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Abstract. A categoria! semantic domain for general (discrete event) systems based on labeled 
transition systems with full concurrency is constructed, where synchronization and hiding are 
functorial. Moreover, we claim that, within the proposed framework, a class of mappings 
stands for refinement. 1l1en we prove that refinement satisfies the diagonal compositionality 
requirement, i.e. , refinements compose (vertical) and distribute over system composition 
(horizontal). 

1 Introduction 

We construct a semantic domain for interacting systems which satisfies the diagonal 
compositionality requirement, i.e., refmements compose (vettically) , reflecting the stepwise 
description of systems, involving severa! leveis of abstraction, and distributes through 
combinators (horizontally), meaning that the refinement of a composite system is the 
composition of the refmement of its parts. 

Taking into consideration the developments in Petri net theory (mainly with seminal 
papers like [17], [11] and [15]) it was clear that nets rnight be good candidates. However, 
most of net-based models such as Petri nets in the sense of [14] and labeled n·ansition 
systems (see [12]) lack composition operations (modularity) and absn·action mechanisms in 
their original defmitions. This motivate the use of the category theory: the approach in [17] 
provides the former, where categorical constructions such as product and coproduct stand 
for system composition, and the approach in [11] provides the later for Pen·i nets where a 
special kind of net morphism conesponds to the notion of irnplementation. Also, category 
theory provides powelful techniques to unify different categories of models (i.e., classes of 
models categorically sn·uctured) through adjunctions (usually reflections and coreflections) 
expressing the relation of their semantics as in [15]. 

We introduce the concept of (nonsequential) automaton as a kind of automaton 
structured on states and n·ansitions. Structured states are "bags" of local states like tokens in 
Pen·i nets and structured transitions specify a concwTency relationship between component 
transitions in the sense of [3] and [7]. In [9] we show that nonsequential automata are more 
concrete then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of 
nonsequential automata) extending the approach in [15], where a formal framework for 
classification of models for concunency is set. 

The resulting category is bicomplete where the categoria! product and coproduct stand 
for (system) composition. Synchronization and hiding are functorial operations. A 
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synchronization restricts a (system) composition according to some given interaction 
specification. A view of a system is obtained through hiding of transitions introducing an 
internai nondeterminism. A hidden transition cannot be used for interaction. 

A reímement mapping maps transitions into transactions reflecting an implementation of 
a system on top of another. It is defmed as an automaton morphism where the target object 
is enriched with all conceivable sequential and nonsequential computations. Computations 
are induced by an endofunctor te (transitive closure) and composition of refinements <p: N 1 

---7 te N2, '1': N2 ---7 tcN3 is defined using Kleisli categories as illustrated in the Figure 1. 

'lfo<p 

N1 u••••••••••••uum•u•••IJII••·· teN3 

tflattening 
U'lf 

te N2 ------1 ... ~ ttf N 3 

Fig. 1. Composition of refinements 

Therefore, refinements compose, i.e., the vertical compositionality requirement is 
achieved. Moreover we find a general theory of reímement of (discrete) systems which also 
satisfies the horizontal compositionality requirement. i.e., for refinements <p: N 1 ---7 teM 1, 

'lf: N2 ---7 te M2, we have that: 

<pN1 X'lfN2 = <p x 'lf(N 1 x N2) 

where <pN 1 x 'lfN 2 and N 1 x N 2 are composed systems and the refinement <p x 'I' is 
(uniquely) induced by <p and 'I'· 

Note that, while the veitical compositionality is easily achieved in several models, they 
lack horizontal compositionality (see [9] for Petri nets and [lO] for u·ansition systems). 

2 Nonsequential Automata 

A nonsequential automaton is a reflexive graph (a graph with an endoarc for every node) 
labeled on ares such that nodes, ares and labels are elements of commutative monoids. A 
reflexive graph represents the shape of an automaton where nodes and ares stand for states 
and transitions, respectively, with endoarcs interpreted as idle transitions. The labeling 
procedure allows the occunence of more then one transition with the same label. A 
structured transition specify a concunency relation between component transitions. 
Comparing with asynchronous u·ansition systems (flrst int:roduced in [3]), the independence 
relation of a nonsequential automaton is explicit in the graphical representation. A structured 
state can be viewed as a "bag" of local states where each local state can be viewed as a 
resource to be consumed or produced, like a token in Petri nets. 

