
Refinement Modal Logic

Laura Bozzelli∗, Hans van Ditmarsch†, Tim French‡, James Hales§, Sophie Pinchinat¶

March 27, 2014

Abstract

In this paper we present refinement modal logic. A refinement is like a bisim-
ulation, except that from the three relational requirements only ‘atoms’ and ‘back’
need to be satisfied. Our logic contains a new operator ∀ in addition to the stan-
dard modalities 2 for each agent. The operator ∀ acts as a quantifier over the set
of all refinements of a given model. As a variation on a bisimulation quantifier, this
refinement operator or refinement quantifier ∀ can be seen as quantifying over a vari-
able not occurring in the formula bound by it. The logic combines the simplicity of
multi-agent modal logic with some powers of monadic second-order quantification.
We present a sound and complete axiomatization of multi-agent refinement modal
logic. We also present an extension of the logic to the modal µ-calculus, and an
axiomatization for the single-agent version of this logic. Examples and applications
are also discussed: to software verification and design (the set of agents can also be
seen as a set of actions), and to dynamic epistemic logic. We further give detailed
results on the complexity of satisfiability, and on succinctness.

Contents

1 Introduction 2

2 Technical preliminaries 5

3 Refinement 8
3.1 Refinement and its basic properties . 8
3.2 Game and logical characterization of refinement 10
3.3 Refinement as bisimulation plus model restriction 13
3.4 Refinement and action models . 15
3.5 Modal specifications refinement . 16

∗Informática, Universidad Politécnica de Madrid, Spain, laura.bozzelli@fi.upm.es
†LORIA, CNRS – Université de Lorraine, France, hans.van-ditmarsch@loria.fr
‡Computer Science and Software Engineering, University of Western Australia, tim@csse.uwa.edu.au
§Computer Science and Software Engineering, University of Western Australia, james@csse.uwa.edu.au
¶IRISA, University of Rennes, Sophie.Pinchinat@irisa.fr

1

4 Refinement modal logic 16
4.1 Syntax and semantics of refinement modal logic 17
4.2 Examples . 19
4.3 Refinement quantification is bisimulation quantification plus relativization 22
4.4 Alternating refinement relations . 27

5 Axiomatization RML 27
5.1 Soundness . 29
5.2 Example derivations . 32
5.3 Completeness . 33
5.4 The single-agent case . 37
5.5 Refinement epistemic logic . 37

6 Axiomatization RMLµ 38
6.1 Soundness . 39
6.2 Completeness . 45

7 Complexity 46
7.1 RMLµ is non-elementary . 46
7.2 Succinctness . 52

8 Conclusions and perspectives 56

1 Introduction

Modal logic is frequently used for modelling knowledge in multi-agent systems. The seman-
tics of modal logic uses the notion of “possible worlds”, between which an agent is unable to
distinguish. In dynamic systems agents acquire new knowledge (say by an announcement,
or the execution of some action) that allows agents to distinguish between worlds that they
previously could not separate. From the agent’s point of view, what were “possible worlds”
become inconceivable. Thus, a future informative event may be modelled by a reduction in
the agent’s accessibility relation. In [55] the future event logic is introduced. It augments
the multi-agent logic of knowledge with an operation ∀ϕ that stands for “ϕ holds after all
informative events” — the diamond version ∃ϕ stands for “there is an informative event
after which ϕ.” The proposal was a generalization of a so-called arbitrary public announce-
ment logic with an operator for “ϕ holds after all announcements” [8]. The semantics of
informative events encompasses action model execution à la Baltag et al. [9]: on finite
models, it can be easily shown that a model resulting from action model execution is a
refinement of the initial model, and for a given refinement of a model we can construct an
action model such that the result of its execution is bisimilar to that refinement. In [56] an
axiomatization of the single-agent version of this logic is presented, and also expressivity
and complexity results. These questions were visited in both the context of modal logic,
and of the modal µ-calculus.

2

In the original motivation, the main operator ∃ had a rather temporal sense — therefore
the ‘future event’ name. However, we have come to realize that the structural transfor-
mation that interprets this operator is of much more general use, on many very different
kinds of modal logic, namely anywhere where more than a mere model restriction or prun-
ing is required. We have therefore come to call this the refinement operator, and the logic
refinement modal logic.

Thus we may consider refinement modal logic to be a more abstract perspective of fu-
ture event logic [55] applicable to other modal logics. To any other modal logic! This is
significant in that it motivates the application of the new operator in many different set-
tings. In logics for games [42, 2] or in control theory [47, 51], it may correspond to a player
discarding some moves; for program logics [29] it may correspond to operational refinement
[40]; and for logics for spatial reasoning it may correspond to sub-space projections [41].

Let us give an example. Consider the following structure. The ◦ state is the
designated point. The arrows can be associated with a modality.

◦ • • •

E.g., 3332⊥ is true in the point. From the point of view of the modal lan-
guage, this structure is essentially the same structure (it is bisimilar) as

• • • ◦ • • •

This one also satisfies 3332⊥ and any other modal formula for that matter.
A more radical structural transformation would be to consider submodels, such
as

◦ • •

A distinguishing formula between the two is 332⊥, which is true here and false
above. Can we consider other ‘submodel-like’ transformations that are neither
bisimilar structures nor strict submodels? Yes, we can. Consider

• ◦ • •

It is neither a submodel of the initial structure, nor is it bisimilar. It satisfies
the formula 332⊥∧3332⊥ that certainly is false in any submodel. We call
this structure a refinement (or ‘a refinement of the initial structure’), and the
original structure a simulation of the latter. Now note that if we consider the
three requirements ‘atoms’, ‘forth’, and ‘back’ of a bisimulation, that ‘atoms’
and ‘back’ are satisfied but not ‘forth’, e.g., from the length-three path in the
original structure the last arrow has no image. There seems to be still some
‘submodel-like’ relation with the original structure. Look at its bisimilar dupli-
cate (the one with seven states). The last structure is a submodel of that copy.

