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Refinement Computations of Electromagnetic Fields
Using FE and Meshless Methods

S. L. Ho1, Shiyou Yang2, H. C. Wong3, Edward W. C. Lo1, and Guangzheng Ni2

Electrical Engineering Department, Hong Kong Polytechnic University, Hong Kong
Electrical Engineering College, Zhejiang University, China

Industrial Center, Hong Kong Polytechnic University, Hong Kong

A refinement algorithm for electromagnetic field computations using a combination of finite element and meshless methods is intro-
duced. Bridging scales are used to separate the finite element and meshless shape functions to make the refinement hierarchical and to
uphold the mathematical properties such as consistency and linear independence for all the bases. To facilitate the application of the
proposed algorithm, details about the node addition, requirements for the node distribution, and relationships between the finite element
and meshless shape functions, as well as the determination of the stop criterion are also fully addressed. Primary numerical results are
reported to demonstrate and validate the applicability and advantages of the proposed algorithm over traditional ones.
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I. INTRODUCTION

ALTHOUGH the finite element (FE) method is well de-
veloped, widely trusted, and used as the most powerful

numerical tool for solving boundary value problems in engi-
neering, it is not equally successful in every electromagnetic
field problem. In optimization and nondestructive evaluation
simulation studies with geometrical deformations, for example,
an adaptive remeshing producer is usually required in order
to uphold the accuracy and numerical convergence of the
solutions. However, the mesh generation is an extremely time
consuming and expensive task when compared to the assembly
and solution of FE equations [1]. Therefore, it is highly desir-
able to explore methods which will alleviate, at least partly,
the onerous mesh generation or adaptive updating process.
Accordingly, many meshless methods, all of which originate
from computational mechanics, have been proposed and proved
to be very promising in the study of electromagnetic field
problems [2]–[5]. Since the interpolation of meshless methods
is based on a set of nodes, and a connectivity of elements is
not required, they offer the flexibility of additions and deletions
of a set of nodes, which may be distributed in the solution
domain irregularly, with relative ease. Even meshless methods
were originally designed to alleviate the burdensome meshing
or adaptive meshing requirements, they are now being used
increasingly in the development of efficient adaptive strategies
[6]–[8]. In this paper, the ideas proposed by Wagner et al. for
enforcing boundary conditions of meshless methods using FE
methods are generalized in the development of a simple yet
efficient hierarchical refinement procedure of FE solutions.
Compared with the original procedure of [6], the proposed
algorithm requires no a priori knowledge about the localized
behaviors of the solution variable. In contrary to other refine-
ment approaches, the most salient characteristic of the proposed
method is that no further meshing process is required, making
the algorithm ideal for producing very accurate solutions from a
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coarse mesh and such characteristics are particularly useful for
three-dimensional (3-D) problems. Primary numerical results
are used to test and validate the proposed algorithm.

II. COMBINED MESHLESS AND FE METHODS

Meshless methods are notorious when it comes to enforcing
boundary and interface conditions when solving engineering
boundary value problems. On the other hand, FE methods can
implement boundary and interface conditions very readily. To
make full use of the FE and meshless methods, a combined FE
and element-free Galerkin (EFG) method is proposed.

A. A Brief Introduction of Meshless Methods

Although the EFG method is well documented in literature,
a brief introduction about this method, which is based on the
moving least squares approximation, is firstly reviewed to make
the paper self-contained.

For any function , its local approximation using
the moving least-squares approximation can be given as

(1)

where the unknown parameters will vary with and
is the basis of a complete polynomial of order .

For two-dimensional (2-D) problems, and a
quadratic basis is used.

By minimizing some weighted discrete norms, one can
determine the unknown parameters, , as

(2)

where , is the
number of nodes (particles) in , is a compactly sup-
ported weight function, ,

, and refers to the nodal parameter of
at .

Substituting (2) into (1) yields

(3)
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where the shape function of the EFG method is given as

(4)

B. Combined Model of FE and EFG Using Bridge Scales

For elements of the FE solutions where refinement computa-
tions are required, some “nodes” (particles) are firstly added to
the elements and the general form of the approximations of the
solution variable becomes

(5)

where and are, respec-
tively, the FE and EFG refinement solutions of the solution
variable; is the EFG shape function related to particle .

