program of Figure 4(a).

We model method calls in our graph to handle interprocedural
flow. For each method m, G has a node for each of m’s formal
parameters and a special retm node for m’s return statements. At
call site i of m, we add param[i] edges from each actual parameter
to the appropriate formal parameter and a return[i] edge from the
retm node to the appropriate caller’s variable. In this subsection,
which presents context-insensitive analysis, param[i] and return[i]
edges are treated as assign edges, allowing unrealizable paths; the
context-sensitive analysis of Section 4.2 filters out such paths.

To soundly handle virtual calls, the analysis must determine
possible virtual call targets using a conservative call graph [11]. An
inexpensive analysis, typically based on declared types (e.g., [4]),
can be used to compute an approximation of virtual call targets
prior to points-to analysis. However, this approach can cause signif-
icant imprecision in the subsequent points-to analysis [20, 21, 26].
A more precise solution is to compute targets of virtual calls on
the fly, i.e., as the relevant points-to information is computed; for a
context-sensitive analysis, this technique yields a context-sensitive
call graph. We elide our formulation of on-the-fly call graph con-
struction in CFL-reachability for lack of space. Our analysis com-
putes an on-the-fly call graph by raising recursive points-to queries
for virtual calls, as described in Section 5. For clarity’s sake, the
remainder of this section and Section 4 are presented assuming the
existence of some prior conservative call graph.
The Language LF. We now define the language LF used to com-
pute context-insensitive points-to analysis. Recall from Section 2.2
that we want to define LF such that x is LF-reachable from o iff
o ∈ pt(x). We first consider programs without field accesses, cor-
responding to graphs restricted to new and assign edges. For such
graphs, LF is defined by the grammar below (flowsTo is the start
non-terminal):

flowsTo→ new ( assign )∗

Intuitively, an object can flow to a variable from an allocation site
only through a new edge followed by a (possibly empty) sequence
of assign statements. For example, in Figure 4(b), the path o1

new−−→
x

assign−−−→ w is a flowsTo-path witnessing o1 ∈ pt(w).
We now extend LF to track value flow through the heap via

putfield[f] and getfield[f] statements. Recall that we seek a precise
(i.e., field-sensitive) handling of field accesses, as described in
Section 2.1. We define field-sensitivity more formally in terms of
may-aliasing:

Definition 3.1. Two pointers x and y are may-aliased iff pt(x) ∩
pt(y) 6= ∅.
Definition 3.2. Given a heap read statement a = b.f with base
pointer b, a heap write statement c.f = d to the same field f with
base pointer c, and o ∈ pt(d), a field-sensitive analysis concludes
o ∈ pt(a) iff b and c are may-aliased.

To precisely track flow through the heap, we extend the flowsTo
production:

flowsTo→ new ( assign | putfield[f ] alias getfield[f ] )∗

This flowsTo production assumes the existence of an alias language
(to be defined shortly) that captures may-aliasing: x alias y ⇔
pt(x) ∩ pt(y) 6= ∅. The alias path connects the base variables of
the field accesses, matching the may-aliasing in Definition 3.2.

We have now reduced the problem of defining LF to defining
the alias language. Observe that we can check for aliasing of x
and y by means of flowsTo-paths: x and y are may-aliased iff
there is an object o such that o flowsTo x and o flowsTo y, i.e.,
o ∈ pt(x) ∩ pt(y). Unfortunately, reasoning about may-aliasing
in terms of two flowsTo-paths is unsuitable for CFL-reachability,
which can only check language membership of strings on a single
path. Since these two flowsTo-paths cannot be concatenated to



form a single path from x to y, we need to extend our graph
representation, as presented in [29] for the C language, to complete
the CFL-reachability formulation.

To allow for alias paths, we extend our graph by introducing
inverse paths. With inverse paths, the (x alias y)-path can be
constructed by concatenating the inverse of the (o flowsTo x)-
path with the (o flowsTo y)-path. We invert the flowsTo-path using
inverse edges: for each edge x → y in G labeled t, there is an
inverse edge y → x in G labeled with t, following the notation
of [29]. Given a path p, the inverse path p is then constructed using
inverse edges in the obvious way. So, an (x alias y)-path can be
now defined as a path x flowsTo o flowsTo y, for some node o. The
alias language is defined by the following grammar:

alias → flowsTo flowsTo
flowsTo → ( assign | getfield[f ] alias putfield[f ] )∗ new

Note the absence of the alias non-terminal symbol; we use alias
instead because the two generate the same language: alias →
flowsTo flowsTo = flowsTo flowsTo = flowsTo flowsTo = alias. LF
is described in greater detail in [37].

As mentioned in Section 2.2, LF is a language of balanced
parentheses. Note that because of inverse edges, we have two pairs
of matched parentheses for each field f , (putfield[f], getfield[f])
and (getfield[f], putfield[f]). We use these parentheses to guide our
approximation and refinement, as discussed in Sections 2.3 and 5.
Example. Let us derive a flowsTo-path from o2 to v in Figure 4(b).
First, we derive y alias w using statements 1, 3, and 4.

y assign x new o1 new x assign w

→ y flowsTo o1 flowsTo w

→ y alias w

With this alias path, we can derive o2 flowsTo v using statements 2,
5 and 6:

o2 new z putfield[f ] y alias w getfield[f ] v

→ o2 flowsTo v

4. Context-Sensitive Points-To Analysis
This section extends the points-to analysis of Section 3 with
context-sensitivity. Section 4.1 defines context-sensitive points-
to analysis and discusses its precision benefits. Section 4.2 for-
mulates the analysis in CFL-reachability by adapting previous
techniques [27, 31]; the key difference from Rsc in Section 2.2
is handling of partially balanced parentheses. Finally, Section 4.3
discusses how our analysis handles programs with recursion.

