
6 SABi

u~s 111111111
0522882 1

DEPARTAMENTO ,
DE MATEMATICA

INSTITUTO
SUPERIOR
TÉCNICO

- -
lJFHG::i ...

INSTITUTO DE INFO~MÁTICA
BIBLIOTECA

N.° CHAMAIJ ''. j l; o iL G :

Çu ~aqq

zq?x? OA-m:
21112,q_s

ORIG. M: ~ 1:1;/J B~ , ~~·slro -FUNDO: FORN.:

'I :CT
'
DEPARTAMENTO DE MATEMÁTICA - INSTITUTO SUPERIOR TÉCNICO

AVENIDA ROVISCO PAIS- 1096 LISBOA CODEX
TEL. 351-1- 841 70 00 FAX. 351-1- 849 92 42

1 ~o.-- ~ ~-e~c~ a~

T ~ a' ~<2 'o.' Co...
t ~O-', ~· s.-~~ C'-..:J

To Appear in the Proceedings of the
Fifth Intemational Conference on Computer Aided System Technology,

EUROCAST95,LNCS,Springer-Verlag c__.;l\) \)' ,...\ .Q'3. O ~ 00- _:3

Refinement Mapping for

General (Discrete Event) Systems Theory

P. Blauth Menezest, J. Félix Costatt andA. Semadast

t Departamento de Matemática, Instituto Superior Técnico

Av. Rovisco Pais, 1096 Lisboa Codex, Portugal- {blauth, acs}@raf.ist.utl.pt

tt Departamento de lnfom1ática, Faculdade de Ciências, Universidade de Lisboa

Campo Grande, 1700 Lisboa, Portugal - fgc@di.fc.ul.pt

Abstract. A categoria! semantic domain for general (discrete event) systems based on labeled
transition systems with full concurrency is constructed, where synchronization and hiding are
functorial. Moreover, we claim that, within the proposed framework, a class of mappings
stands for refinement. 1l1en we prove that refinement satisfies the diagonal compositionality
requirement, i.e. , refinements compose (vertical) and distribute over system composition
(horizontal).

1 Introduction

We construct a semantic domain for interacting systems which satisfies the diagonal
compositionality requirement, i.e., refmements compose (vettically) , reflecting the stepwise
description of systems, involving severa! leveis of abstraction, and distributes through
combinators (horizontally), meaning that the refinement of a composite system is the
composition of the refmement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal
papers like [17], [11] and [15]) it was clear that nets rnight be good candidates. However,
most of net-based models such as Petri nets in the sense of [14] and labeled n·ansition
systems (see [12]) lack composition operations (modularity) and absn·action mechanisms in
their original defmitions. This motivate the use of the category theory: the approach in [17]
provides the former, where categorical constructions such as product and coproduct stand
for system composition, and the approach in [11] provides the later for Pen·i nets where a
special kind of net morphism conesponds to the notion of irnplementation. Also, category
theory provides powelful techniques to unify different categories of models (i.e., classes of
models categorically sn·uctured) through adjunctions (usually reflections and coreflections)
expressing the relation of their semantics as in [15].

We introduce the concept of (nonsequential) automaton as a kind of automaton
structured on states and n·ansitions. Structured states are "bags" of local states like tokens in
Pen·i nets and structured transitions specify a concwTency relationship between component
transitions in the sense of [3] and [7]. In [9] we show that nonsequential automata are more
concrete then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of
nonsequential automata) extending the approach in [15], where a formal framework for
classification of models for concunency is set.

The resulting category is bicomplete where the categoria! product and coproduct stand
for (system) composition. Synchronization and hiding are functorial operations. A

mailto:fgc@di.fc.ul.pt

Refinernent Mapping for General (Discrete Event) Systems Theory 2

synchronization restricts a (system) composition according to some given interaction
specification. A view of a system is obtained through hiding of transitions introducing an
internai nondeterminism. A hidden transition cannot be used for interaction.

A reímement mapping maps transitions into transactions reflecting an implementation of
a system on top of another. It is defmed as an automaton morphism where the target object
is enriched with all conceivable sequential and nonsequential computations. Computations
are induced by an endofunctor te (transitive closure) and composition of refinements <p: N 1

---7 te N2, '1': N2 ---7 tcN3 is defined using Kleisli categories as illustrated in the Figure 1.