Nonsequential automata and its morphisms constitute a category which is complete and 
cocomplete with products isomorphic to coproducts. A product (or coproduct) can be 
viewed as (system) composition. In what follows C:Mon denotes the category of 
commutative monoids and suppose that k is in {0 , 1} . 

Definition 2.1 Nonsequential Automaton. A nonsequential automaton N = ( V, T, élo, él1, t, 
L, lab) is such that T = (T, 11, 't), V= (V , ~, e ), L= (L, 11, 't) are C:Mon-objects of transi
tions, states and labels respectively, élo. a1: T ---7 V are CM"on-morphisms called source and 
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target respectively, t: V~ Tis a CMon-morphism such that Ok 0 t = idv and lab: T ~ L is 
a CM"on-morphism such that lab(t) = 't whenever there is v in V where t(v) = t. o 

We may refer to a nonsequential automaton N =(V, T, oo, 01, t, L, lab) by N = (G , L, 

lab) where G = (V, T, oo, 01, t) is a reflexive graph internai to CMon (i.e., V, T are 
CMon-objects and oo, 01, t are CM"on-morphisms). 

In an automaton, a transition labeled by 't represents a hidden transition (as we will see 
!ater, a hidden transition is encapsulated and therefore, can not be triggered from the 
outside). Note that, ali idle transitions are hidden. The defmition above is not extensional in 
the sense that two distinct transitions with the same label may have the same source and 
target states. In this paper we are not concemed with initial states. 

A transition t such that o0 (t) =X, 01(t) = Y is denoted by t: X~ Y. Since a state is an 
element of a monoid, it may be denoted as a formal sum n1A1e ... emmAm, with the order 
of the terms being immaterial, where Ai is in V and ni indicate the multiplicity of the 
corresponding (local) state, for i = 1 .. . m. The denotation of a transition is analogous. We 
also refer to a structured transition as the parallel composition of component transitions. 
When no confusion is possible, a structured transition x 111: XG:JA ~ YG:JA where t: X ~ Y 
and tA: A~ A are labeled by x and 't, respectively, is denoted by x: XeA ~ YeA. For 
simplicity, in graphical representation, we omit the endotransitions. A state 
n 1A1 G:J ... G:JnmAm and a labeled transition n 1 t1ll ... ll nmtm are graphically represented as in 
the Figure 2. 

Fig. 2. Graphical representation of structured states and transitions 

Example 2.2 The graphical representation of an automaton N =({X, Y} G:J, {a, b, tx, ty} ll , 
oo, o1, t, {x, y} 11 , lab) with free monoids determined by the local transitions a: 2X ~ Y, b: 
2X ~ Y and with labeling given by a ..... x, b ..... y is illustrated in the Figure 3. o 

0 
Fig. 3. Graphical representation of a nonsequential automaton 

Considering the monoidal structure of nonsequential automata and since in this paper we 
are not concemed with initial states, the schema above has an infmite number of distributed 
diagrams. If an initial state is considered, only the corresponding diagram may be drawn. 
For instance, in the example above, if the initial state is 4X then the schema could be 
reduced to the rightrnost diagram in the Figure 3. 
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Comparing the graphical representation with the one for Petri nets (see, e.g., [14]), in a 
nonsequential automaton ali possible states are explicit while in Petri nets the reachable 
markings are implicit. Also, the concunency relation between transitions in Petri nets is 
irnplicit. Both models, categories of Petri nets and categories of nonsequential automata can 
be unified through adjunctions. For details, see [9]. 