4.1 Context-Sensitive Analysis Problem
A context-sensitive points-to analysis precisely models calls and
returns. As in Section 2.1, we assume the input program P to
be recursion-free; this assumption is relaxed in Section 4.3. Let
P ′ be the program constructed by inlining all method calls in P .
The context-sensitive flow-insensitive points-to analysis problem is
defined as computing the result of the context-insensitive analysis
of Section 3 on the (call-free) program P ′. Note that the actual
algorithm need not work over P ′; it must only compute the same
points-to relation.

To satisfy context-insensitive analysis clients, we must define a
method for projecting the context-sensitive analysis result for P ′

back to P . The points-to relation pt′ computed on P ′ refers to
copies of variables and abstract locations from P created during
inlining. A context-insensitive analysis client, e.g., the downcast
safety checker of Section 2.4, raises queries for variables from

P ; we must define the context-sensitive result for variables in P
for use with such clients. We denote a (local) variable in P ′ as
〈v, c〉, where v is the corresponding variable in P and c is the
complete sequence of call sites (or call string) that was inlined to
create the copied variable, from the root of the call graph for P to
the method declaring v. The (copied) allocation sites of P ′ have
analogously named abstract locations. Thus, pt′ maps “context-
refined” variables to “context-refined” abstract locations: 〈o, c′〉 ∈
pt′(〈x, c〉). This result is projected back to P in the natural manner:

pt(x) ≡ { o | ∃ c, c′ . 〈o, c′〉 ∈ pt′(〈x, c〉)}

This definition of context-sensitive points-to analysis yields two
of the three desired analysis properties discussed in Section 1. The
analysis filters out unrealizable paths [31], as P ′ has no method
calls, and hence no unrealizable paths. Analyzing P ′ yields a
context-sensitive heap abstraction; each inlined copy of an allo-
cation site from P is represented with its own abstract location,
and hence the corresponding allocated objects are distinguished.
Since (for simplicity) the definition assumes the existence of a
conservative call graph (to inline methods), it does not require the
construction of a context-sensitive call graph. Nonetheless, our
analysis constructs such a call graph, as discussed in Sections 4.3
and 5.

To see the relevance of these properties to computing precise
results, consider the downcast checking example of Section 2.4,
which required distinguishing the contents of two Vector objects.
If the analysis did not filter out unrealizable paths, the parameters
and return values of the calls to Vector.get() at lines 25 and 36 of
Figure 2 would be conflated, preventing the analysis from proving
that the two calls can return distinct objects. The context-sensitive
heap abstraction is required to distinguish the internal arrays of the
two Vectors, both allocated at line 3. A context-insensitive heap
abstraction represents both of these arrays with a single abstract
object, and hence merges the contents of the Vector objects. The
need for a context-sensitive call graph stems from spurious recur-
sion in context-insensitive call graphs, and is discussed along with
our handling of recursion in Section 4.3.

4.2 Context-Sensitive Analysis in CFL-Reachability
Here we show how to extend the analysis formulation from Sec-
tion 3 to compute a context-sensitive points-to analysis. We will
show how to answer both a projected query “is o ∈ pt(x)?” and
a context-sensitive query “is 〈o, c′〉 ∈ pt′(〈x, c〉)?”. We achieve
context sensitivity by filtering out flowsTo-paths that correspond to
unrealizable paths [31], without explicitly constructing P ′.

To filter out unrealizable flowsTo-paths, we develop a regular
language RC that describes all realizable paths in G; flowsTo-
paths are then filtered by checking if they are also RC-paths. A
flowsTo-path p corresponds to a realizable control-flow path iff after
entering a method m from call site i, it exits from m back to call site
i. Matching these call entries and exits is a well-known balanced
parentheses problem [29].

Because of inverse paths, defining call entries and exits for
flowsTo-paths is slightly tricky. In the absence of inverse paths,
a realizable flowsTo-path traverses a method in the direction of
value flow, entering through a param[i] edge and exiting through
a return[i] edge. (Here, i is a unique identifier of a call site. The
two edges are defined in Section 3.) However, when a realizable
flowsTo-path p contains inverse flowsTo subpaths, p might enter a
method through a return[i] edge and/or exit through a param[i]
edge. Hence, we define call entries and exits through the following
non-terminals callEntry[i] and callExit[i]:

callEntry[i] → param[i] | return[i]
callExit[i] → return[i] | param[i]



S
callEntry[i]−−−−−−→ S.i S

assignglobal−−−−−−−→ ε

ε
callExit[i]−−−−−→ ε S

assignglobal−−−−−−−→ ε

S.i
callExit[i]−−−−−→ S S

match−−−→ ε

S.j
callExit[i]−−−−−→ error (i 6= j) S

match−−−→ ε

Figure 5. State transitions in the FSM for language RC. The transi-
tions for match and assignglobal edges are discussed in Section 5.

Figure 5 defines the transitions in the finite-state machine for
RC, where each state is a finite stack configuration corresponding
to callEntry[i] edges (i.e., the open parentheses). We discuss the
match and assignglobal edge transitions in Section 5. Though it
checks for balanced parentheses, RC is a regular language because
we assume the input program is recursion-free, and hence there
are a finite number of possible stack configurations. Transitions in
the FSM manipulate the stack in the usual way. The initial state is
an empty stack configuration. All states except the error state are
accept states, and all transitions not shown are self-transitions (i.e.,
the state machine ignores edges processed by LF, such as assign
and putfield[f]).

RC allows partially balanced parentheses since a realizable
path need not start and end in the same procedure. For example,
paths to a formal parameter are realizable, though they end with an
unmatched callEntry[i] edge. To model this scenario, an RC-path p
is allowed to contain a prefix with unbalanced closed parentheses,

due to the ε
callExit[i]−−−−−→ ε transition, and a suffix with unbalanced

open parentheses, as only mismatched callExit[i] edges cause a
transition to error. (This is not specific to our formulation of
context-sensitive analysis [27, 29].)