3

Such a relation always holds: a refinement of a given structure can always be
seen as the model restriction of a bisimilar copy of the given structure. This
work deals with the semantic operation of refinement, as in this example, in full
generality, and also applied to the multi-agent case.

Previous works [19, 37] employed a notion of refinement. In [37] it was shown that
model restrictions were not sufficient to simulate informative events, and they introduced
refinement trees for this purpose — a precursor of the dynamic epistemic logics developed
later (for an overview, see [57]). This usage of refinement as a more general operation than
model restriction is similar to ours.

In formal methods literature, see e.g. [62], refinement of datatypes is considered such
that (datatype) C refines A if A simulates C. This usage of refinement as the converse of
simulation [1, 11] comes close to ours — in fact, it inspired us to propose a similar notion,
although the correspondence is otherwise not very close. A similar usage of refinement as
in [62] is found in [3, 4]. In the theory of modal specifications a refinement preorder is
used, known as modal refinement [45, 49]. Modal specifications are deterministic automata
equipped with may-transitions and must-transitions. A must-transition is available in
every component that implements the modal specification, while a may-transition need
not be. This is close to our definition of refinement, as it also is some kind of submodel
quantifier, but the two notions are incomparable, because ‘must’ is a subtype of ‘may’.

We incorporate implicit quantification over informative events directly into the lan-
guage using, again, a notion of refinement; also in our case a refinement is the converse
of simulation. Our work is closely related to some recent work on bisimulation quantified
modal logics [17, 22]. The refinement operator, seen as refinement quantifier, is weaker than
a bisimulation quantifier [55], as it is only based on simulations rather than bisimulations,
and as it only allows us to vary the interpretation of a propositional variable that does not
occur in the formula bound by it. Bisimulation quantified modal logic has previously been
axiomatized by providing a provably correct translation to the modal µ-calculus [16]. This
is reputedly a very complicated one. The axiomatization for the refinement operator, in
stark contrast, is quite simple and elegant.

Overview of the paper Section 2 gives a wide overview of our technical apparatus:
modal logic, cover logic, modal µ-calculus, and bisimulation quantified logic. Section 3
introduces the semantic operation of refinement. This includes a game and (modal) logical
characterization. Then, in Section 4, we introduce two logics with a refinement quantifier
that is interpreted with the refinement relation: refinement modal logic and refinement
µ-calculus. Section 5 contains the axiomatization of that refinement modal logic and the
completeness proof. We demonstrate that it is equally expressive as modal logic. We
mention results for model classes KD45 and S5. Section 6 gives the axiomatization of
refinement µ-calculus. Again, we have a reduction here, to standard µ-calculus. In Section
7 we show that, although the use of refinement quantification does not change the expressive
power of the logics, they do make each logic exponentially more succinct. We give a non-
elementary complexity bound for refinement modal µ-calculus.

4

2 Technical preliminaries

Throughout the paper we assume a finite set of agents A and a countable set of propositional
variables P as background parameters when defining the structures and the logics. Agents
are named a, b, a′, b′, . . . , and propositional variables are p, q, r, p′, p′′, p1, p2, Agent a is
assumed female, and b male.

Structures A modelM = (S,R, V) consists of a domain S of (factual) states (or worlds),
an accessibility function R : A → P(S × S), and a valuation V : P → P(S). States are
s, t, u, v, s′, . . . , s1, . . . A pair consisting of a modelM (with domain S) and a state s ∈ S is
called a pointed model, for which we write Ms. For R(a) we write Ra; accessibility function
R can be seen as a set of accessibility relations Ra, and V as a set of valuations V (p).
Given two states s, s′ in the domain, Ra(s, s

′) means that in state s agent a considers s′ a
possibility. We will also use a relation Ra simply as a set of pairs ⊆ S × S, and use the
abbreviation sRa = {t ∈ S | (s, t) ∈ Ra}. As we will be often required to discuss several
models at once, we will use the convention that M = (SM , RM , V M), N = (SN , RN , V N),
etc. The class of all models (given parameter sets of agents A and propositional variables
P) is denoted K. The class of all models where for all agents the accessibility relation
is reflexive, transitive and symmetric is denoted S5, and the model class with a serial,
transitive and euclidean accessibility relation is denoted KD45.

The restriction M ′ of a model M , notation M ′ ⊆M , is a model M ′ = (S ′, R′, V ′) such
that S ′ ⊆ S, for each a ∈ A, R′

a = Ra ∩ (S ′ × S ′), and for each p ∈ P , V ′(p) = V (p) ∩ S ′.

Multi-agent modal logic The language L of multi-agent modal logic is inductively
defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ

where a ∈ A and p ∈ P . Without the construct 2aϕ we get the language L0 of propositional
logic. Standard abbreviations are: ϕ ∨ ψ iff ¬(¬ϕ ∧ ¬ψ), ϕ → ψ iff ¬ϕ ∨ ψ, ⊤ iff p ∨ ¬p,
⊥ iff p ∧ ¬p, and 3aϕ iff ¬2a¬ϕ. If there is a single agent only (|A| = 1), we may write

2ϕ instead of 2aϕ. Formula variables are ϕ, ψ, χ, ϕ′, . . . , ϕ1, . . . and for sets of formulas
we write Φ,Ψ, . . . For a finite set Φ of L formulas we let the cover operator ∇aΦ be an
abbreviation for 2a

∨
ϕ∈Φ ϕ ∧

∧
ϕ∈Φ 3aϕ; we note

∨
ϕ∈∅ ϕ is always false, whilst

∧
ϕ∈∅ ϕ is

always true.
Let a finite set of formulas Ψ = {ψ1, . . . , ψn} and a formula ϕ with possible occurrences

of a propositional variable p be given. Let ϕ[ψ\p] denote the substitution of all occurrences
of p in ϕ by ψ. Then ϕ[Ψ\p] abbreviates {ϕ[ψ1\p], . . . , ϕ[ψn\p]}, and similarly

∨
ϕ[Ψ\p]

stands for ϕ[ψ1\p] ∨ . . . ∨ ϕ[ψn\p] and
∧
ϕ[Ψ\p] stands for ϕ[ψ1\p] ∧ . . . ∧ ϕ[ψn\p]. For

example, 3aΦ abbreviates {3aϕ | ϕ ∈ Φ}, and the definition of ∇aΦ, above, is then
written as 2a

∨
Φ ∧

∧
3aΦ.