'lfo<p

N1 u••••••••••••uum•u•••IJII••·· teN3

tflattening
U'lf

te N2 ------1 ... ~ ttf N 3

Fig. 1. Composition of refinements

Therefore, refinements compose, i.e., the vertical compositionality requirement is
achieved. Moreover we find a general theory of reímement of (discrete) systems which also
satisfies the horizontal compositionality requirement. i.e., for refinements <p: N 1 ---7 teM 1,

'lf: N2 ---7 te M2, we have that:

<pN1 X'lfN2 = <p x 'lf(N 1 x N2)

where <pN 1 x 'lfN 2 and N 1 x N 2 are composed systems and the refinement <p x 'I' is
(uniquely) induced by <p and 'I'·

Note that, while the veitical compositionality is easily achieved in several models, they
lack horizontal compositionality (see [9] for Petri nets and [lO] for u·ansition systems).

2 Nonsequential Automata

A nonsequential automaton is a reflexive graph (a graph with an endoarc for every node)
labeled on ares such that nodes, ares and labels are elements of commutative monoids. A
reflexive graph represents the shape of an automaton where nodes and ares stand for states
and transitions, respectively, with endoarcs interpreted as idle transitions. The labeling
procedure allows the occunence of more then one transition with the same label. A
structured transition specify a concunency relation between component transitions.
Comparing with asynchronous u·ansition systems (flrst int:roduced in [3]), the independence
relation of a nonsequential automaton is explicit in the graphical representation. A structured
state can be viewed as a "bag" of local states where each local state can be viewed as a
resource to be consumed or produced, like a token in Petri nets.

Nonsequential automata and its morphisms constitute a category which is complete and
cocomplete with products isomorphic to coproducts. A product (or coproduct) can be
viewed as (system) composition. In what follows C:Mon denotes the category of
commutative monoids and suppose that k is in {0 , 1} .

Definition 2.1 Nonsequential Automaton. A nonsequential automaton N = (V, T, élo, él1, t,
L, lab) is such that T = (T, 11, 't), V= (V , ~, e), L= (L, 11, 't) are C:Mon-objects of transi
tions, states and labels respectively, élo. a1: T ---7 V are CM"on-morphisms called source and

Refinement Mapping for General (Discrete Event) Systems Tlreory 3

target respectively, t: V~ Tis a CMon-morphism such that Ok 0 t = idv and lab: T ~ L is
a CM"on-morphism such that lab(t) = 't whenever there is v in V where t(v) = t. o

We may refer to a nonsequential automaton N =(V, T, oo, 01, t, L, lab) by N = (G , L,

lab) where G = (V, T, oo, 01, t) is a reflexive graph internai to CMon (i.e., V, T are
CMon-objects and oo, 01, t are CM"on-morphisms).

In an automaton, a transition labeled by 't represents a hidden transition (as we will see
!ater, a hidden transition is encapsulated and therefore, can not be triggered from the
outside). Note that, ali idle transitions are hidden. The defmition above is not extensional in
the sense that two distinct transitions with the same label may have the same source and
target states. In this paper we are not concemed with initial states.

A transition t such that o0 (t) =X, 01(t) = Y is denoted by t: X~ Y. Since a state is an
element of a monoid, it may be denoted as a formal sum n1A1e ... emmAm, with the order
of the terms being immaterial, where Ai is in V and ni indicate the multiplicity of the
corresponding (local) state, for i = 1 .. . m. The denotation of a transition is analogous. We
also refer to a structured transition as the parallel composition of component transitions.
When no confusion is possible, a structured transition x 111: XG:JA ~ YG:JA where t: X ~ Y
and tA: A~ A are labeled by x and 't, respectively, is denoted by x: XeA ~ YeA. For
simplicity, in graphical representation, we omit the endotransitions. A state
n 1A1 G:J ... G:JnmAm and a labeled transition n 1 t1ll ... ll nmtm are graphically represented as in
the Figure 2.

Fig. 2. Graphical representation of structured states and transitions

Example 2.2 The graphical representation of an automaton N =({X, Y} G:J, {a, b, tx, ty} ll ,
oo, o1, t, {x, y} 11 , lab) with free monoids determined by the local transitions a: 2X ~ Y, b:
2X ~ Y and with labeling given by a x, b y is illustrated in the Figure 3. o

0
Fig. 3. Graphical representation of a nonsequential automaton

Considering the monoidal structure of nonsequential automata and since in this paper we
are not concemed with initial states, the schema above has an infmite number of distributed
diagrams. If an initial state is considered, only the corresponding diagram may be drawn.
For instance, in the example above, if the initial state is 4X then the schema could be
reduced to the rightrnost diagram in the Figure 3.