RC provides a context-sensitive heap abstraction by treating ab-
stract location nodes identically to variable nodes. Since new and
new are not mentioned in Figure 5, RC has self-transitions from all
states on both symbols. Hence, the RC stack is maintained at ab-
stract location nodes, yielding a context-sensitive heap abstraction
in an elegant manner.

Given RC, a context-sensitive points-to analysis algorithm can
be stated concisely. The answer to a projected query “is o ∈ pt(x)?”
for program P , represented by graph G, is found by checking for
the existence of a flowsTo-path p from o to x in G such that p is
also an RC-path. In other words, we compute CFL-reachability
on G with language LCF = LF ∩ RC, where LF was devel-
oped in Section 3. The answer to the context-sensitive query “is
〈o, c′〉 ∈ pt(〈x, c〉)?” is obtained by modifying RC: we set the ini-
tial state of the state machine for RC to c and make c′ the only
accepting state, thereby mapping the nodes o and x to the appropri-
ate inlined copies 〈o, c〉 and 〈x, c′〉. Note that while the call strings
of Section 4.1 must start at the root of the call graph, our analy-
sis allows queries with partial calling contexts, since they are valid
RC states. Since RC only filters paths with mismatched call entries
and exits, computing points-to information for program P using
LCF-reachability is equivalent to the projected result of computing
LF-reachability for fully inlined program P ′, as desired.

LCF-reachability can be computed by tracking the state of RC
for each explored path while computing LF-reachability; paths
which cause RC to reach its error state are excluded. This technique
essentially explodes the input graph for RC [31], creating a node
(x, s) when node x is reached with state s of RC. As |RC| is
exponential in the size of the program (due to the exponential
number of paths in the call graph), this algorithm has worst-case
exponential time complexity. In practice the algorithm does not
scale, motivating our refinement approach.

4.3 Handling Recursion
Until this point, we have assumed that the input programs for
our analysis are recursion-free; here, we discuss how we handle
recursive programs. We leverage our demand-driven approach to
only approximate recursive calls in the program subset relevant
to a query, reducing the number of calls that must be handled
imprecisely.

As context-sensitive and field-sensitive analysis for programs
with recursion has been shown undecidable [30], any analysis with
both properties must approximate to guarantee termination. One
approximation approach is to use k-limiting, i.e., tracking at most k
levels of calling context [35]; however, this approach approximates
more than what is necessary to achieve decidability. A less drastic
approximation is to treat calls within strongly-connected compo-
nents (SCCs) of the call graph as gotos [17, 43]. This approach
essentially re-labels param[i] and return[i] edges within an SCC
with assign, collapsing the SCC into a single method and making
the program recursion-free, yielding decidability.

With a context-insensitive call graph, the SCC-collapsing ap-
proximation leads to a large precision loss. As shown in [21], for
large programs a context-insensitive call graph typically has an
SCC with more than 1000 methods, including methods whose han-
dling is critical to analysis precision, e.g., those of Vector. A more
precise call graph is necessary to avoid approximate handling of all
calls within this large SCC.

Our analysis only approximates handling of method calls that
are recursive in a call graph computed during the demand-driven
analysis. As our analysis only touches edges in G relevant to the
current query, the recursive cycles it encounters are a subset of
all the recursive cycles in the call graph. Consider a query for
the objects possibly returned by a call to this simplified version
of Vector.elementAt() from the Java standard library:

Object elementAt(int index) {
if (index >= numElements) {

throw new OutOfBoundsException(index + " too big"));
}
return elems[index];

}

Our analysis considers only the array access and the read of the
elems field in the return statement, ignoring the calls to the
OutOfBoundsException constructor and String and StringBuffer
methods from the string concatenation. In a context-insensitive call
graph that considers all control flow, these ignored calls lead to
elementAt() being included in the aforementioned large SCC. Our
analysis approximates less due to recursion since it constructs a
context-sensitive call graph in the program subset relevant to each
query, ignoring many potentially recursive calls.

5. The Refinement-Based Algorithm
In this section, we present the details of our refinement-based
points-to analysis algorithm. In Section 2.3, we presented the al-
gorithm for the problem of checking a single path’s string for
membership in a simplified version of our reachability languages.
Here, we add support for determining LCF-reachability in arbitrary
graphs.

We use the AddrBook example of Figure 2 to illustrate the algo-
rithm, again considering a client trying to prove safety of the cast
of name to String at line 27, which requires computing pt(name).
Figure 6 shows the relevant part of the graph representation for the
code in Figure 2. To prove the cast safe, the analysis must discover
that there is no (LF ∩ RC)-path from o34, an Integer object, to
the nameupdate node. The columns in Figure 6 indicate how the anal-
ysis explores the graph during refinement. The initial pass of the
algorithm visits the left-most column, and each subsequent pass
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Figure 6. Relevant portion of graph for code in Figure 2. Solid
edges represent program statements, with single edges for intrapro-
cedural statements and double edges for call entry and exit state-
ments. Variables are subscripted with the name of the enclosing
method, and line numbers in labels refer to call sites or allocation
sites. The dashed edges are match edges. For space, getfield and
putfield are abbreviated gf and pf.

additionally visits the next column to the right, until the safety of
the cast is proven.
Approximation. As discussed in Section 2.3, we use match edges
between corresponding field accesses to enable approximation. LF
(defined in Section 3) has two types of matched parentheses pairs,
(putfield[f],getfield[f]) and (getfield[f],putfield[f]); we add match
edges for the former type (shown as dashed edges in Figure 6,
and match edges for the latter type. The match edges define the
columns of Figure 6, as the analysis uses match edges to limit its
scope in each pass. This correspondence was shown previously in
Figure 3, where in each analysis pass, the gray shading (indicating
analyzed code) stops at the first field whose accesses still have
match edges.