We now define the semantics of modal logic. Assume a model M = (S,R, V). The

5

interpretation of ϕ ∈ L is defined by induction.

Ms |= p iff s ∈ Vp
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= 2aϕ iff for all t ∈ S : (s, t) ∈ Ra implies Mt |= ϕ

A formula ϕ is valid on a model M , notation M |= ϕ, iff for all s ∈ S, Ms |= ϕ; and ϕ is
valid iff ϕ is valid on all M (in the model class K, given agents A and basic propositions
P). The set of validities, i.e., the logic in the stricter sense of the word, is called K.

Cover logic The cover operator ∇ has also been used as a syntactic primitive in modal
logics [16]. It has recently been axiomatized [10]. The language L∇ of cover logic is defined
as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ∇a{ϕ, . . . , ϕ},

where p ∈ P , and a ∈ A. The semantics of ∇aΦ is the obvious one if we recall our
introduction by abbreviation of the cover operator:

Ms |= ∇aΦ iff for all ϕ ∈ Φ there is a t ∈ sRa such that Mt |= ϕ, and for all
t ∈ sRa there is a ϕ ∈ Φ such that Mt |= ϕ.

The set of validities of cover logic is called K∇. The conjunction of two cover formulas is
again equivalent to a cover formula:

∇aΦ ∧ ∇aΨ ⇔ ∇a((Φ ∧
∨

Ψ) ∪ (Ψ ∧
∨

Φ)) .

The modal box and diamond are definable as 2aϕ iff ∇a∅∨∇a{ϕ}, and 3aϕ iff ∇a{ϕ,⊤},
respectively. Cover logic K∇ is equally expressive as modal logic K (also in the multi-agent
version) [10, 34]. We use cover operators in the presentation of the axioms.

Modal µ-calculus For the modal µ-calculus, apart from the set of propositional variables
P we have another parameter set X of variables to be used in the fixed-point construction.
The language Lµ of modal µ-calculus is defined as follows.

ϕ ::= x | p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | µx.ϕ

where a ∈ A, x ∈ X , p ∈ P , and where in µx.ϕ the variable x only occurs positively (i.e.
in the scope of an even number of negations) in the formula ϕ. We will refer to a variable
x in an expression µx.ϕ as a fixed-point variable. The formula νx.ϕ is an abbreviation for
¬µx.¬ϕ[¬x\x]. Here, we extend the notion of substitution to modal µ-calculus by ruling
out the substitution of bound variables, i.e., to give the crucial clauses: (µx.ϕ)[ψ\x] = µx.ϕ
whereas (µx.ϕ)[ψ\y] = µx.ϕ[ψ\y].

For the semantics of the µ-calculus, the valuation V of propositional variables is ex-
tended to include fixed-point variables. We write V [x 7→T] for the operation that changes a

6

given valuation V into one wherein V (x) = T (where T ⊆ S) and the valuation of all other
fixed-point and propositional variables remains the same. Given a model M = (S,R, V),
we similarly write M [x 7→T] for the model M = (S,R, V [x 7→T]). The semantics of µx.ϕ (the
top-down presentation, not the bottom-up presentation) is now as follows: Let ϕ ∈ Lµ and
model M be given.

Ms |= µx.ϕ iff s ∈
⋂

{T ⊆ S | {u |M [x 7→T]
u |= ϕ} ⊆ T}

Disjunctive formula An important technical definition we require later on is that of a
disjunctive formula. A disjunctive Lµ formula is specified by the following abstract syntax:

ϕ ::= x | (ϕ ∨ ϕ) | (ϕ0 ∧
∧

a∈B

∇a{ϕ, . . . , ϕ}) | µx.ϕ | νx.ϕ (1)

where x ∈ X , ϕ0 ∈ L0 (propositional logic), and B ⊆ A. To get the disjunctive L formula
(of modal logic) we omit the clauses containing µ-calculus variables x:

ϕ ::= (ϕ ∨ ϕ) | (ϕ0 ∧
∧

a∈B ∇a{ϕ, . . . , ϕ}).

If the context of the logic is clear, we simply write disjunctive formula (or df). If B = ∅,
we have that

∧
a∈B ∇a{ϕ1, . . . , ϕn} = ⊤, as expected.

Every Lµ formula is equivalent to a disjunctive Lµ formula [31]. (2a)

Every L formula is equivalent to a disjunctive L formula [58]. (2b)

Bisimulation quantified modal logic The language L∀̃ is defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | ∀̃pϕ

where a ∈ A and p ∈ P . We let ∃̃pϕ abbreviate ¬∀̃p¬ϕ. We write ∀̃ and ∃̃ for the
bisimulation quantifiers in order to distinguish them from the refinement quantifiers ∀ and
∃, to be introduced later. Given an atom p and a formula ϕ, the expression ∃̃pϕ means
that there exists a denotation of propositional variable p such that ϕ. It is interpreted as
follows (restricted bisimulation ≃p is introduced further below in Definition 1):

Ms |= ∀̃pϕ iff for all Nt such that Nt ≃
p Ms, Nt |= ϕ

In [22, Lemma 2.43] a bisimulation quantifier characterization of fixed points is given
(the details of which are deferred to Section 6 on refinement µ-calculus, where they are
pertinent), and from [15] we know that bisimulation quantifiers are also expressible in the
modal µ-calculus. For more information on the modal µ-calculus, see [16, 58].