To uphold the mathematical properties of the entire bases re-
garding consistency and linear independence, the bridge scales
as proposed in [6] are used. The basic concept of the bridging
scales is based on a hierarchical decomposition of a function
which is dependent on some projection operator to represent,
for example, the projection of onto the span of the FE shape
functions. To add a refinement function to this space, one em-
ploys the property of a projection operator such that multiple
projections of the function will leave the function unchanged,
i.e., . Using this concept, the total function of (5)
can now be rewritten as

(6)

where is the bridging scale term.
The objective to include the bridging scale term is to make

the refinement term, , to contain only the parts of
which are not included in , thereby ensuring a hierarchical
decomposition of such that it can be easily demonstrated by
taking the projection operator to both sides of (6) to give

(7)

For the case study, the FE solutions are being refined in some
specific regions, , , and become, respectively, as

(8)

(9)

(10)

Substituting (8)–(10) into (6), one obtains

(11)

where is the modified EFG shape function based on
bridging scale, and is defined by

(12)

C. Convergence Analysis

A general convergence analysis of the combined FE and EFG
methods is referred to [9]. In order to avoid problems of possible
poor matrix conditioning which results from significant differ-
ences in the ratio between the values of the quantities in the sub-

matrix and those in the submatrix of the stiffness matrix in
(14) (see the next section), the iterative solution procedure that
decouples the FE and the wavelet systems of [10] is used in the
proposed algorithm. However, to guarantee the regularity of ma-
trix of (2), it is recommended that, for the proposed method
in which the FE solution is refined by EFG method, the order of

, i.e., , in (1) must be greater than that of the FE shape
function [7].

D. Discrete Equation

For illustrative purposes, one considers the following 2-D
Poisson problem:

(13)

Based on the weak form of (13), by using the approximation
of (11) and a Galerkin approach, one can obtain the final discrete
equations as

(14)

where

(15)

(16)

(17)

(18)

(19)

(20)

III. ADAPTIVE STRATEGY

To take full advantages of both FE and meshless methods, the
refinement computation using the EFG method is activated only
in regions where high and sharp gradients may occur. Thus the
proposed algorithm allows one to deal with boundary and inter-
face conditions in a manner which is as simple as that in pure
FE methods. In other words, the proposed method does not re-
quire any special techniques to deal with essential and interface
conditions normally required by other meshless methods.
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A. Error Estimation

In the proposed algorithm, one uses an error estimation for
each element of the FE solution in order to identify the elements
that require refinements. Thus a post local error estimation ap-
proach, the field difference method [11], is used because of its
simplicity in numerical implementations.

B. Strategy of Refinement

Once the elements are identified, a refinement computation
procedure as described below will be activated.

Step 1: Activate the particle addition procedure to add
nodes in the identified elements.

Step 2: Implement the EFG refinement computation.
Step 3: Termination test. If the test is passed, stop;

otherwise, go to Step 1 for a finer refinement
computation.

Although the distribution of the particles of the EFG method
may have some irregularities, for each point in the domain where
the EFG has influence, the particles whose influences cover this
point must form at least one nondegenerated -simplex ( being
the dimension size) [7]. Thus, it is worth pointing out that when
there is only one element in a subregion where the FE solution
is required for refinement computations, the particles that are
added in the first iterative step should be large enough to satisfy
this admissible condition.

C. Stop Criterion

To stop the refinement process automatically, a criterion
based on that for the wavelet solutions proposed in [12] is
extended and used. Assume that the refinement solutions at
some subregions at steps and are, respectively,

(21)

(22)

The corresponding wavelet solutions are defined as

(23)

Then the ratio of the value of to that of the av-
eraged is used as an indicator to stop the refinement pro-
cedure. Once this value reaches a threshold as specified by the
user, the refinement procedure will stop the refinement process
in the specific element.