Our language for computing reachability with match edges is
LFR (R for refinement), with start symbol flowsToR:

flowsToR → new ( assign | putfield[f ] aliasR getfield[f ]
| match )∗

aliasR → flowsToR flowsToR

Note that similar to LF, LFR treats param[i], return[i], and
assignglobal edges as assign edges. Section 2.3 described how
the algorithm uses match edges to “skip” checking for a valid path
between matched parentheses. Here, match edges allow the anal-
ysis to skip from a putfield[f] source to a getfield[f] sink without
finding a connecting aliasR-path. In Figure 6, the algorithm skips
from retget to padd using a match edge in its first pass, never leav-
ing the first column of the graph. However, this leads the analysis

to conclude that o34 is in the points-to set, necessitating refinement.
Note that the analysis cannot filter out the param[35] edge in this
pass, as it reaches add() through a match edge and hence cannot
rule out call site 35.
Refinement. Selective refinement is accomplished by removing
match edges from the graph, as in Section 2.3. Removal of match
edges forces the analysis to search for more aliasR-paths, as it can
no longer skip between the corresponding field accesses; this search
can yield a more precise analysis result. In the example, the second
pass of our analysis refines by removing the retget

match←−−− padd
in Figure 6. This removal forces the analysis to handle the read
and write of arr by checking for an aliasR-path from tget to tadd.
Since match edges in the second column remain, the analysis only
explores the first two columns of the graph. In this case, an aliasR-

path is found by connecting flowsToR-path tget
match−−−→ tVector

new−−→
o3 with flowsToR-path o3

new−−→ tVector
match−−−→ tadd. Again, the

analysis cannot filter the path using the param[35] edge, as add()
is reached through a match edge. So, further refinement is needed.
Context Sensitivity. As in Section 2.3, a match edge can skip
over an arbitrary sequence of method calls and returns, requir-
ing approximation of context sensitivity. As shown in Figure 5,
RC “forgets” calling context information when “traversing” match

edges using the transition S
match−−−→ ε and treats match analogously.

We transition to ε since RC accepts any callExit[i] symbol in that
state. Each pass of our analysis algorithm computes (LFR ∩ RC)-
reachability, using RC to filter unrealizable flowsToR-paths as much
as possible, i.e., by checking that subpaths between match edges
are RC-paths. As previously noted, the first two passes of the analy-
sis of the example were unable to disregard the param[35] edge, as
RC state was cleared across a match edge before reaching add().

Removal of match edges can lead to filtering of paths because
it exposes more call entry and exit edges for analysis. After the sec-
ond pass, our analysis further refines field-sensitivity by removing
match edges on the elems field, i.e., the tVector

match−−−→ tget and
tVector

match−−−→ tadd edges in the second column of Figure 6. So, in
the third pass the analysis must find aliasR-paths from thisget to
thisVector and from thisVector to thisadd. Clearly, the this param-
eters of the Vector methods can be aliased; hence, the key to pre-
cision will be to use the state of RC tracked along the aliasR-paths
between the this parameters to do filtering.

The tracking of RC state in the third pass of our analysis yields a
result precise enough for proving the downcast safe in the example.
When searching for an aliasR-path from thisget to thisVector, the
analysis starts with RC call stack 〈25〉, a call site for Vector.get()
in Figure 2. The aliasR-path to thisVector combines the flowsToR-

path thisget
param[25]−−−−−→ tupdate

match−−−→ tAddrBook
new−−→ o16 and the

flowsToR-path o16
new−−→ tAddrBook

param[16]−−−−−→ thisVector. Tracking
RC state along this aliasR-path yields call stack 〈16〉 at thisVector;
essentially, the analysis has concluded that the get() call at line 25
of Figure 2 must be on a Vector allocated at line 16, i.e., a Vector
used by an AddrBook.

Similarly, after finding an aliasR-path from thisVector to
thisadd, the analysis reaches thisadd with RC call stack 〈20〉, con-
cluding that add() must be entered from the call site at line 20.
The analysis can then filter out the add() call at line 35, thereby
filtering o34 from pt(name) and yielding the desired result, i.e., that
nameupdate is not (LF ∩ RC)-reachable from o34. Notice that the
result is computed without touching the fourth column of Figure 6,
illustrating how our technique can compute a sufficiently precise
result while limiting analysis scope.
Refinement Policy. We have yet to specify how we choose match
edges to remove after each analysis pass. We remove match edges



checkingAlias : Set of ((Node, Context), Node)

FINDPOINTSTO(x, c, visited)

1 if (x, c) ∈ visited then return ∅; ADDTO(visited , {(x, c)})
2 pointsTo ← ∅
3 for each edge x

new←−− o do ADDTO(pointsTo, {(o, c)})
4 for each edge x

assign←−−− y
5 do ADDTO(pointsTo, FINDPOINTSTO(y, c, visited))

6 for each edge x
assignglobal←−−−−−−− y

7 do ADDTO(pointsTo, FINDPOINTSTO(y, ε, visited))

8 for each edge x
getfield[f ]←−−−−−− y

9 do for each edge q
putfield[f ]←−−−−−− p

10 do if edge x
match←−−− p exists

11 then ADDTO(pointsTo,
FINDPOINTSTO(p, ε, visited))

12 continue
13 if ((y, c), q) ∈ checkingAlias then continue
14 ADDTO(checkingAlias, {((y, c), q)})
15 yPointsTo ← FINDPOINTSTO(y, c, ∅)
16 yAlias ← ∅
17 for each (o, c′) ∈ yPointsTo
18 do ADDTO(yAlias,

FINDFLOWSTO(o, c′, ∅))
19 for each (r, c′′) ∈ yAlias
20 do if q = r
21 then ADDTO(pointsTo,

FINDPOINTSTO(p, c′′, visited))
22 REMOVEFROM(checkingAlias, {((y, c), q)})
23 for each edge x

return[i]←−−−−− y
24 do ADDTO(pointsTo,

FINDPOINTSTO(y, PUSH(c, i), visited))