7

3 Refinement

In this section we define the notion of structural refinement, investigate its properties, give
a game characterization in (basic) modal logic, and compare refinement to bisimulation
and other established semantic notions in the literature.

3.1 Refinement and its basic properties

Definition 1 (Bisimulation, simulation, refinement) Let two models M = (S,R, V)
and M ′ = (S ′, R′, V ′) be given. A non-empty relation R ⊆ S × S ′ is a bisimulation if for
all (s, s′) ∈ R and a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P ;

forth-a for all t ∈ S, if Ra(s, t), then there is a t′ ∈ S ′ such that R′
a(s

′, t′) and (t, t′) ∈ R;

back-a for all t′ ∈ S ′, if R′
a(s

′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈ R.

We write M ≃ M ′ (M and M ′ are bisimilar) iff there is a bisimulation between M and
M ′, and we write Ms ≃ M ′

s′ (Ms and M
′
s′ are bisimilar) iff there is a bisimulation between

M and M ′ linking s and s′. A restricted bisimulation R
p : Ms ≃p M ′

s′ is a bisimulation
that satisfies atoms for all variables except p. A total bisimulation is a bisimulation such
that all states in the domain and codomain occur in a pair of the relation.

A relation RB that satisfies atoms, back-a, and forth-a for every a ∈ A \ B, and
that satisfies atoms, and back-b for every b ∈ B, is a B-refinement, we say that M ′

s′

refines Ms for group of agents B, and we write Ms �B M ′
s′.

1 An A-refinement we call a
refinement (plain and simple) and for {a}-refinement we write a-refinement.

Dually to refinement, we similarly define B-simulation RB. I.e., a relation RB that
satisfies atoms, back-a, and forth-a for every a ∈ A \B, and that satisfies atoms, and
forth-b for every b ∈ B, is a B-simulation.

Restricted refinement and restricted simulation are defined similarly to restricted bisim-
ulation. ⊣

The definition of simulation varies slightly from the one given by Blackburn et al. [11,
p.110]. Here we ensure that simulations (and refinements) preserve the interpretations (i.e.,
the truth and falsity) of atoms, whereas [11] has them only preserve the truth of propo-
sitional variables in a simulation—and presumably preserve their falsity in a refinement.
We prefer to preserve the entire interpretation, as we feel it suits our applications better.
For example, in the case where refinement represents information change, we would not
wish basic facts to become false in the process. The changes are supposed to be merely of
information, and not factual. Another, inessential, difference with [11] is that in their case
atoms and forth are required for all modalities (in the similarity type), i.e., they consider
RB for B = A only.

1We will overload the meaning of refinement and also say that M ′
s′ is a refinement of Ms

8

If RB : Ms �B M ′
s′ is a B-refinement, then the converse relation R

−
B ::= {(s, s′) |

(s′, s) ∈ RB} is a B-simulation, and if M ′
s′ refines Ms then we can also say that Ms

simulates M ′
s′.

In an epistemic setting a refinement corresponds to the diminishing uncertainty of
agents. This means that there is a potential decrease in the number of states and transitions
in a model. On the other hand, the number of states as a consequence of refinement may
also increase, because the uncertainty of agents over the extent of decreased uncertainty
in other agents may still increase. This is perhaps contrary to the concept of program
refinement [40] where detail is added to a specification. However, in program refinement
the added detail requires a more detailed state space (i.e., extra atoms) and as such is
more the domain of bisimulation quantifiers, rather than refinement quantification. Still,
the consequence of program refinement is a more deterministic system which agrees with
the notion of diminishing uncertainty.

Proposition 2 The relation �a is reflexive and transitive (a pre-order), and satisfies the
Church-Rosser property. ⊣

Proof Reflexivity follows from the observation that the identity relation satisfies atoms,
and back-a and forth-a for all agents a, and therefore also the weaker requirement for re-
finement. Similarly, given two a-refinements R1, andR2, we can see that their composition,
{(x, z) | there is a y for which (x, y) ∈ R1, (y, z) ∈ R2} is also an a-refinement. This is
sufficient to demonstrate transitivity. The Church-Rosser property states that if Nt �a Ms

and Nt �a M
′
s′ , then there is some model N ′

t′ such that Ms �a N
′
t′ and M

′
s′ �a N

′
t′ . From

Definition 1 it follows that Ms and M ′
s′ must be bisimilar to one another with respect

to A − {a}. We may therefore construct such a model N ′
t′ by taking Ms (or M ′

s′) and
setting RN ′

a = ∅ and RN ′

b = RM
b for all b ∈ A − {a}. It can be seen that N ′

t′ , where
N ′ = (SM , RN ′

, V M) and t′ = s, satisfies the required properties. �

An elementary result is the following.

Proposition 3 Let B = {a1, ..., an}, and letMs andMt be given. ThenMs(�a1 ◦ · · · ◦ �an

)Mt iff Ms �B Mt. ⊣

Example 4 If Nt �a Ms and Ms �a Nt, it is not necessarily the case that Ms ≃a Nt. For
example, consider the one-agent models M and N where:

• SM = {1, 2, 3}, RM
a = {(1, 2), (2, 3)} and V M(p) = ∅ for all p ∈ P ; and

• SN = {4, 5, 6, 7}, RN
a = {(4, 5), (5, 6), (4, 7)} and V M(p) = ∅ for all p ∈ P .

These two models are clearly not bisimilar, although N4 �a M1 via {(4, 1), (5, 2), (6, 3)}
and M1 �a N4 via {(1, 4), (2, 5), (3, 6), (2, 7)}. See Figure 1. ⊣

Given that the equivalence Ms ≡ Nt defined by Ms � Nt and Ms � Nt is not a
bisimulation, an interesting question seems to be what it then represents. It seems to
formalize that two structures are only different in resolvable differences in uncertainty (for
the agent of the refinement), but not in hard and necessary facts. So the positive formulas
(for that agent) should be preserved under this ‘equivalence’ ≡. Such matters will now be
addressed.