Refinement Mapping for General (Discrete Event) Systems Tlteory 4

Comparing the graphical representation with the one for Petri nets (see, e.g., [14]), in a
nonsequential automaton ali possible states are explicit while in Petri nets the reachable
markings are implicit. Also, the concunency relation between transitions in Petri nets is
irnplicit. Both models, categories of Petri nets and categories of nonsequential automata can
be unified through adjunctions. For details, see [9].

Remark 2.3 Non-Reflexive Automata. If we define the category of non-reflexive automata
(with source, target and labeling preserving morphisms) the product construction reflects a
composition operation with (total) synchronization in the sense that each transition of the
frrst automaton is synchronized with ali transitions of the second. This construction has very
few practical applications. o

Remark 2.4 Structured Transition x ln.dependen.ce Square. Consider the Figure 4. Let a : A
~ B, x: X~ Y be two transitions of some automaton. Then, allx: AEBX ~ BEBY, a : AEBX
~ BEBX, a: AEBY ~ BEBY, x: AEBX ~ AEBY, x: BEBX ~ BEBY are also labeled transitions
of the same automaton. This leads to the "independence square" associated to the structured
transition allx, i.e.:

a) if two transitions can frre independently from the same source state, then they should be
able to frre concUITently and doing so, reach the same target state;

b) if two independent transitions can frre, one irnmediately after the other, then they should
be able to flre with interchanged order. o

Fig. 4. lndependence square

Definition 2.5 Nonsequential Automaton Morphism. A nonsequential automaton morphism
h: N1 ~ N2 where N1 = (Vt, Tt , oo1. 011· t1 , Lt, lab1) and N2 = (V2, T2, oo2, 01 2, t2 ,
L2, lab2) is a triple h= (hv, hr, hL) such that hv: Vt ~ V2, hr: Tt ~ T2, hL: Lt ~ L2

are CMon-morphisms, h v o Ok1 = Ok2 o h r , h r o t1 = t2 o h v and h L o lab1 = lab2 o h r. o

Nonsequential automata and their morphisrns constitute the category 9{;ilut.

Proposition 2.6 The category 9{;ilut is complete and cocomplete. Moreover products and
coproducts are isomorphic.
Proof· See [9]. o

A categorical product (or coproduct) o f two automata N 1 = (V 1, T 1, ao1 , é) 11 , l1 , L 1,

lab1), N2 = (V2, T2, d02· {:)1 2• t2, L2, lab2) is as follows:

N1 X~utN2 = (V1XCMon V2, T1XCMon T2, 001 Xoo2, 011 Xo12, t1 Xt2,
L 1 X c:Mon Lz, lab1 X lab2)

where Ok1 Xok2, t1 Xt2 and lab1 X lab2 are uniquely induced by the product construction.
Intuitively, the product in 9{;ilut is viewed as a composition of component automata.

Refinement Mapping for General (Discrete Event) Systems Theory 5

Example 2.7 Consider the nonsequential automata N1 =({A, B, C}EB, {a, b, lA, lB, lc} ll ,
oo1, 01 1, l1, {u} ll , lab1) and N2 =({X, Y}EB, {x, lx, ly}il · oo2 , 01 2 , l2, {v}il, lab2) (free
monoids) where sow-ce and target morphisrns are determined by the local transitions a: A ~
B, b: B ~ C, x: 2X ~ Y and with labeling given by a ,_, u, b ,_, u, x ,_, v. Then,
N 1 x N2 = ({A, B, C , X, Y}EB, {a, b, x, lA, ts, te, tx, ty} 11 · ao, a1, t, {u , v} 11, lab) with ao,
01, t, lab uniquely induced by the product construction is represented in the Figw-e 5. o

Fig. 5. Resulting nonsequential automaton of a product

3 Synchronization and Hiding

Synchronization and hiding of transitions are functorial operations defined using fibration
and cofibration techniques. Both functors are induced by morphisms at the labellevel.

The synchronization operation erases from the product ali those n·ansitions which do not
reflect some given table of synchronizations. The approach for synchronization is inspired
by [8] and is as follows (see the Figw-e 6):

a) let N 1, N 2 be nonsequential automata with L 1, L2 as the conesponding commutative
monoids of labels;

b) let Table(L 1, L2) be a table of synchronizations determined by the pairs of labels to be
synchronized and sync: Table(L1, L2) ~ L1 XL2 be the synchronization morphism
which maps the table into the labels of a given automaton;

c) let u: 9{Jlut ~ C:Jvfon be the obvious forgetful functor taking each automaton into its
commutative monoid of labels. The functor uis a fibration and the fibers u·1 Table(L1,
L2), u·1 L 1 X L2 are subcategories of J{Jlut,

d) the fibration u and the morphism syn c induce a functor sync: u·l L 1 X L2 ~
u·l Table(L 1, L2) . The functor sync applied to N 1 X N 2 provides the automaton
reflecting the desired synchronizations.