25 for each edge x
param[i]←−−−−− y

26 do if c = ε or PEEK(c) = i
27 then ADDTO(pointsTo,

FINDPOINTSTO(y, POP(c), visited))
28 return pointsTo

Figure 7. Pseudocode for the core of our algorithm. We
elide (1) the FINDFLOWSTO procedure, which is analogous to
FINDPOINTSTO but traverses edges in the opposite direction; (2)
The outer refinement loop, which checks if the result is sufficiently
precise for the client and removes match edges according to the
refinement policy; (3) code for constructing the context-sensitive
call graph, described at the end of Section 5; and (4) code for col-
lapsing call graph SCCs, described in Section 4.3. The PUSH and
POP procedures return a new stack corresponding to the respective
operation on their argument(s), while ADDTO and REMOVEFROM
mutate the set passed as the first argument.

with the goal of distinguishing the field contents of different objects
of some class T; as shown in Figure 3, match edges for accesses
of field f cause merging of the contents of f across objects. Our
method for choosing T is straightforward, but empirically effective:
we choose the enclosing class for the field corresponding to the first
match edge encountered in the previous analysis pass, and then
remove match edges on all fields of this class.2 In the example of
Figure 6, we encounter a match edge on arr in the first pass and
elems in the second pass, leading to removal of match edges on
those fields. Removing these match edges allows the analysis to
distinguish the contents of the internal Object array of a particular
Vector, as desired.

2 We also remove match edges for fields in superclasses and inner classes
of T, as they also tend to be relevant.

Pseudocode. Figure 7 gives pseudocode for the core of our algo-
rithm. Given a variable x and a call stack c, the procedure call
FINDPOINTSTO(x, c, ∅) returns the points-to set of x in context c,
containing pairs (o, c′) (see Section 4.1). The algorithm traverses
the graph looking for incoming flowsToR-paths to x, filtering those
paths using the tracked call stack state for RC. Note that since
the procedure traverses edges in the inverse direction, an incoming
return[i] edge (i.e., a return[i] edge) requires pushing on the call
stack (line 24) and an incoming param[i] edge (a param[i] edge)
requires popping (line 27). The check for c = ε at line 26 allow for
partially balanced call parentheses.

The algorithm clears the RC state across match edges as ex-
pected (line 11) and also across assignglobal edges (line 7). We
model accesses to globals in our graph with direct assignments,
using assignglobal and assignglobal labels to distinguish such ac-
cesses from assignments between locals. Figure 5 shows that RC

has transitions S
assignglobal−−−−−−→ ε (analogously for assignglobal), since

like match edges, these edges also “skip” the sequence of calls and
returns between the reads and writes of the corresponding global.

The only non-trivial aspect of the algorithm in Figure 7 is its
handling of graph cycles. For cyclic paths with no getfield[f] or
putfield[f] edges, the visited set ensures that we only visit each
node once per call stack. A more complex situation arises for a
cyclic path with field accesses, for example caused by a statement
like x = x.next. The analysis may need to process this statement

multiple times, for example to discover paths of the form p
pf[next]−−−−→

q
pf[next]−−−−→ r

aliasR−−−→ x
gf[next]−−−−→ x

gf[next]−−−−→ x. We ensure termination
using the checkingAlias set, which holds the pairs ((y, c), q) such
that the algorithm is currently searching for an aliasR-path p from
y to q in context c. Line 13 ensures that we do not recursively
repeat the search for p; this test is sound since if the existence
of p depends solely on p itself existing, then p cannot exist. The
algorithm terminates since the sizes of visited and checkingAlias
are bounded.
Call Graph Construction. We construct a context-sensitive call
graph, i.e., a call graph where targets of virtual calls are computed
separately for each calling context, by raising call graph queries
on the fly. Say that, during analysis, we reach a virtual call x.m()
with RC call stack c. To handle the call, we recursively query the
analysis for pt(x) in context c, use this result to determine the pos-
sible callees of the x.m() call, and then continue our original query
in these callees. There may be cases where targets of virtual calls
cyclically depend on each other; we handle such cases by tracking
pending queries and re-propagating them as new call targets be-
come known, a standard technique in demand-driven analyses [31].

6. Evaluation
Our experiments validated the following three experimental hy-
potheses:

Some clients need context sensitivity. We confirmed, as shown
previously [21], that context-insensitive analysis does not have
enough precision for the cast-checking client, as it could only
prove 7.8% of the downcasts in our benchmarks safe.

Our refinement approach is precise. Our refinement algorithm
proved 61% more casts safe on average than one of the most
precise existing algorithms [21], and refinement was critical for
this precision gain. Also, our algorithm proved a disjointness
property of objects allocated in some factory methods, requiring
precision beyond that of the existing algorithm.

Our refinement approach is scalable. With the analysis budget
we chose, our algorithm checked all application downcasts in
under 13 minutes on all benchmarks. Furthermore, our algo-
rithm required no more than 35MB of memory for any of the



benchmarks, an order of magnitude less than the memory re-
quirements for existing comparable analyses.

6.1 Experimental Configuration
Implementation We implemented our analysis using the Soot
2.2.1 [41] and Spark [20] frameworks. For our graph represen-
tation, we augment the pointer assignment graph built by Spark
with param[i] and return[i] edges for context sensitivity. We an-
alyzed the Sun JDK 1.3.1_01 libraries, as Soot provides models
of this version’s native methods. Unmodeled native methods and
reflection calls are handled by conservatively answering that the
queried variable can point to any abstract location. All experiments
were performed on a machine with a Xeon 2.4GHz processor and
2GB RAM, running Fedora Core 1 Linux.