9

1 2 3

7 4 5 6 N

M

Figure 1: Refinement and simulation, but no bisimulation

3.2 Game and logical characterization of refinement

It is folklore to associate a (infinite duration) two-player game with refinement, in the spirit
of [3].

Definition 5 (Refinement game) LetMs and Nt be two models. We define a turn-based
game Ga(Ms, Nt) between two players Spoiler and Duplicator (male and female, respec-
tively) by Ga(Ms, Nt) = (V,E, (s, t)) where the set of positions V is partitioned into the po-
sitions VSpoiler = SM×SN of Spoiler and the positions VDuplicator = SM×[{forth, back}×
(A ∪ P)] × SN of Duplicator. Since the initial position (s, t) ∈ VSpoiler, Spoiler starts.
The set of moves E ⊆ VSpoiler × VDuplicator ∪ VDuplicator × VSpoiler is the least set such that
the following pairs belong to E (we take the convention that b 6= a, and for convenience,
we name those moves with names similar to the properties of refinement in Definition 1):

Spoiler’s moves
Move Name
((s′, t′), (s′, (forth, p), t′)) whenever s′ ∈ V M(p) forth-p?
((s′, t′), (s′, (back, p), t′)) whenever t′ ∈ V N(p) back-p?
((s′, t′), (s′′, (forth, b), t′)) whenever s′′ ∈ RM

b (s′) forth-b?
((s′, t′), (s′, (back, b), t′′)) whenever t′′ ∈ RN

b (t
′) back-b?

((s′, t′), (s′, (back, a), t′′)) whenever t′′ ∈ RN
a (t

′) back-a?
Duplicator’s moves

Move Name
((s′, (forth, p), t′), (s′, t′)) whenever t′ ∈ V N(p) forth-p!
((s′, (back, p), t′), (s′, t′)) whenever s′ ∈ V M(p) back-p!
((s′′, (forth, b), t′), (s′′, t′′)) whenever t′′ ∈ RN

b (t
′) forth-b!

((s′, (back, b), t′′), (s′′, t′′)) whenever s′′ ∈ RM
b (s′) back-b!

((s′, (back, a), t′′), (s′′, t′′)) whenever s′′ ∈ RM
a (s′) back-a!

⊣

In the game Ga(Ms, Nt), a play is a maximal (possibly infinite) sequence of consecutive
moves, or equivalently a maximal sequence of adjacentes positions in the arena. The play
is winning for Duplicator if it is infinite or if it is finite and ends in position of Spoiler,
otherwise, the play ends in a position of Duplicator and it is winning for Spoiler.

A strategy of Duplicator (resp. Spoiler) is a mapping σ : V ∗VDuplicator → V (resp.
σ : V ∗VSpoiler → V) which recommends which moves to choose after each prefix of a play.

10

A play is an outcome of a strategy for Duplicator (resp. Spoiler) if each time
Duplicator (resp. Spoiler) had to play, she (resp. he) has selected the move recom-
mended by her (resp. his) strategy. A strategy is winning if all its outcomes are winning.

Remark 6 One easily sees that the refinement game of Definition 5 is a particular par-
ity game [38]. Henceforth, according to [35], the refinement game is determined2, and
memoryless3 strategies suffice. ⊣

Notice that there is no forth-a move in the game Ga(Ms, Nt), which captures the refinement
relation between the structures:

Lemma 7 Ms �a Nt iff Duplicator has a winning strategy in Ga(Ms, Nt). ⊣

Proof Assume Duplicator has a winning strategy σ in Ga(Ms, Nt). By Remark 6 and
without loss of generality, this winning σ can be taken to be memoryless. Namely, σ :
VDuplicator → VSpoiler. Now, define the binary relation Rσ ⊆ SM × SN as the set of pairs
(s′, t′) ∈ VSpoiler that are reachable when Duplicator follows her strategy σ. Then it is
easy to check that Rσ is an a-refinement from Ms to Nt. Also it is not difficult to see
that if some a-refinement Ra exists fromMs to Nt, then any strategy of Duplicator which
maintains Spoiler’s positions in Ra, is winning. Note that by Definition 1 of a refinement,
this is always possible for her. �

We now consider a characterization of the refinement in terms of the logic L∀. Namely,
given an agent a, we define the fragment of the a-positive formulas La+ ⊆ L by

La+ ∋ ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 2bϕ | 3bϕ | 3aϕ

where b ∈ A \ {a} and p ∈ P .

Proposition 8 For any finitely branching (every state has only finitely many successors)
pointed models Ms0 and Nt0, and for any agent a ∈ A,

Ms0 �a Nt0 if, and only if, for every ϕ ∈ La+, Nt0 |= ϕ implies Ms0 |= ϕ. ⊣

Proof Let us first establish that for every t ∈ SN and s ∈ SM , if Spoiler has a winning
strategy in Ga(Ms, Nt), then there exists a formula ϕ(s, t) ∈ La+ called a distinguishing
formula for (Ms, Nt), for which Nt |= ϕ(s, t) but Ms 6|= ϕ(s, t). Note that if Spoiler has
a winning strategy in Ga(Ms, Nt), all plays induced by this strategy have finite length and
end in a position where Duplicator cannot move. Moreover, by a simple application of
König’s Lemma (as the game graph Ga(Ms, Nt) is finitely branching), the length of those
plays is bounded.

We reason by induction on k, the maximal length of these plays; note that because
Spoiler starts, k > 0.

If k = 1, Spoiler has a winning move from (s, t) to some v ∈ VDuplicator, where
Duplicator is blocked. We reason on the form of v:

2In each position, either Duplicator or Spoiler has a winning strategy from that position.
3Strategies σ that only take into account the current position in the game, instead of the entire prefix

of the game that is currently played.

11

• if v = (s, (forth, p), t) (resp. v = (s, (back, p), t)), then there is no move back to (s, t)
because t 6∈ V N (p) (resp. s 6∈ V M(p)). A distinguishing formula is ¬p (resp. p).