Traditionally, in concunency theory, the concealment of transitions is achieved by
resorting to labeling and using the speciallabel -r (cf. [17]). Such hidden n·ansitions cannot

Refine me n/ Mapping for General (Discrete Event) Systems Theory 6

Fig. 6. Induced synchronization functor

be used for synchronization since they are encapsulated. The steps for hiding are the
following:

a) let N be a nonsequential automaton with L 1 as the commutative monoid of labels;
b) let h ide: L1 ~ L2 be a morphism taking the transitions to be hidden into 1:;
c) let u: :J{ftut ~ CMon be the same forgetful functor used for synchronization pmpose.

The functor u is a cofibration (and therefore, a bifibration) and the fibers u·1 L 1, u·1 L2
are subcategories of :J{ft_ut,

d) the cofibration u and the morphism h ide induce a functor fíiáe: u-1 L1 ~ u-1 L2. The
functor fíiáe applied to N provides the automaton reflecting the desired encapsulation.

3 .1 S ynchronization

In what follows, we show a categorial way to construct tables of synchronizations for event
calling and event sharing and the conesponding synchronization morphism.

Table of Synchronizations. The table of synchronizations for interaction is given by a
colimit of a "twin peaks" or "M" diagram (i.e., a diagram with the shape ·~·~·~·~·) .

We say that a shares x if and only if a calls x and x calls a. In what follows, we denote by
a I x a pair of synchronized transitions.

Definition 3 .1 Table of Synchronizations . Let N1, N2 be nonsequential automata with L1 ,
L2 as the conesponding commutative monoids of labels and let i be in {1, 2}:

a) let Channei(Lt, L2) be the least commutative monoid determined by all pairs of
transitions to be synchronized;

b) let Lj' be the least commutative submonoid of L; containing all tTansitions of Ni which
call a t:ransition of the other automaton;

c) the morphisms calli: Li'~ Channei(L1, L2) are such that, for a in L;', if a calls x then
cal li(a) =a I x.

Let M(Lt. L2) be the twin peaks diagram represented in the Figure 7 where inci: Lj' ~ L;
are the canonical inclusion morphisms. The table of synchronizations Table(Lt, L2) is
given by the colirnit of M(L 1, L2). O

From the definition above, we can infer that: (from c) cal li are monomorphisms.

Refinement Mapping for General (Discrete Event) Systems Theory 7

~--------------------------------------- C~on

Fig. 7. Table of synchronizations

Example 3.2 Consider the free commutative monoids of labels L r= {a, b, cP, L2 = { x,
y} 11 . Suppose that a calls x, b calls y and y calls b (i .e., b shares y). Then,
Channei(Lt, L2) = {alx , bly} ll , Lt'= {a, b} ll, L2'= {y} ll and Table(Lt, L2) ={c, x,
a I x, b I y} ll . o

Let M(Lr, L2) be a twin peaks diagram whose colimit determines Table(L1, L2) and p:
L1 ~ Table(L1 , L2) , q: L2~ Table(L1, L2) . Then there are retractions for p and q
denoted by pR and qR respectively as follows:

for every b in Table(L1, L2) ,

if there is a in L 1 such that p(a) = b then pR(b) = a e! se pR(b) = v';

if there is a in L2 such that q(a) = b then qR(b) =a else qR(b} =v'.

Definition 3.3 Synchronization Morphism . The synchronization morphism sync:
Table(L 1, L2) ~ L1 X L2 is uniquely induced by the product construction as illustrated in
the Figure 8. o

.--------------------------C~on

Fig. 8. Synchronization morphism

Synchronization Functor. First we show that the forgetful functor which takes each
nonsequential automaton into its commutative monoids of labels is a fibration and then we
introduce the synchronization functor.