Remark 2.3 Non-Reflexive Automata. If we define the category of non-reflexive automata 
(with source, target and labeling preserving morphisms) the product construction reflects a 
composition operation with (total) synchronization in the sense that each transition of the 
frrst automaton is synchronized with ali transitions of the second. This construction has very 
few practical applications. o 

Remark 2.4 Structured Transition x ln.dependen.ce Square. Consider the Figure 4. Let a : A 
~ B, x: X~ Y be two transitions of some automaton. Then, allx: AEBX ~ BEBY, a : AEBX 
~ BEBX, a: AEBY ~ BEBY, x: AEBX ~ AEBY, x: BEBX ~ BEBY are also labeled transitions 
of the same automaton. This leads to the "independence square" associated to the structured 
transition allx, i.e.: 

a) if two transitions can frre independently from the same source state, then they should be 
able to frre concUITently and doing so, reach the same target state; 

b) if two independent transitions can frre, one irnmediately after the other, then they should 
be able to flre with interchanged order. o 

Fig. 4. lndependence square 

Definition 2.5 Nonsequential Automaton Morphism. A nonsequential automaton morphism 
h: N1 ~ N2 where N1 = (Vt, Tt , oo1. 011· t1 , Lt, lab1) and N2 = (V2, T2, oo2, 01 2, t2 , 
L2, lab2) is a triple h= (hv, hr, hL) such that hv: Vt ~ V2, hr: Tt ~ T2, hL: Lt ~ L2 

are CMon-morphisms, h v o Ok1 = Ok2 o h r , h r o t1 = t2 o h v and h L o lab1 = lab2 o h r. o 

Nonsequential automata and their morphisrns constitute the category 9{;ilut. 

Proposition 2.6 The category 9{;ilut is complete and cocomplete. Moreover products and 
coproducts are isomorphic. 
Proof· See [9]. o 

A categorical product ( or coproduct) o f two automata N 1 = (V 1, T 1, ao1 , é) 11 , l1 , L 1, 

lab1 ), N2 = ( V2, T2, d02· {:)1 2• t2, L2, lab2) is as follows: 

N1 X~utN2 = (V1XCMon V2, T1XCMon T2, 001 Xoo2, 011 Xo12, t1 Xt2, 
L 1 X c:Mon Lz, lab1 X lab2) 

where Ok1 Xok2, t1 Xt2 and lab1 X lab2 are uniquely induced by the product construction. 
Intuitively, the product in 9{;ilut is viewed as a composition of component automata. 
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Example 2.7 Consider the nonsequential automata N1 =({A, B, C}EB, {a, b, lA, lB, lc} ll , 
oo1, 01 1, l1, {u} ll , lab1) and N2 =({X, Y}EB, {x, lx, ly}il · oo2 , 01 2 , l2, {v}il, lab2) (free 
monoids) where sow-ce and target morphisrns are determined by the local transitions a: A ~ 
B, b: B ~ C, x: 2X ~ Y and with labeling given by a ,_, u, b ,_, u, x ,_, v. Then, 
N 1 x N2 = ({A, B, C , X, Y}EB, {a, b, x, lA, ts, te, tx, ty} 11 · ao, a1, t, {u , v} 11, lab) with ao, 
01, t, lab uniquely induced by the product construction is represented in the Figw-e 5. o 

Fig. 5. Resulting nonsequential automaton of a product 

3 Synchronization and Hiding 

Synchronization and hiding of transitions are functorial operations defined using fibration 
and cofibration techniques. Both functors are induced by morphisms at the labellevel. 

The synchronization operation erases from the product ali those n·ansitions which do not 
reflect some given table of synchronizations. The approach for synchronization is inspired 
by [8] and is as follows (see the Figw-e 6): 

a) let N 1, N 2 be nonsequential automata with L 1, L2 as the conesponding commutative 
monoids of labels; 

b) let Table(L 1, L2) be a table of synchronizations determined by the pairs of labels to be 
synchronized and sync: Table(L1, L2) ~ L1 XL2 be the synchronization morphism 
which maps the table into the labels of a given automaton; 

c) let u: 9{Jlut ~ C:Jvfon be the obvious forgetful functor taking each automaton into its 
commutative monoid of labels. The functor uis a fibration and the fibers u·1 Table(L1, 
L2), u·1 L 1 X L2 are subcategories of J{Jlut, 

d) the fibration u and the morphism syn c induce a functor sync: u·l L 1 X L2 ~ 
u·l Table(L 1, L2) . The functor sync applied to N 1 X N 2 provides the automaton 
reflecting the desired synchronizations. 