• if v = (s′, (forth, b), t) (resp. v = (s, (back, b), t′)), then tRN
b = ∅ (resp. sRM

b = ∅).
A distinguishing formula is 2b⊥ (resp. 3b⊤). The case v = (s, (back, a), t′) is the
same as (s, (back, b), t′). Since forth-a moves are not allowed in the game, position
v = (s′, (forth, a), t) is not reachable in the game Ga(Ms, Nt), so that the formula

2a⊥ 6∈ La+ is not needed.

Assume now that k > 1, and pick a winning strategy of Spoiler in Ga(Ms, Nt).
We explore the move from the initial position (s, t) that is given by this strategy;

because k > 1, this move cannot be either forth-p?, or back-p?. Three cases remain.

forth-b? The reached position becomes (s′, (forth, b), t), and from there Duplicator

loses. That is, for each t′ ∈ tRN
b , Spoiler wins the game Ga(Ms′, Nt′) in at most

k − 2 steps. By the induction hypothesis, there exists a distinguishing formula
ϕ(s′, t′) ∈ La+ for (Ms′ , Nt′). It is easy to see that ϕ(s, t) = 2b(

∨
t′∈tRN

b
ϕ(s′, t′))

is a distinguishing formula for (Ms, Nt); notice that since N is finitely branching, the
conjunction is finitary.

back-b? This case applies to b 6= a and to b = a.

The reached position becomes (s, (back, b), t′), and from there Duplicator loses. Us-
ing a similar reasoning as for forth-b moves, it is easy to establish that there exists
a formula ϕ(s′, t′) ∈ La+, such that ϕ(s, t) = 3b(

∧
s′∈sRM

b
ϕ(s′, t′)) is a distinguish-

ing formula for (Ms, Nt); here, as M is finitely branching, a finitary disjunction is
guaranteed.

Now, according to the game characterization of refinement (Lemma 7) and the determi-
nacy of the refinement games (Remark 6), the existence of a winning strategy for Spoiler
from position (s0, t0) is equivalent to Ms0 6�a Nt0 ; this provides us with the right to left
direction of the proposition.

For the other direction, assume Ms �a Nt, and let ϕ ∈ La+ with Nt |= ϕ. We prove
that Ms |= ϕ, by induction over the structure of the formula. Basic cases where ϕ is either
p or ¬p, but also the cases ϕ ∧ ψ and ϕ ∨ ψ, are immediate.

Assume Nt |= 2bϕ. Then for every t′ ∈ tRN
b , Nt′ |= ϕ. If tRN

b = ∅, then by Property
forth-b of Definition 1 this entails sRM

b = ∅ and consequently Ms |= 2bϕ (whatever ϕ is).
Otherwise, tRN

b 6= ∅. Take an arbitrary s′ ∈ sRM
b . By Property forth-b of Definition 1,

there is a t′s′ ∈ tRM
b with Ms′ �b Nt′

s′
and Nt′

s′
|= ϕ. By induction hypothesis, Ms′ |= ϕ,

which entails Ms |= 2bϕ.
Assume Nt |= 3bϕ, and let t′ ∈ tRN

b be such that Nt′ |= ϕ. By Property back-b of
Definition 1, there is some s′ ∈ sRM

b , such that Ms′ �b Nt′ . By induction hypothesis,
Ms′ |= ϕ which entails Ms |= 3bϕ.

Note that the argument still holds if we take b = a. �

12

3.3 Refinement as bisimulation plus model restriction

A bisimulation is also a refinement, but refinement allows much more semantic variation.
How much more? There is a precise relation. Semantically, a refinement is a bisimulation
followed by a model restriction.

An a-refinement needs to satisfy back for that agent, but not forth. Let an (‘initial’)
model and a refinement of that model be given. For the sake of the exposition we assume
that the initial model and the refined model are minimal, i.e., they are bisimulation con-
tractions. Now take an arrow (a pair in the accessibility relation) in that initial model.
This arrow may be missing in the refined model namely when forth is not satisfied for that
arrow. On the other hand, any arrow in the refinement should be traceable to an arrow
in the initial model – the back condition. There may be several arrows in the refinement
that are traceable to the same arrow in the initial model, because the states in which such
arrows finish may be non-bisimilar. In other words, we can see the refined model as a
blowup of the initial model of which bits and pieces are cut off.

Example 9 A simple example is as follows. Consider the structure

•1 •2 •3 •4

and its refinement

•b′ •a •b •c

by way of refinement relation R = {(1, a), (2, b), (3, c), (2, b′)}. The arrow (3, 4) has no
image in the refined model. On the other hand, the arrow (1, 2) has two images, namely
(a, b) and (a, b′). These two arrows cannot be identified, because b and b′ are non-bisimilar,
and that is because there is yet another arrow from b but no other arrow from b′: arrow
(2, 3) has only one image in the refined model. ⊣

The cutting off phase can be described such that the relation to restricted bisimulation
becomes clear. When expanding the initial model, the blowing up phase, make a certain
propositional variable false in all states of the blowup that you want to prune (that are not
in the refinement relation) and make it true in all states that you want to keep. Therefore,
the blown up model is bisimilar to the initial model except for the value of that variable.
(In other words, it is a restricted bisimulation.) Then, remove arrows to states where that
atom is false. The result is a refinement of the original model, except maybe for the value
of that variable, as it is now true everywhere — in the example we have chosen a variable
that was already initially true everywhere, to simplify the exposition.

Example 10 Continuing the previous example, consider the following structure bisimilar
to the initial model, except for the value of atom p—in the visualization • represents that
p is true and ◦ represents that p is false.

◦d′ ◦c′ •b′ •a •b •c ◦d

13

The relation R = {(1, a), (2, b), (3, c), (4, d), (2, b′), (3, c′), (4, d′)} is a bisimulation, ex-
cept for the value of p. The refinement from the previous example is a restriction of this
structure, namely the result of removing the ◦ states and the arrows leading to those states.⊣

Winding up, performing an a-refinement clearly corresponds to the following operation:

Given a pointed model, first choose a bisimilar pointed model, then remove
some pairs from the accessibility relation for a in that model.