IV. NUMERICAL EXAMPLES

The computation of the end fields of a power transformer
as shown in Fig. 1 is selected as the numerical example to
demonstrate the applicability and advantages of the proposed
procedure over the traditional approaches. The corresponding
boundary value problem is formulated as

(24)

Fig. 1. Schematic diagram of the end region of a power transformer.

Fig. 2. Finite element mesh used for the proposed FE+EFG method.

Fig. 3. Error distribution for each element using the field difference method.

(25)

In the numerical implementation, the fields are first deter-
mined using only the FE method with a coarse mesh as shown
in Fig. 2. The corresponding computed field error distributions
under the definition of the field difference method for every el-
ement are demonstrated in Fig. 3, in which the per unit value
is used. From this error distribution, an error threshold value of
0.15 is then used to select the elements where the refinement
computations are required, and the corresponding identified el-
ements are marked in Fig. 4. Thirdly, by means of the afore-
mentioned node addition procedure, some particles are added to
the identified elements and the program repeats the refinement
computations by using the EFG method, in which a quadratic
basis and a cubic spline weight function are used, until the stop
criterion is satisfied. The wavelet solution as defined by (23)
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Fig. 4. Elements where refinements are required.

Fig. 5. Wavelet solution under the final and the penultimate refinements.

TABLE I
PERFORMANCE COMPARISON OF AN ADAPTIVE FE AND THE PROPOSED

METHODS HAVING THE SAME SOLUTION ACCURACY

under the final and the penultimate refinement computations are
shown in Fig. 5. To compare the performances of an adaptive FE
strategy and the proposed method, this problem is solved using
a pure adaptive FE, other things being equal, by successively
densifying the mesh of the refinement regions until the same
accuracy as that of the proposed method is obtained. The corre-
sponding performance comparison results are given in Table I.
To present an overview about the solution times used by dif-
ferent methods, the CPU time is given in Table I in per unit
values using the FE solution time, with the mesh of Fig. 2, as
the base value. From these numerical results one can see that:
1) for the same numerical accuracy, both the degree of free-
doms (DoFs) and the solution time for the proposed method
are smaller than those in a FE algorithm; 2) compared with tra-
ditional FE adaptive computation procedures, the most salient
characteristics of the proposed one is that the refinement compu-
tation can be carried out by only adding particles, irrespective of

their connectivities, rather than remeshing the solution domain,
hence making the numerical implementation of the proposed al-
gorithm simple and easy; 3) since the situation with respect to
the storage technique of the resulting stiffness matrix and the
numerical solver for EFG methods is not as satisfactory as that
for FE method, the CPU time reduction used by the proposed
algorithm is not proportional to that of the DoFs.

V. CONCLUSION

A combined FE and EFG method for the refinement com-
putation of electromagnetic fields is proposed. Primary simula-
tion results show that: 1) compared with the traditional adaptive
meshing based refinement procedures, the most salient feature
of the proposed one is that no cumbersome remeshing proce-
dure is required in the refinement process, making it possible to
use a coarse mesh to produce high precision numerical results;
2) compared with the pure meshless refinement procedures, the
proposed one needs no special techniques to deal with the essen-
tial and interface conditions. In addition, to make the EFG based
method as widely applicable as FE ones, one needs to synchro-
nize the development of the storage technique of the resulting
stiffness and the numerical solver in addition to making signifi-
cant advancements in the study of the new methods as proposed.

REFERENCES

[1] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,”
Int. J. Numer. Meth. Eng., vol. 37, pp. 229–254, 1994.

[2] V. Cingoski, N. Miyamoto, and H. Yamashita, “Element-free Galerkin
method for electromagnetic field computations,” IEEE Trans. Magn.,
vol. 34, no. 5, pp. 3236–3239, Sep. 1998.

[3] S. A. Viana and R. C. Mesquita, “Moving least square reproducing
kernel method for electromagnetic field computation,” IEEE Trans.
Magn., vol. 35, no. 3, pp. 1372–1375, May 1999.

[4] C. Herault and Y. Marechal, “Boundary and interface conditions in
meshless methods,” IEEE Trans. Magn., vol. 35, no. 3, pp. 1450–1453,
May 1999.