Traditionally, in concunency theory, the concealment of transitions is achieved by 
resorting to labeling and using the speciallabel -r (cf. [17]). Such hidden n·ansitions cannot 
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Fig. 6. Induced synchronization functor 

be used for synchronization since they are encapsulated. The steps for hiding are the 
following: 

a) let N be a nonsequential automaton with L 1 as the commutative monoid of labels; 
b) let h ide: L1 ~ L2 be a morphism taking the transitions to be hidden into 1:; 
c) let u: :J{ftut ~ CMon be the same forgetful functor used for synchronization pmpose. 

The functor u is a cofibration (and therefore, a bifibration) and the fibers u·1 L 1, u·1 L2 
are subcategories of :J{ft_ut, 

d) the cofibration u and the morphism h ide induce a functor fíiáe: u-1 L1 ~ u-1 L2. The 
functor fíiáe applied to N provides the automaton reflecting the desired encapsulation. 

3 .1 S ynchronization 

In what follows, we show a categorial way to construct tables of synchronizations for event 
calling and event sharing and the conesponding synchronization morphism. 

Table of Synchronizations. The table of synchronizations for interaction is given by a 
colimit of a "twin peaks" or "M" diagram (i.e., a diagram with the shape ·~·~·~·~·) . 

We say that a shares x if and only if a calls x and x calls a. In what follows, we denote by 
a I x a pair of synchronized transitions. 

Definition 3 .1 Table of Synchronizations . Let N1, N2 be nonsequential automata with L1 , 
L2 as the conesponding commutative monoids of labels and let i be in {1, 2}: 

a) let Channei(Lt, L2) be the least commutative monoid determined by all pairs of 
transitions to be synchronized; 

b) let Lj' be the least commutative submonoid of L; containing all tTansitions of Ni which 
call a t:ransition of the other automaton; 

c) the morphisms calli: Li'~ Channei(L1, L2) are such that, for a in L;', if a calls x then 
cal li( a) =a I x. 

Let M(Lt. L2) be the twin peaks diagram represented in the Figure 7 where inci: Lj' ~ L; 
are the canonical inclusion morphisms. The table of synchronizations Table(Lt, L2) is 
given by the colirnit of M(L 1, L2). O 

From the definition above, we can infer that: (from c) cal li are monomorphisms. 
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~--------------------------------------- C~on 

Fig. 7. Table of synchronizations 

Example 3.2 Consider the free commutative monoids of labels L r= {a, b, cP, L2 = { x, 
y} 11 . Suppose that a calls x, b calls y and y calls b (i .e., b shares y). Then, 
Channei(Lt, L2) = {alx , bly} ll , Lt'= {a, b} ll, L2'= {y} ll and Table(Lt, L2) ={c, x, 
a I x, b I y} ll . o 

Let M(Lr, L2) be a twin peaks diagram whose colimit determines Table(L1, L2) and p: 
L1 ~ Table(L1 , L2) , q: L2~ Table(L1, L2) . Then there are retractions for p and q 
denoted by pR and qR respectively as follows: 

for every b in Table(L1, L2) , 

if there is a in L 1 such that p(a) = b then pR(b) = a e! se pR(b) = v'; 

if there is a in L2 such that q(a) = b then qR(b) =a else qR(b} =v'. 

Definition 3.3 Synchronization Morphism . The synchronization morphism sync: 
Table(L 1, L2) ~ L1 X L2 is uniquely induced by the product construction as illustrated in 
the Figure 8. o 

.--------------------------C~on 

Fig. 8. Synchronization morphism 

Synchronization Functor. First we show that the forgetful functor which takes each 
nonsequential automaton into its commutative monoids of labels is a fibration and then we 
introduce the synchronization functor. 