Our implementation adds two optimizations to the algorithm
described in Figure 7. The first is to cache the results of the
FINDPOINTSTO and FINDFLOWSTO procedures when possible,
as they are often invoked repeatedly with the same arguments for
a single query. The second is to sometimes use an alternate strat-
egy for finding aliasR-paths from y to q: rather than computing
the set of all variables V may-aliased with y and then checking if
q ∈ V (as in Figure 7), the analysis finds pt(y) and pt(q), and then
checks if pt(y) ∩ pt(q) 6= ∅, tracking RC state appropriately. The
latter strategy sometimes requires far less graph traversal, and the
implementation uses it when the former strategy fails.

We give experimental results for the following analyses:

DemRef: our demand-driven, refinement-based algorithm.
Full: our demand-driven algorithm configured to treat all code

with full precision, rather than refining.
1H: a 1-limited object-sensitive analysis [23] (i.e., limited to 1

level of object sensitivity) with a (1-limited) context-sensitive
heap abstraction and call graph, provided as part of the Paddle
framework for BDD-based analysis [19].

The 1H algorithm was chosen because in recent work [21], it was
shown to be the most precise of a set that included the Zhu and
Calman and Whaley and Lam algorithms [43, 46] and a call string
approach [35]. We were unable to run the 1H algorithm on the
chart benchmark within 2GB of RAM; the result for chart in
Table 2 is taken from [21], as its results for other benchmarks
exactly matched our observations.

To compare with an analysis that handles assignments with
equality constraints, we also implemented data structure analy-
sis [17], a context-sensitive analysis for C that we adapted to Java.
We implemented the analysis both with and without on-the-fly
context-sensitive call graph construction. We found that without a
context-sensitive call graph, the analysis was much too imprecise
for our clients; e.g., it could not prove any casts safe in most bench-
marks. This imprecision stemmed from the collapsing of call graph
SCCs by the analysis (see Section 4.3), which are large in a context-
insensitive call graph [21]. We were unable to sufficiently scale the
algorithm variant with context-sensitive call graph construction to
analyze our benchmarks; the most similar published analysis for
Java [26] had similar scalability issues.
Configuration. We configure our analysis to refine the precision
of context-insensitive field-sensitive Andersen’s analysis with an
on-the-fly call graph, as implemented in Spark [20]. We use the
context-insensitive analysis to answer queries that require less pre-
cision, and to rule out certain paths in our analysis. For example,
if we are trying to prove a cast of x to type T safe, we do not
traverse to nodes y where the context-insensitive analysis shows
that all locations in pt(y) are subtypes of T. The analysis is scal-
able, analyzing all benchmarks in under 3.5 minutes, including the
time required to construct the graph representation. We include the

Benchmark Methods Statements
compress 2722 36690

db 2741 37243
jack 2996 42729
javac 3916 77619
jess 3354 47645

mpegaudio 2927 41009
mtrt 2873 39180
soot-c 4979 90355

sablecc-j 8853 164056
polyglot 6227 120634
antlr 4021 77934
bloat 5415 106629
chart 7323 110594
jython 4560 69026
pmd 7388 115857
ps 5320 106718

Table 1. Information about our benchmarks. We include the
SPECjvm98 suite, soot-c and sablecc-j from the Ashes suite [1],
several benchmarks from the DaCapo suite version beta050224 [2],
and the Polyglot Java front-end [25]. The “Statements” column
gives the number of edges in the graph representation. The num-
bers include the reachable portions of the Java library, determining
using a call graph constructed on the fly with Andersen’s analy-
sis [3] by Spark [20].

context-insensitive analysis time in all presented running times for
our analysis.

Our refinement analysis is best run with a budget: after some
fixed amount of time for each query, the analysis terminates and
returns a conservative result to the client [37]. This budget prevents
the analysis from running excessively long on queries it cannot
hope to answer precisely, e.g., those that require flow-sensitive pre-
cision. For our experiments, we configured our analysis to traverse
at most 75000 nodes per query, divided evenly among a maximum
of 10 refinement iterations, a sweet spot for the tested clients; dou-
bling the budget yielded a negligible precision gain.
Benchmarks. Our benchmark suite is described in Table 1. We use
the same suite as that of [21], to compare with its object-sensitive
analysis. The size of the benchmarks are comparable to those used
in other recent Java points-to analysis studies [20, 43].
Clients. We evaluated our analysis using three clients. The first was
a client that checked the safety of downcasts in application code; as
in [21], library casts were excluded to make benchmark differences
clear, but the library was still analyzed when necessary for appli-
cation casts. As illustrated in Section 2.4, downcast checking is an
exacting test of points-to analysis precision, especially of the ability
to distinguish the contents of different data structures; an analysis
that fares poorly at proving downcast safety is unlikely to satisfy
other demanding clients.

We also experimented with a client that tries to prove disjoint-
ness of the contents of objects allocated in factory methods, i.e.,
methods that return a newly-allocated object for each call. For ex-
ample, an iterator() method typically allocates a new Iterator
object for each call. The client looks for factory methods using sim-
ple pattern matching, and then tries to prove disjointness of method
return values for objects allocated in different calls to these meth-
ods. For iterator(), the client tries to show that calls to next()
on Iterator objects allocated by different calls to iterator() can
return distinct objects. Proving such disjointness properties could
be important, e.g., to reduce false positives for a verification client.
Furthermore, this client requires greater precision than the 1H al-
gorithm of [21] can provide (since it requires at least 2 levels of



Benchmark Casts DemRef DemRef Full 1H
Time (s) Safe Safe Safe

compress 6 44.8 33.3 33.3 0.0
db 24 44.4 79.2 37.5 25.0

jack 135 62.8 52.6 23.0 31.1
javac 315 150.3 20.6 12.4 13.3
jess 76 63.7 72.4 6.6 57.9

mpegaudio 12 58.8 25.0 25.0 33.3
mtrt 10 47.4 50.0 40.0 40.0

soot-c 906 387.8 28.0 14.1 8.3
sablecc-j 362 315.8 18.5 5.5 11.9
polyglot 3482 750.3 88.1 6.8 72.5
antlr 281 118.2 50.9 2.8 21.7
bloat 1217 472.6 12.6 5.2 6.7
chart 535 283.5 38.5 9.0 30.5
jython 464 84.9 8.8 2.8 6.5
pmd 1135 571.7 15.1 10.0 11.2
ps 659 131.1 6.2 5.5 41.0