[5] S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong, “Application of a
meshless method in electromagnetics,” IEEE Trans. Magn., vol. 37, no.
5, pp. 3198–3202, Sep. 2001.

[6] G. J. Wagner and W. K. Liu, “Hierarchical enrichment for bridging
scales and mesh-free boundary conditions,” Int. J. Numer. Meth. Eng.,
vol. 50, pp. 507–524, 2001.

[7] A. Huerta and S. Fernandez-Mendez, “Enrichment and coupling of finite
element and meshless method,” Int. J. Numer. Meth. Eng., vol. 48, pp.
1615–1636, 2000.

[8] U. Haussler-Combe and C. Korn, “An adaptive approach with the ele-
ment-free-Galerkin method,” Comput. Methods Appl. Mech. Engrg., vol.
162, pp. 203–222, 1998.

[9] W. Han, G. J. Wagner, and W. K. Liu, “Convergence analysis of a hi-
erarchical enrichment of Dirichlet boundary conditions in a mesh-free
method,” Int. J. Numer. Meth. Eng., vol. 43, pp. 1323–1336, 2002.

[10] S. Y. Yang, G. Z. Ni, J. R. Cardoso, and S. L. Ho, “A combined wavelet-
element free Galerkin method for numerical calculations of electro-mag-
netic fields,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1413–1416, May
2003.

[11] P. Fernandes, P. Girdinio, P. Molfino, G. Molinari, and M. Repetto, “A
comparison of adaptive strategies for mesh refinement based on “a pos-
teriori” local error estimation procedure,” IEEE Trans. Magn., vol. 26,
no. 2, pp. 795–798, Mar. 1990.

[12] W. K. Liu, R. A. Uras, and Y. Chen, “Enrichment of the finite element
method with the reproducing kernel particle method,” J. Appl. Mech.,
vol. 64, pp. 861–870, 1997.

Manuscript received June 8, 2004.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 08:21 from IEEE Xplore.  Restrictions apply.


	toc
	Refinement Computations of Electromagnetic Fields Using FE and M
	S. L. Ho ${}^1$, Shiyou Yang ${}^2$, H. C. Wong ${}^3$, Edward W
	${}^1$ Electrical Engineering Department, Hong Kong Polytechnic 
	I. I NTRODUCTION
	II. C OMBINED M ESHLESS AND FE M ETHODS
	A. A Brief Introduction of Meshless Methods
	B. Combined Model of FE and EFG Using Bridge Scales
	C. Convergence Analysis
	D. Discrete Equation

	III. A DAPTIVE S TRATEGY
	A. Error Estimation
	B. Strategy of Refinement
	C. Stop Criterion

	IV. N UMERICAL E XAMPLES

	Fig.€1. Schematic diagram of the end region of a power transform
	Fig.€2. Finite element mesh used for the proposed FE+EFG method.
	Fig.€3. Error distribution for each element using the field diff
	Fig.€4. Elements where refinements are required.
	Fig.€5. Wavelet solution under the final and the penultimate ref
	TABLE€I P ERFORMANCE C OMPARISON OF AN A DAPTIVE FE AND THE P R
	V. C ONCLUSION
	T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin method
	V. Cingoski, N. Miyamoto, and H. Yamashita, Element-free Galerki
	S. A. Viana and R. C. Mesquita, Moving least square reproducing 
	C. Herault and Y. Marechal, Boundary and interface conditions in
	S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong, Application of
	G. J. Wagner and W. K. Liu, Hierarchical enrichment for bridging
	A. Huerta and S. Fernandez-Mendez, Enrichment and coupling of fi
	U. Haussler-Combe and C. Korn, An adaptive approach with the ele
	W. Han, G. J. Wagner, and W. K. Liu, Convergence analysis of a h
	S. Y. Yang, G. Z. Ni, J. R. Cardoso, and S. L. Ho, A combined wa
	P. Fernandes, P. Girdinio, P. Molfino, G. Molinari, and M. Repet
	W. K. Liu, R. A. Uras, and Y. Chen, Enrichment of the finite ele