P roposition 3.4 The forgetful functor u: 7{?tut ~ C:Mon that takes each nonsequential 
automaton onto its underlying commutative monoid of labels is a fibration. o 
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Proof: Let 1((jr(CMon) be the category of reflexive graphs internai to C:Mon and let iá: 

1((jr(C:Mon)-7 1((jr(C:Mon), em6: C:Mon -7 1((jr(C:Mon) be functors. Then, 9{jtut can 
be defined as the comma category iá.!.em6. Let f: L 1 -7 L2 be a CMon-morphism and N2 = 
(G2, L2, lab2) be a nonsequential automaton where G2 = (V2, T2, élo2, él1 2• 12) is a 
(]((jr(C:Mon}-object. Consider the (]((jr(C:Mon}-pullback represented in the Figure 9. 
Define N1 = (G1, L1 , lab1) which is an automaton by construction. Then u = (uG, f) : N1 
-7 N2 is cartesian with respect to f and N2. o 

Fig. 9. Pullb ack 

Definition 3.5 Functor sync. Consider the fibration u: 9{}ll.ut -7 C:Mon, the nonsequential 
automata N1 = <V1. T1, élo1. él11. 11, L1, lab1), N2 = <V2. T2, élo2. él12. 12, L2, lab2) and 
the synchronization morphism sync: Table(L 1, L2) -7 L 1 X L2. The synchronization of 
N 1, N 2 represented by N 1 llsync N 2 is given by the functor sync: u-1 (L 1 X L2) -7 

u-1 (Table(L1, L2)) induced by uand sync applied to N1 X N2, i.e.: 

o 

Example 3.6 Consider the nonsequential automata Consumer and Producer (with free 
monoids) determined by the following labeled transitions: 

Producer: prod: A -7 B, send: B -7 A 
Consumer: rec: X -7 Y, cons: Y -7 X 

Fig. 10. Synchronized automaton 

Suppose that we want a joint behavior sharing the transitions se nd and rec (a 
communication without buffer such as in CSP [6] or CCS [12]). Then, Channei(Lt, L2) = 

{ send I rec} 11 and Table(L 1. L2) = { prod, cons, send I rec} 11 . The resulting automaton 
is illustrated in the Figure 10. Note that the transitions send, rec are erased and send I rec 
is included. o 
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3.2 Hiding 

For encapsulation purposes, we work with hiding morphisms. A hiding morphism is in fact 
an injective morphism except for those labels we want to hide (i.e., to relabel by 't). In what 
follows, remember that a monoid with only one element, denoted by e, is a zero object. 

Definition 3.7 Hiding Morphism. Let L 1 be the commutative monoid of labels of the 
automata to be encapsulated, L be least commutative submonoid of L1 containing alllabels 
to be hidden and inc: L---} Lt be the inclusion morphism. The hiding morphism hide: Lt 
---} Lz is determined by the pushout illustrated in the Figure 11 where the morphism ! is 
unique. O 

.----------- C9vfon 

e 

L 

/"Ç 
'p.o. / 

'X Jl' hide 

Fig. 11. Hiding morphism 

Proposition 3.8 The forgetful functor u: 9{jlut---} C9vfon that maps each automaton onto 
its underl ying commutative monoid of labels is a cofibration. 
Proof' Let f: Lt-} L2be a CM'on-morphism and N1 = (Vt, Tt, élo1, él1 1• t1, Lt , lab1) be 
an automaton. Define N2 = <Vt. Tt. oo1• 011. t1, L2, f olab1)· Then u = (idv1• idr1• f): 
N 1 ---} N 2 is cocartesian with respect to f and N 1. o 