P roposition 3.4 The forgetful functor u: 7{?tut ~ C:Mon that takes each nonsequential
automaton onto its underlying commutative monoid of labels is a fibration. o

Refinement Mapping for General (Discrete Event) Systems Theory 8

Proof: Let 1((jr(CMon) be the category of reflexive graphs internai to C:Mon and let iá:

1((jr(C:Mon)-7 1((jr(C:Mon), em6: C:Mon -7 1((jr(C:Mon) be functors. Then, 9{jtut can
be defined as the comma category iá.!.em6. Let f: L 1 -7 L2 be a CMon-morphism and N2 =
(G2, L2, lab2) be a nonsequential automaton where G2 = (V2, T2, élo2, él1 2• 12) is a
(]((jr(C:Mon}-object. Consider the (]((jr(C:Mon}-pullback represented in the Figure 9.
Define N1 = (G1, L1 , lab1) which is an automaton by construction. Then u = (uG, f) : N1
-7 N2 is cartesian with respect to f and N2. o

Fig. 9. Pullb ack

Definition 3.5 Functor sync. Consider the fibration u: 9{}ll.ut -7 C:Mon, the nonsequential
automata N1 = <V1. T1, élo1. él11. 11, L1, lab1), N2 = <V2. T2, élo2. él12. 12, L2, lab2) and
the synchronization morphism sync: Table(L 1, L2) -7 L 1 X L2. The synchronization of
N 1, N 2 represented by N 1 llsync N 2 is given by the functor sync: u-1 (L 1 X L2) -7

u-1 (Table(L1, L2)) induced by uand sync applied to N1 X N2, i.e.:

o

Example 3.6 Consider the nonsequential automata Consumer and Producer (with free
monoids) determined by the following labeled transitions:

Producer: prod: A -7 B, send: B -7 A
Consumer: rec: X -7 Y, cons: Y -7 X

Fig. 10. Synchronized automaton

Suppose that we want a joint behavior sharing the transitions se nd and rec (a
communication without buffer such as in CSP [6] or CCS [12]). Then, Channei(Lt, L2) =

{ send I rec} 11 and Table(L 1. L2) = { prod, cons, send I rec} 11 . The resulting automaton
is illustrated in the Figure 10. Note that the transitions send, rec are erased and send I rec
is included. o

Refinement Mapping for General (Discrete Event) Systems Theory 9

3.2 Hiding

For encapsulation purposes, we work with hiding morphisms. A hiding morphism is in fact
an injective morphism except for those labels we want to hide (i.e., to relabel by 't). In what
follows, remember that a monoid with only one element, denoted by e, is a zero object.

Definition 3.7 Hiding Morphism. Let L 1 be the commutative monoid of labels of the
automata to be encapsulated, L be least commutative submonoid of L1 containing alllabels
to be hidden and inc: L---} Lt be the inclusion morphism. The hiding morphism hide: Lt
---} Lz is determined by the pushout illustrated in the Figure 11 where the morphism ! is
unique. O

.----------- C9vfon

e

L

/"Ç
'p.o. /

'X Jl' hide

Fig. 11. Hiding morphism

Proposition 3.8 The forgetful functor u: 9{jlut---} C9vfon that maps each automaton onto
its underl ying commutative monoid of labels is a cofibration.
Proof' Let f: Lt-} L2be a CM'on-morphism and N1 = (Vt, Tt, élo1, él1 1• t1, Lt , lab1) be
an automaton. Define N2 = <Vt. Tt. oo1• 011. t1, L2, f olab1)· Then u = (idv1• idr1• f):
N 1 ---} N 2 is cocartesian with respect to f and N 1. o

Defiiútion 3.9 Functor fiiáe. Consider the fibration u: :JI{f1ut ~ C9vfon., the nonsequential
automata N =(V, T, élo, él1, t , Lt, lab) and the hiding morphism hide : L1 -} L2 . The
hiding of N satisfying hide denoted by N\hide is given by the functor líiáe: u·1 Lt---}
u-1 Lz induced by u and h ide applied to N, i.e.,

N\hide = líiáe N o

Example 3.1 O Consider the resulting automata of the Example 3.6. Suppose that we want to
hide the synchronized transition send I rec. Then, the hiding morphism is induced by
send I rec ,_, -r and the encapsulated automaton is as illustrated in the Figw·e 12. o

4 Refinement

A refmement mapping is defmed as a special automaton morphism where the target object is
closed under computations, i.e., the target (more concrete) automaton is enriched with ali the
conceivable sequential and nonsequential computations that can be split into permutations of
original transitions, respecting source and target states. This transitive closure is easily
performed in Categoty Theory:

Refinement Mapping for General (Discrete Event) Systems Theory 10

Fig.l2. Encapsulated automaton

a) a reflexive graph plus a composition operation on transitions determines a category;
b) there exists a (obvious) functor forgetting the composition operation;
c) this functor has a left adjoint: a functor that freely generates a category from a reflexive

graph;
d) the composition of both functors determines an endofunctor taking each reflexive graph

onto its transitive closure;
e) the generalization of the above approach for nonsequential automata leads to the

envisaged n·ansitive closure.