Given a propositional variable q, this has the same semantic effect as

Given a pointed model, first choose a bisimilar pointed model except for variable
q, such that q is (only) false in some states that are accessible for a, then remove
all those pairs from the accessibility relation for a.

In other words:

Given a pointed model, first choose a bisimilar pointed model except for variable
q, then remove all pairs from the accessibility relation for a pointing to states
where q is false.

If we do this for all agents at the same time (or if we strictly regard tree unwindings of
models only), we can even see the latter operation as follows:

Given a pointed model, first choose a bisimilar pointed model except for variable
q, then restrict the model to the states where q is true.

Of course the variable q, which has now become true everywhere, may have a value different
from its value in the a-refinement. Formally, the result is as follows. First, let M be a
model with accessibility relation (set of accessibility relations) R, and let R′ be such that
for all a ∈ A, R′

a ⊆ Ra, then (analogously to a model restriction) M |R′ is the model that
is the same as M but with the accessibility restricted to R′.

Lemma 11 Given Ms �a Nt, there is an N ′
t (with accessibility function R′) and some R′′

that is the same as R′ except that R′′
a ⊆ R′

a, such that Ms ≃ N ′
t and N

′
t |R

′′ ≃ Nt. ⊣

Proof Let an a-refinement relation Ra ⊆ SM × SN be given, such that (s, t) ∈ Ra. We
expand the model N and this relation Ra as follows to a model N ′ and a bisimulation
R ⊆ SM × SN ′

. Consider SM
− := SM \R−1

a (SN) (SM
− is the set of all states in M that do

not have an image in N). Now consider N ′ = (S ′, R′, V ′) with domain S ′ = SN ∪SM
− , such

that for each agent b (including a), (u′, v′) ∈ R′
b iff:

• (u′, v′) ∈ RN
b , or

• (u′, v′) ∈ RM
b , or

• b = a, u′ ∈ SN , v′ ∈ SM
− , there is a u such that (u, u′) ∈ Ra, and (u, v′) ∈ RM

a ;

14

and such that V ′ = V N on the SN part of the domain whereas V ′ = V M on the new SM
−

part of the domain. Now define R : SM → S ′ as follows: (u, u′) ∈ R iff (u, u′) ∈ Ra or
(u ∈ SM

− and u = u′). Then R is a bisimulation linking Ms and N ′
t . If we restrict R′

a

to RN
a , we get Nt back (states in the SM

− part of N ′ have become unreachable). We have
satisfied the proof requirement that Ms ≃ N ′

t and N
′
t |R

′′
a ≃ Nt (for R

′′
a = RN

a). �

Lemma 12 Given Ms �a Nt, there is an N ′
t (with accessibility function R′) and some

p ∈ P such that Ms ≃p N ′
t and N ′

t |R
′′ ≃p Nt, where R′′ is the same as R′ except that

(u, u′) ∈ R′′
a iff N ′

u′ |= p. ⊣

Proof To satisfy the requirement for p, we make p false on the SM
− part of the domain of

N ′, and true on the SN part of the domain of N ′. (We do not change the value of other
propositional letters on N ′.) �

Below, M |p is the restriction of M to the set of states satisfying p.

Proposition 13 Given Ms �a Nt, there is a N ′
t and some p ∈ P such that Ms ≃

p N ′
t and

N ′
t |p is identical to Nt except for maybe the value of p. ⊣

Proof Clearly, in Lemma 12, N ′
t |R

′′ ≃ N ′
t |p. The model restriction gets rid of the the

SM
− part of N ′, so we now have that N ′

t |p is identical to (and not merely bisimilar to) Nt

except for maybe the value of p. �

In Section 4.3 we build upon this semantic result by translating the logic with refinement
quantifiers into the logic with bisimulation quantifiers plus relativization of formulas.

3.4 Refinement and action models

We recall another important result connecting structural refinement to action model ex-
ecution [9]. For full details, see [55]. An action model M = (S,R, pre) is like a model
M = (S,R, V) but with the valuation replaced by a precondition function pre : S → L
(for a given language L). The elements of S are called action points. A restricted modal
product (M ⊗M) consists of pairs (s, s) such thatMs |= pre(s), the product of accessibility
relations namely such that ((s, s), (t, t)) ∈ Ra iff (s, t) ∈ Ra and (s, t) ∈ Ra, and keeping
the valuation of the state in the pair: (s, s) ∈ V (p) iff s ∈ V (p). A pointed action model
Ms is an epistemic action.

Proposition 14 [55, Prop. 4, 5] The result of executing an epistemic action in a pointed
model is a refinement of that model. Dually, for every refinement of a finite pointed model
there is an epistemic action such that the result of its execution in that pointed model is a
model bisimilar to the refinement. ⊣

It is instructive to outline the proof of these results.
Given pointed model Ms and epistemic action Ms, the resulting (M ⊗M)(s,s) is a refine-

ment of Ms by way the relation R consisting of all pairs (t, (t, t)) such that Mt |= pre(t).

15

Some states of the original model may get lost in the modal product, namely if there is no
action whose precondition can be executed there. But all ‘surviving’ (state,action)-pairs
simply can be traced back to their first argument: clearly a refinement.

For the other direction, construct an epistemic action Ms′ that is isomorphic to a
given refinement Ns′ of a model Ms, but wherein valuations (determining the value of
propositional variables) in states t ∈ N are replaced by preconditions for action execution
of the corresponding action points (also called) t. Precondition pre(t) should be satisfied
in exactly those states s ∈ M such that (s, t) ∈ R, where R is the refinement relation
linking Ms and Ns′. Now in a finite model, we can single out states (up to bisimilarity) by
a distinguishing formula [13]. One then shows that (M ⊗M, (s, s′)) can be bisimulation-
contracted to Ns′. It is unknown if the finiteness restriction can be lifted, because the
existence of distinguishing formulas plays a crucial part in the proof.