Defiiútion 3.9 Functor fiiáe. Consider the fibration u: :JI{f1ut ~ C9vfon., the nonsequential 
automata N =(V, T, élo, él1, t , Lt, lab) and the hiding morphism hide : L1 -} L2 . The 
hiding of N satisfying hide denoted by N\hide is given by the functor líiáe: u·1 Lt---} 
u-1 Lz induced by u and h ide applied to N, i.e., 

N\hide = líiáe N o 

Example 3.1 O Consider the resulting automata of the Example 3.6. Suppose that we want to 
hide the synchronized transition send I rec. Then, the hiding morphism is induced by 
send I rec ,_, -r and the encapsulated automaton is as illustrated in the Figw·e 12. o 

4 Refinement 

A refmement mapping is defmed as a special automaton morphism where the target object is 
closed under computations, i.e., the target (more concrete) automaton is enriched with ali the 
conceivable sequential and nonsequential computations that can be split into permutations of 
original transitions, respecting source and target states. This transitive closure is easily 
performed in Categoty Theory: 
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Fig.l2. Encapsulated automaton 

a) a reflexive graph plus a composition operation on transitions determines a category; 
b) there exists a (obvious) functor forgetting the composition operation; 
c) this functor has a left adjoint: a functor that freely generates a category from a reflexive 

graph; 
d) the composition of both functors determines an endofunctor taking each reflexive graph 

onto its transitive closure; 
e) the generalization of the above approach for nonsequential automata leads to the 

envisaged n·ansitive closure. 

Therefore, a refmement of an automaton N on top of an automaton M is a morphism <p: 
N ~ teM, where te is the transitive closure functor. Automata and refinement morphisms 
constitute a category (defined as a Kleisli category- see [2]) and thus, refmements compose. 
Then we show that refinement distributes over (system) composition and therefore, the 
resulting category of automata and refmements satisfies the diagonal compositionality. 

In what follows, let CJvfonCat be the category of small strictly symmetric strict 
monoidal categories which is complete and cocomplete with products isomorphic to 
coproducts. Consider the functor iácMonCat: C:MonCat ~ C:MonCat and the comma 
category iác:MonCat.J-iácMonCat denoted by CMC.J-C:MC. Note that the objects of 
CMC .J, CMC are functors. 

Definition 4.1 Functor u: CMC .J-C:MC ~ :7\[ptut. The functor u: CMC .J-c:Mc ~ :7\[ptut is 
such that for each CMC.J-C:MC-object [: :M __,L we have that: 
a) for :M =((V, T, ao. a1, t, ;), ®, e), u:Mis the 1(yr(C:Mon}object M =((V, ®, e) , (P, 

®ll, te) , a~, af, t) where P is T subjected to the equational rule below and o~, of , 
®a are ao. a 1, ® restricted to Ta; 

t: A~ BETa t' : A'~B'ETa u: B~CETa u' : B'~C'ETa 

(t;u)®(t';u') = (t®t');(u®u') 

b) for L= ((V, T, o0 , ()1, t, ;), ®, e), uL is the C:Mon-object L =(L, ®a, te) where L = 
P- { t I there is v in V such that t{v) = t} and P , ®ll are as defmed above; 

c) lab: M ~ L is the labeling morphism canonically induced by [: :M ~ L. o 

Besides forgetting about the composition operation, the functor u: CMC.J-CMC ~ 

!71[5tut has an additional requirement about concurrency: 

(t;u) 11 (t';u') = (t ll t');(u 11 u') 

That is, the parallel composition of two computations t;u and t';u' has the same effect as 
the computation whose steps are the parallel compositions t ll t' and u ll u' . As an illusu·ation, 
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let t: A ---7 8 and u: C ---7 D be two computations. Then, for til u: AEBC ---7 8EBD, we have 
that (in the following, we do not identify an endotransition by its label 't): 

tllu = (tA;t)ll(u;to) = (tAIIu);(tllto) = u;t 
tllu = u llt = (tc;u)ll(t;ts) = (tcllt);(ullts) = t;u 