Therefore, a refmement of an automaton N on top of an automaton M is a morphism <p:
N ~ teM, where te is the transitive closure functor. Automata and refinement morphisms
constitute a category (defined as a Kleisli category- see [2]) and thus, refmements compose.
Then we show that refinement distributes over (system) composition and therefore, the
resulting category of automata and refmements satisfies the diagonal compositionality.

In what follows, let CJvfonCat be the category of small strictly symmetric strict
monoidal categories which is complete and cocomplete with products isomorphic to
coproducts. Consider the functor iácMonCat: C:MonCat ~ C:MonCat and the comma
category iác:MonCat.J-iácMonCat denoted by CMC.J-C:MC. Note that the objects of
CMC .J, CMC are functors.

Definition 4.1 Functor u: CMC .J-C:MC ~ :7\[ptut. The functor u: CMC .J-c:Mc ~ :7\[ptut is
such that for each CMC.J-C:MC-object [: :M __,L we have that:
a) for :M =((V, T, ao. a1, t, ;), ®, e), u:Mis the 1(yr(C:Mon}object M =((V, ®, e) , (P,

®ll, te) , a~, af, t) where P is T subjected to the equational rule below and o~, of ,
®a are ao. a 1, ® restricted to Ta;

t: A~ BETa t' : A'~B'ETa u: B~CETa u' : B'~C'ETa

(t;u)®(t';u') = (t®t');(u®u')

b) for L= ((V, T, o0 , ()1, t, ;), ®, e), uL is the C:Mon-object L =(L, ®a, te) where L =
P- { t I there is v in V such that t{v) = t} and P , ®ll are as defmed above;

c) lab: M ~ L is the labeling morphism canonically induced by [: :M ~ L. o

Besides forgetting about the composition operation, the functor u: CMC.J-CMC ~

!71[5tut has an additional requirement about concurrency:

(t;u) 11 (t';u') = (t ll t');(u 11 u')

That is, the parallel composition of two computations t;u and t';u' has the same effect as
the computation whose steps are the parallel compositions t ll t' and u ll u' . As an illusu·ation,

Rejinement Mapping for General (Discrete Event) Systems Theory 11

let t: A ---7 8 and u: C ---7 D be two computations. Then, for til u: AEBC ---7 8EBD, we have
that (in the following, we do not identify an endotransition by its label 't):

tllu = (tA;t)ll(u;to) = (tAIIu);(tllto) = u;t
tllu = u llt = (tc;u)ll(t;ts) = (tcllt);(ullts) = t;u

Therefore, the concunent execution of two transitions is equivalent to their execution in
any order. As a consequence, any computation t = t1ll t2ll ... 11 tn can be split as the sequential
composition of its local transitions, i.e. (suppose ti: Ai ---7 8i):

t = t1llt2ll ... lltn = (t111tA1);(t211tA2); ... ;(tnlltAn) = t1;t2; ... ;tn

Definition 4.2 Functor f: 9{}tut ---7 C'.MC-I,C'.MC. The functor f 9{.9lut ---7 C'.MC-l,C'.MCis
such that:
a) for each 9{}lut-object N = (M, L, lab) where M = (V, T, ao, a1, t) , V= (V, EB, e), T =

(T, 11, 't), L= (L, 11, 't) we have that:

a.l) fM is the C'.MonCat-object M =((V, Te, ae, (l, t, ;), (EB, 11), e) where the
composition is a partia! operation and Te, a~, af are defined by the following
rules of inference:

t:A-?BET t: A ---7 B E Te u: B ---7 C E Te

t; u: A ---7 C E Te

t: A ---7 8 E Te u: C ---7 D E Te

tilu: A EB C ---7 8 EB D E Te

subject to the following equational rules:

tE Te

tll't = t

t: A ---7 8 E Te

lA ; t = t and t; ts

t: A ---7 8 E Te u: B ---7 C E Te v: C ---7 D E Te

t;(u;v) = (t;u);v

tE Te u E Te

tllu = ullt

t E Te u E Te v E Te

til(uilv) = (tiiu)li v

a.2) fl is the C'.MonCat-object (({e}, L e, !, !, t, ;) , 11, e) where Leis defined as
above,! is unique and tis such that t(e) = 't;

a.3) the functor freely generated by N = (M, L, lab) is jlab: fM ---7 f L;

b) for each 910'1-ut-morphism h= (hv, hT , hL) where (hv, hT) is a 'l{{jr(CMon}

morphism and h L is a c.Mon-morphism we have that:

b.l) j(hv, hT) is the CMonCat-morphism (hv, h~):fM1 ---7 fM2 where h~ is
inductively defmed as follows (suppose A, B in V and t , u in T):

hJ(t) = hT(t) hJ(tA) = lhv(A)
hT(tllu) = hl-(t) 11 hl-(u) hr(t;u) = hrCt); hl-(u)

b.2) JhL is the c.MonCat-morphism (!, h() : fL1 ---7 fL2 where hE is defined as
above. O

Refinenrent Mapping for General (Discrete Event) Systems Theory 12

Proposition 4.3 The functor fis left adjoint to u.