Table 2. Results for the cast safety client. The “Casts” column
gives the number of downcasts that context-insensitive analysis
cannot prove safe; these numbers differ from those in [21] because
we exclude casts of non-pointers (e.g.,float to int), as they can-
not cause a runtime exception. The three rightmost columns respec-
tively give the percentage of these casts proven safe by our refine-
ment algorithm (“DemRef”), our demand-driven algorithm config-
ured to treat all code precisely (“Full”), and the object-sensitive
analysis of [21] (“1H”). The “DemRef Time” column gives the run-
ning time for the refinement algorithm in seconds.

object-sensitivity), and hence illustrates the benefits of having a
more precise analysis.

Finally, to further test performance, we ran a client that queried
the DemRef analysis for all application variables where the 1H
analysis yielded a more precise result than context-insensitive anal-
ysis, representing a client that requires near-exhaustive points-to in-
formation. Due to space constraints, full data for this client and the
factory method client are given in a technical report [36]; here we
give an overview of their results.

6.2 Experimental Results
Imprecision of context-insensitive analysis. We found context-
insensitive Andersen’s analysis (from Spark [20]) to be insufficient
for proving downcasts safe in our benchmarks. The analysis could
prove an average of only 7.8% of casts safe, ranging from 0% for
compress to 31.7% for sablecc-j. This result is consistent with
previous work [21], and shows the client’s need for more precise
analysis.
Precision for cast-checking. Table 2 shows that our refinement
algorithm provides more precision for the cast-checking client than
the 1H algorithm. The refinement technique proved an average of
1.61x as many casts safe as the 1H algorithm (excluding compress
where 1H proved no casts safe), ranging from 0.15x for ps to 3.39x
for soot-c. The large precision benefit for the soot-c benchmark
stems primarily from precise handling of iterators. Given code
“Iterator i = x.iterator(); o = (Foo)i.next();”, proving
the cast to Foo safe is beyond the capabilities of the 1H algorithm.3

The refinement algorithm is significantly more precise for cast
checking (within the same budget) than a demand-driven analysis
that treats all code precisely (the “Full” algorithm), as shown in Ta-

3 Two levels of object-sensitivity (including the heap abstraction) would
suffice for this case, but that analysis does not yet scale in the Paddle
framework [18].

ble 2. Given the analysis budget of 75000 nodes, the algorithm with
refinement proved 4.25x more casts safe than without refinement,
ranging from 1x for mpegaudio to 17.88x for antlr; doubling the
analysis budget had a negligible impact on this result. The algo-
rithm without refinement is often even less precise than then 1H al-
gorithm, showing the importance of using both the demand-driven
approach and refinement.

There are several reasons why some casts cannot be proven
safe by our analysis. DemRef was less precise than 1H for the
ps benchmark due to 181 casts of objects read from an operator
stack mutated in many parts of the program; the large amount of
relevant code led to DemRef choosing incorrect fields to refine
for these casts. Proving certain casts safe requires flow- or path-
sensitivity, e.g., for casts dominated by an instanceof check that
ensures their safety; many such casts can be proven safe by an extra
intraprocedural analysis [26, 42]. Sometimes, context-sensitive call
graph construction consumes the bulk of analysis time for DemRef,
but is unnecessary for a precise result; automatically determining
which virtual call sites require precise handling is future work.
Precision for factory methods. Our analysis proved the contents
of many factory-allocated objects disjoint (see [36] for the full
data). Excluding benchmarks with fewer than 5 factory methods,
the analysis proved disjointness for an average of 42.8% of the
methods in each benchmark, ranging from 21.4% for jython to
91.7% for jess. This result shows that precision greater than that
provided by the 1H algorithm is required for realistic clients besides
downcast checking, and that our analysis can provide that precision.
Scalability of refinement approach. Due to our demand-driven
approach, the memory requirements of our analysis are signif-
icantly less than those of previous approaches. In the experi-
ments, our analysis never consumed more than 5MB of memory
for any query, and our implementation does no caching between
queries. The memory required to store the results from the context-
insensitive analysis pre-pass is less than 30MB using BDDs [5],
yielding a maximum memory requirement of 35MB for these
benchmarks. In comparison, we could not run the object-sensitive
algorithm of [21] on the chart benchmark within 2GB of RAM,
and a precise equality-based analysis requires 1GB of RAM on
large benchmarks [38].

Table 2 shows that the refinement algorithm scaled well for the
cast checking client, taking under 13 minutes for each benchmark.
The factory method client took under 4 minutes per benchmark, as
it raised few queries. The longest running time for the client query-
ing all application variables for which the 1H algorithm yielded
greater precision than context-insensitive analysis was 94 minutes
for pmd, with an average query time of 0.68 seconds (full data
in [36]). Our current implementation computes each query result
from scratch, and we believe that for large numbers of queries, per-
formance could be significantly improved through more caching.

7. Related Work
We limit our discussion of related work to several closely related
areas: context-sensitive points-to analysis, refinement-based anal-
ysis, demand-driven points-to analysis, CFL-reachability, and cast
verification. See [11, 15, 34] for comprehensive discussions and
comparisons of various points-to analyses.
Context-Sensitive Points-To Analysis. Our points-to analysis is
distinguished from previous work by its ability to scalably compute
a context-sensitive heap abstraction and call graph while requiring
far less memory than existing approaches. Table 3 gives key proper-
ties of several other context-sensitive points-to analysis algorithms;
here we summarize some of the approaches taken by these analy-
ses.