Therefore, the concunent execution of two transitions is equivalent to their execution in 
any order. As a consequence, any computation t = t1ll t2ll ... 11 tn can be split as the sequential 
composition of its local transitions, i.e. (suppose ti: Ai ---7 8i): 

t = t1llt2ll ... lltn = (t111tA1);(t211tA2); ... ;(tnlltAn) = t1;t2; ... ;tn 

Definition 4.2 Functor f: 9{}tut ---7 C'.MC-I,C'.MC. The functor f 9{.9lut ---7 C'.MC-l,C'.MCis 
such that: 
a) for each 9{}lut-object N = (M, L, lab) where M = (V, T, ao, a1, t) , V= (V, EB, e), T = 

(T, 11, 't), L= (L, 11, 't) we have that: 

a.l) fM is the C'.MonCat-object M =((V, Te, ae, (l, t, ;), (EB, 11), e) where the 
composition is a partia! operation and Te, a~, af are defined by the following 
rules of inference: 

t:A-?BET t: A ---7 B E Te u: B ---7 C E Te 

t; u: A ---7 C E Te 

t: A ---7 8 E Te u: C ---7 D E Te 

tilu: A EB C ---7 8 EB D E Te 

subject to the following equational rules: 

tE Te 

tll't = t 

t: A ---7 8 E Te 

lA ; t = t and t; ts 

t: A ---7 8 E Te u: B ---7 C E Te v: C ---7 D E Te 

t;(u;v) = (t;u);v 

tE Te u E Te 

tllu = ullt 

t E Te u E Te v E Te 

til( uilv) = ( tiiu )li v 

a.2) fl is the C'.MonCat-object (({e}, L e, !, !, t, ;) , 11, e) where Leis defined as 
above,! is unique and tis such that t(e) = 't; 

a.3) the functor freely generated by N = (M, L, lab) is jlab: fM ---7 f L; 

b) for each 910'1-ut-morphism h= (hv, hT , hL) where (hv, hT) is a 'l{{jr(CMon}

morphism and h L is a c.Mon-morphism we have that: 

b.l) j(hv, hT) is the CMonCat-morphism (hv, h~):fM1 ---7 fM2 where h~ is 
inductively defmed as follows (suppose A, B in V and t , u in T): 

hJ(t) = hT(t) hJ(tA) = lhv(A) 
hT(tllu) = hl-(t) 11 hl-(u) hr(t;u) = hrCt); hl-(u) 

b.2) JhL is the c.MonCat-morphism (!, h() : fL1 ---7 fL2 where hE is defined as 
above. O 
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Proposition 4.3 The functor fis left adjoint to u. 

P roof: Consider 11: iá!J{}lut ~ u o f a natural transformation which is an embedding on 
transitions (and conesponding labels) . Thus, for each ~ut-object N = (M, L, lab), for 
each CMC-1-CMC-object '1{= ('Jv{, L,(), for each ~ut-morphism f: N ~ u~ there is 
only one CMC -1-cMC-morphism g: fN ~ 'J{such that f = ug o 11 N. In fact g is just like ff 
except that its target is 'l{instead of f o u?'i By duality, E: f o u~ iácuc.J..CMÔS a natural 
transformation which takes each freely composed transition (label) (t);(u) and (t)ll(u) onto 
the transition (label) (t;u) and (til u), respectively. Thus, (f, u, 11 , E) : :JI{ji_ut ~ 

CMC..l.CMCis an adjunction. o 

Let (j, 1411, E): ~ut ~ CMC..l.CMC be the adjunction defined in the proposition 
above. Then, T = (te, 11 , IJ.) is a monad on ~ut , where te= u o f: 'J{Jlut ~ ~ut is an 
endofunctor and IJ. = uE f: te2 ~ te is a natural transformation where u: u ~ 14 f: f~ f 
denote the identity natural transformations and uE fis the horizontal composition of natural 
transfOimations. A monad is useful to understand the computations of an automaton: for an 
automaton N, teN reflects the computations of N, i.e., the transitive closure of N, llN: N ~ 
te N maps N into its computations and IJ.N: te2 N ~ te N flattens computations of 
computations into computations. 