P roof: Consider 11: iá!J{}lut ~ u o f a natural transformation which is an embedding on
transitions (and conesponding labels) . Thus, for each ~ut-object N = (M, L, lab), for
each CMC-1-CMC-object '1{= ('Jv{, L,(), for each ~ut-morphism f: N ~ u~ there is
only one CMC -1-cMC-morphism g: fN ~ 'J{such that f = ug o 11 N. In fact g is just like ff
except that its target is 'l{instead of f o u?'i By duality, E: f o u~ iácuc.J..CMÔS a natural
transformation which takes each freely composed transition (label) (t);(u) and (t)ll(u) onto
the transition (label) (t;u) and (til u), respectively. Thus, (f, u, 11 , E) : :JI{ji_ut ~

CMC..l.CMCis an adjunction. o

Let (j, 1411, E): ~ut ~ CMC..l.CMC be the adjunction defined in the proposition
above. Then, T = (te, 11 , IJ.) is a monad on ~ut , where te= u o f: 'J{Jlut ~ ~ut is an
endofunctor and IJ. = uE f: te2 ~ te is a natural transformation where u: u ~ 14 f: f~ f
denote the identity natural transformations and uE fis the horizontal composition of natural
transfOimations. A monad is useful to understand the computations of an automaton: for an
automaton N, teN reflects the computations of N, i.e., the transitive closure of N, llN: N ~
te N maps N into its computations and IJ.N: te2 N ~ te N flattens computations of
computations into computations.

Example 4 .4 Consider the nonsequential automaton N 1 with free monoids on states,
transitions and Iabels determined by the labeled transitions a: A ~ B and b: B ~ C. lts
transitive closure is represented in the Figure 13 (the tTansactions added by the transitive
closure are dashed). Note that transactions with "11" are in fact classes of transactions. For
instance, for a;2b: AEBB ~ 2C we have that a;2b = (tslla);(bllb) = (ts;b)ll (a;b) =
bll(a;b) = (b;tc) ll (tA;(a;b)) = (blltA);(tcll (a;b)) = b;a;b = .•• o

Fig. 13. Transitive closure of a nonsequential automaton

Definition 4.5 Category !f?sf'J{llut. Let T = (te, 11, IJ.) be a monad on ~ut induced by the
adjunction (j, 1411 , E): ~ut ~ CMC..l.CMC. The category of nonsequential automata
and refmement morphisms is the Kleisli category determined by T, denoted by !f?sf'J{llut.o

Refinement Mapping for General (Discrete Event) Systems The01y 13

Therefore, a refmement between two nonsequential automata N 1 and N2, denoted by <p:
N1 ~ N2, is a !Nlf.ut-morphism <p: A1 ~ tcA2 and the composition of given refmement
morphisms is the composition in !f?.s-f'J'.(flut.

Example 4 .6 Consider the nonsequential automaton N 1 (previous example) and the
automaton N2 with free monoids on states, transitions and labels detennined by the local
labeled transitions x: X ~ Y and y: Y ~ X. The refinement morphism <p : N 1 ~ N2 is
given by A 2X, B 2Y, C 2Y, a xllx and b 2y;x;y;2x. o

In the next proposition, we prove that this construction also satisfies the horizontal
compositionality: refmement of systems distributes through system composition.

Proposition 4.7 Let {<pi: Ni ~ Mihe 1 be a family ofrefinement, with I a set. Then Xie 1 <pi:
Xiel Ni ~XieiMi.
Proof: For simplicity, we abbreviate Xie 1 and +ie 1 by Xj and +j, respectively Consider tbe
morphism Xj <pi: Xj Ni ~ Xj teMi uniquely induced by the product construction as illustrated
in the Figure 14. Now, we have only to prove that Xj <pi : Xj Ni ~ Xj teMi is a !1?.!-f!Nlf.ut

morphism. Since te= u o f and u is right adjoint we have that Xj <pi: Xj Ni ~ u(XifMi)·
Moreover XjfNi' is isomorphic to +ifNj'. Thus, up to an isomorphism, Xj <pj: Xj Ni ~
u(+ifMj). Since fis left adjoint (and so, preserves colimits) we have that Xj <pi: Xj Ni ~
u o f(+i Mi) . Since Xi Mi is isomorphic to +i Mj, then Xj <p i: Xj Ni ~ tc(Xi Mi) and thus, is a
!1?.!-fNll.ut-morphism. o