While effective for clients like escape analysis, summary-based
analyses with subset constraints [44, 45] have only been shown to



Algorithm Eq / CS CS Shown to
Sub CG Heap Scale

Zhu / Whaley [43, 46] Sub X
Whaley [44] Sub
Choi [7] Sub
Fähndrich [9] Eq X X
Rehof [27] Sub X
Wilson [45] Sub X
Cherem [6] Eq X
Ruf [33] Eq X 1.1 lib
Liang [22] Eq X
Guyer [12] Sub X
Lattner [17] Eq X X
O’Callahan [26] Eq X X
Steensgaard (CS) [38] Eq X X X
Wang [42] Sub X X 1.1 lib
Object-sensitive [21, 23] Sub X X 1-limited
Naik [24] Sub X X 3-limited
Current paper Sub X X X

Table 3. A comparison of key properties of previous analyses. Al-
gorithms are named by first author unless they have been referred
to differently in this paper; note that Steensgaard (CS) [38] is dif-
ferent than his original analysis [39]. The “Eq/Sub” column in-
dicates whether assignments are modeled with equality or subset
constraints, and the “CS CG” and “CS Heap” columns respectively
indicate the use of a context-sensitive call graph and heap abstrac-
tion. Finally, the “Shown to Scale” column indicates whether the
algorithm has been shown to scale to large Java benchmarks; “1.1
lib” means the smaller Java 1.1 libraries were analyzed, and k-
limiting [35] is indicated where used.

scale to medium-sized programs. Summary-based analyses that use
equality constraints have typically been more scalable [9, 17, 26,
38]. The algorithms of O’Callahan [26] and Lattner and Adve [17]
scale well with a context-sensitive heap abstraction, but are less
scalable when computing a context-sensitive call graph. A similar
analysis for C# scales with a context-sensitive call graph [38], but
still requires more than 1GB of memory on its largest benchmark.

Binary decision diagrams (BDDs) have been used in several re-
cent systems to greatly improve the scalability of context-sensitive
analysis. The Zhu and Calman [46] and Whaley and Lam [43] al-
gorithm, while quite scalable, uses a context-insensitive heap ab-
straction and call graph, leading to precision loss [21]. We compare
extensively with the BDD-based 1-limited object-sensitive analysis
of [21] in Section 6; object-sensitive analysis [23] analyzes meth-
ods separately based on the receiver object instead of using call
strings, exploiting typical object-oriented code structure for greater
precision and scalability.

Naik et. al. present a static race detection tool based on a scal-
able 3-limited object-sensitive analysis [24]. It is difficult to com-
pare our analysis with theirs directly, as their race detection client
raises object-sensitive queries, which are in general incomparable
with context-sensitive queries [23]. As future work we plan to de-
sign an object-sensitive version of our analysis, allowing for a bet-
ter comparison.
Refinement-Based Analysis. Guyer and Lin [12] present a client-
driven points-to analysis for C that detects which statements cause
imprecision for a given client, and then re-analyzes the program
with greater flow and context sensitivity for those statements. Their
results show that they obtain much of the precision benefit of flow
and context sensitivity at a small extra cost, and their work was an
inspiration for ours. The key difference with our work is that their
analysis adds sensitivity to all possibly polluting statements when

imprecision is detected; this approach does not scale for Java, as it
requires too much code to be treated precisely.
CFL-Reachability. Our use of CFL-reachability is based on
the work of Reps et. al. on the framework [29, 31]. Given a
CFL-reachability formulation, a demand-driven algorithm [16]
for the single-source L-path problem can be obtained automati-
cally by applying the magic-sets transformation to L [29]. Our
match edges are related to the summary edges used by the ef-
ficient CFL-reachability algorithm for balanced parentheses lan-
guages [28, 31, 32]. Summary edges are computed bottom-up as
L-paths between parentheses are found, while match edges are
added exhaustively and then refined by checking for L-paths.
Demand-Driven Points-To Analysis. The current work builds on
our own previous work on demand-driven points-to analysis [37].
The key addition of the present work is context sensitivity. In
the previous algorithm, the balanced parentheses property of Java
points-to analysis was used to create an analysis that traversed a
small portion of the graph to compute an answer, for use with
tight time budgets. Here, we use the balanced parentheses to both
guide our refinement, as they indicate where more field and con-
text sensitivity is needed, and to avoid processing irrelevant parts
of the graph. We have also added precise handling of recursive
fields in the current algorithm, which is more important in the
context-sensitive setting for handling data structures like Java’s
LinkedList. Finally, the present works adds on-the-fly call graph
building.
Cast Verification. Constraint-based analyses have been developed
to convert legacy Java programs to use Java 5 generics, and they
have been shown to prove many downcasts safe [8, 10]. These anal-
yses rely on the generics annotations of Java 5 java.util classes
to model their behavior. In contrast, our approach determines prop-
erties of library code without annotations, and hence handles ap-
plication data structures as well. Furthermore, our analysis can be
used for more than cast safety, as shown by our factory method
client. In other work, Wang and Smith present a context-sensitive
constraint-based type analysis [42] and show that it is effective
at proving downcasts safe. However, they analyze the Java 1.1 li-
braries, which are significantly smaller than the Java 1.3 libraries
used in the present work.

8. Conclusions
We have developed a refinement-based, demand-driven context-
sensitive points-to analysis that is both scalable and precise. By
refining sensitivity for heap accesses and method calls simultane-
ously, the analysis precisely handles the important code for a query,
while often entirely skipping irrelevant code. For the demanding
downcast checking client, our analysis proved the safety of 61%
more casts than one of the most precise existing analyses, while
running in under 13 minutes on large benchmarks and requiring
under 35MB of memory. Our technique is a compelling alterna-
tive to existing points-to analysis approaches, as its combination
of demand-driven analysis and refinement allow it to provide suffi-
ciently precise results for demanding clients, while scaling to large
programs with relatively little engineering effort.
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