Example 4 .4 Consider the nonsequential automaton N 1 with free monoids on states, 
transitions and Iabels determined by the labeled transitions a: A ~ B and b: B ~ C. lts 
transitive closure is represented in the Figure 13 (the tTansactions added by the transitive 
closure are dashed). Note that transactions with "11" are in fact classes of transactions. For 
instance, for a;2b: AEBB ~ 2C we have that a;2b = (tslla);(bllb) = (ts;b)ll (a;b) = 
bll(a;b) = (b;tc) ll (tA;(a;b)) = (blltA);(tcll (a;b)) = b;a;b = .•• o 

Fig. 13. Transitive closure of a nonsequential automaton 

Definition 4.5 Category !f?sf'J{llut. Let T = (te, 11, IJ.) be a monad on ~ut induced by the 
adjunction (j, 1411 , E): ~ut ~ CMC..l.CMC. The category of nonsequential automata 
and refmement morphisms is the Kleisli category determined by T, denoted by !f?sf'J{llut.o 
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Therefore, a refmement between two nonsequential automata N 1 and N2, denoted by <p: 
N1 ~ N2, is a !Nlf.ut-morphism <p: A1 ~ tcA2 and the composition of given refmement 
morphisms is the composition in !f?.s-f'J'.(flut. 

Example 4 .6 Consider the nonsequential automaton N 1 (previous example) and the 
automaton N2 with free monoids on states, transitions and labels detennined by the local 
labeled transitions x: X ~ Y and y: Y ~ X. The refinement morphism <p : N 1 ~ N2 is 
given by A .... 2X, B .... 2Y, C .... 2Y, a .... xllx and b .... 2y;x;y;2x. o 

In the next proposition, we prove that this construction also satisfies the horizontal 
compositionality: refmement of systems distributes through system composition. 

Proposition 4.7 Let {<pi: Ni ~ Mihe 1 be a family ofrefinement, with I a set. Then Xie 1 <pi: 
Xiel Ni ~XieiMi. 
Proof: For simplicity, we abbreviate Xie 1 and +ie 1 by Xj and +j, respectively Consider tbe 
morphism Xj <pi: Xj Ni ~ Xj teMi uniquely induced by the product construction as illustrated 
in the Figure 14. Now, we have only to prove that Xj <pi : Xj Ni ~ Xj teMi is a !1?.!-f!Nlf.ut

morphism. Since te= u o f and u is right adjoint we have that Xj <pi: Xj Ni ~ u(XifMi)· 
Moreover XjfNi' is isomorphic to +ifNj'. Thus, up to an isomorphism, Xj <pj: Xj Ni ~ 
u(+ifMj). Since fis left adjoint (and so, preserves colimits) we have that Xj <pi: Xj Ni ~ 
u o f(+i Mi) . Since Xi Mi is isomorphic to +i Mj, then Xj <p i: Xj Ni ~ tc(Xi Mi) and thus, is a 
!1?.!-fNll.ut-morphism. o 

,...------------ !Nl!ut 
Ni ......... ____ Xiel Ni 

<p~ ! Xie I <i'i 

te Mj ... ,. .. ___ .. Xiel te Mi 

Fig. 14. Refinement morphism uniquely induced 

5 Concluding Remarks 

We introduced a new semantic domain for (discrete event) system based on structured 
labeled transition systems. Concepts and constmctions like interaction, refinement and 
hiding, not (fully) explained in otber semantic domains, have now a precise mathematical 
semantics. 

Interaction of processes is categorically explained, by fibration techniques . Tables for 
interaction are categorically defmed. The hiding of events is also dealt with, by cofibration 
techniques, introducing the essential ingredient o f internai non-determinism. Refinement is 
explained through Kleisli categories ensuring the envisaged leveis of diagonal (vertical and 
horizontal) compositionality. 

With respect to further work, it should be clear that this may be the starting point of a 
rather fruitfulline of research on the semantics of discrete event systems around transition 
systems and graph based models. 
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