,...------------ !Nl!ut
Ni ____ Xiel Ni

<p~ ! Xie I <i'i

te Mj ... ,. .. ___ .. Xiel te Mi

Fig. 14. Refinement morphism uniquely induced

5 Concluding Remarks

We introduced a new semantic domain for (discrete event) system based on structured
labeled transition systems. Concepts and constmctions like interaction, refinement and
hiding, not (fully) explained in otber semantic domains, have now a precise mathematical
semantics.

Interaction of processes is categorically explained, by fibration techniques . Tables for
interaction are categorically defmed. The hiding of events is also dealt with, by cofibration
techniques, introducing the essential ingredient o f internai non-determinism. Refinement is
explained through Kleisli categories ensuring the envisaged leveis of diagonal (vertical and
horizontal) compositionality.

With respect to further work, it should be clear that this may be the starting point of a
rather fruitfulline of research on the semantics of discrete event systems around transition
systems and graph based models.

Refinement Mapping f or General (Discrete Event) Systems Theory 14

Acknowledgments

This work was partially supported by: UFRGS - Universidade Federal do Rio Grande do Sul and CNPq -

Conselho Nacional de Desenvolvimento Científico e Tecnológico in Brazil; CEC under ESPRIT-IIl BRA

WG 6071 IS-CORE, HCM Scientific Network MEDICIS, JNICT (PBIC/C{T'IT/1227/92) in Portugal.

References

1. M. A. Arbib, E. G. Manes, Arrows , Structures and Functors - The Categoria!

lmperative, Academic Press, 1975.
2 . A. Asperti, G. Longo, Categories , Types and Structures - An lntroduction to the

Working Computer Science, Foundations of Computing (M. Garey, A. Meyer Eds.),
MIT Press, 1991.

3. M. A. Bednarczyk, Categories of Asynchronous Systems , Ph.D. thesis, technical
report 1/88, University of Sussex, 1988.

4 . H. D. Ehrich, A. Sernadas, Algebraic lmplementation of Objects over Objects,

Stepwise Refmement of Disn·ibuted Systems: Models, FOimalisms, Conectness (J. de
Bakker, W. -P. de Roever, G. Rozenberg Eds.), pp. 239-266, Springer-Verlag, 1990.

5 . R. Gouieri, Refinement, Atomicity and Transactions for Process Description

Language, Ph.D. thesis, Università di Pisa, 1990.
6. C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
7. A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time, Branching

Time and Partial Orders in Logic and Models for Concurrency (J. W. de Bakker, W.
-P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, Springer-Verlag,
1988.

8. P. B. Menezes, J. F. Costa, Synchronization in Petri Nets , preprint IST/DM/2-94,
1ST, Lisbon, 1993. Revised version accepted for publication in Fundamenta
InfOimaticae.

9. P. B. Menezes, J. F. Costa, Compositional Refinement of Concurrent Systems,

preprint IST/DM/26-94, 1ST, Lisbon, 1994. Revised version accepted for publication
in the Journal of the Brazilian Computer Society - Special Issue on Parallel
Computation.

10. P. B. Menezes, J. F. Costa, Object Refinement, preprint IST/DM/24-94, 1ST, Lisbon,
1994.

11 . J. Meseguer, U. Montanari, Petri Nets are Monoids, Information and Computation 88,
pp. 105-155, Academic Press, 1990.

12. R. Milner, Communication mui Concurrency, Prentice Hall, 1989.
13 . C. Rattray, The Shape of Complex Systems, EUROCAST 93: Computer Aided

Systems Theory (F. Pichler, R. M. Díaz, Eds.) , pp. 72-82, LNCS 763 , Springer
Verlag, 1994.

14. W. Reisig, Petri Nets: An lntroduction, EATCS Monographs on Theoretical Compu ter
Science 4, Springer-Verlag, 1985.

15. V. Sassone, M. Nielsen, G. Winskel, A Classification of Models for Concurrency,

CONCUR 93: 4th International Conference of Concuuency (E. Best, Ed.), pp. 82-96,
LNCS 715, Springer-Verlag, 1993.

16. M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics,
vol. 88, North-Holland, 1978.

17. G. Winskel, Petri Nets , Algebras, Morphisms and Compositionality , Information and
Computation 72, pp. 197-238, Academic Press, 1987.