Example 4.2 presents an action model and its execution in an initial information state,
and we will there continue our reflections on the comparison of the frameworks.

3.5 Modal specifications refinement

Modal specifications are classic, convenient, and expressive mathematical objects that rep-
resent interfaces of component-based systems [36, 44, 45, 46, 4, 49]. Modal specifications
are deterministic automata equipped with transitions of two types: may and must . The
components that implement such interfaces are deterministic automata; an alternative
language-based semantics can therefore be considered, as presented in [44, 45]. Informally,
a must-transition is available in every component that implements the modal specifica-
tion, while a may-transition need not be. Modal specifications are interpreted as logical
specifications matching the conjunctive ν-calculus fragment of the µ-calculus [20]. In or-
der to abstract from a particular implementation, an entire theory of modal specifications
has been developed, which relies on a refinement preorder, known as modal refinement.
However, although its definition is close to our definition of refinement, the two notions
are incomparable: there is no way to interpret may and must as different agents (agent a
and another agent b 6= a have clearly independent roles in the semantics of a-refinement),
because ‘must’ is a subtype of ‘may’.

4 Refinement modal logic

In this section we present the refinement modal logic, wherein we add a modal operator
that we call a refinement quantifier to the language of multi-agent modal logic, or to
the language of the modal µ-calculus. From prior publications [55, 56] refinement modal
logic is known as ‘future event logic’. In that interpretation different 2a operators stand for
different epistemic operators (each describing what an agent knows), and refinement modal
logic is then able express what informative events are consistent with a given information
state. However, here we take a more general stance.

We list some relevant validities and semantic properties, and also relate the logic to

16

well-known logical frameworks such as bisimulation quantified modal logic (by way of
relativization), and dynamic epistemic logics.

4.1 Syntax and semantics of refinement modal logic

The syntax and the semantics of refinement modal logic are as follows.

Definition 15 (Languages L∀ and L
µ

∀
) Given a finite set of agents A and a countable

set of propositional atoms P , the language L∀ of refinement modal logic is inductively
defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | ∀aϕ

where a ∈ A and p ∈ P . Similarly, the language Lµ
∀ of refinement µ-calculus has an extra

inductive clause µx.ϕ, where X is the set of variables and x ∈ X.

ϕ ::= x | p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | ∀aϕ | µx.ϕ ⊣

We write ∃aϕ for ¬∀a¬ϕ. For a subset {a1, . . . , an} = B ⊆ A of agents we introduce the
abbreviation ∃Bϕ for ∃a1 . . .∃anϕ (in any order), where we write ∃ϕ for ∃Aϕ, and similarly
for ∀B and ∀. (So in the single-agent version we are also entitled to write ∀ and ∃.)

Note the two differences between bisimulation quantifiers ∀̃p and the refinement quan-
tifier ∀. The former we write with a ‘tilde’-symbol over the quantifier. The latter (and
also ∀a) has no variable. A refinement quantifier can be seen as implicitly quantifying
over a variable, namely over a variable that does not occur in the formula ϕ that it binds
(nor should it occur in a formula of which ∃ϕ is a subformula). Section 4.3 will relate
bisimulation quantification to the refinement operator.

Definition 16 (Semantics of refinement) Assume a model M = (S,R, V).

Ms |= ∀aϕ iff for all M ′
s′ :Ms �a M

′
s′ implies M ′

s′ |= ϕ

The set of validities of L∀ is the logic RML (refinement modal logic) and the set of validities
of Lµ

∀ is the logic RMLµ (refinement µ-calculus).4 ⊣

In other words, ∀aϕ is true in a pointed model iff ϕ is true in all its a-refinements. Typical
model operations that produce an a-refinement are: blowing up the model (to a bisimilar
model) such as adding copies that are indistinguishable from the current model and one
another, and removing pairs of the accessibility relation for the agent a (or, alternatively
worded: removing states accessible only by agent a). In the final part of this section we
relate these semantics to the well-known frameworks action model logic and bisimulation
quantified logic (and see also [55]).

Proposition 17 (Bisimulation invariance) Refinement modal logic and refinement µ-
calculus are bisimulation invariant. ⊣

4As is usual in the area, we will continue to use the term ‘logic’ in a general sense, beyond that of a set
of validities.

17

Proof Bisimulation invariance is the following property: given Ms ≃ Nt and a formula ϕ,
then Ms |= ϕ iff Nt |= ϕ. If the logic has operators beyond the standard modalities 2a,
this property does not automatically follow from bisimilarity.

For refinement modal logic bisimulation invariance is straightforward, noting that 2a

is bisimulation invariant, and that µx is bisimulation invariant. The new operator ∀a is
bisimulation invariant, because a-refinement is transitive and bisimulation is just a specific
type of a-refinement. Formally, let Ms ≃ Nt, and Ms |= ∀aϕ, we have to prove that
Nt |= ∀aϕ. Let Ou be arbitrary such that Nt �a Ou. From Ms ≃ Nt follows Ms �a Nt.
From Ms �a Nt and Nt �a Ou follows by Proposition 2 that Ms �a Ou. From Ms |= ∀aϕ
and Ms �a Ou follows Ou |= ϕ. As Ou was arbitrary, we therefore conclude Nt |= ∀aϕ.
The reverse direction is symmetric. �

The following result justifies our notation ∃B for sets of agents.

Proposition 18 For all agents a, b, |= ∃a∃bϕ↔ ∃b∃aϕ. ⊣

Proof Let Ms be given and let Mt and Mu be such that Ms �a Mt and Mt �b Mu. We
have that Ms(�a ◦ �b)Mu iff Ms �{a,b} Mu iff Ms(�b ◦ �a)Mu. (See Proposition 3.) �

Proposition 19 The following are validities of RML.

1. ∀aϕ→ ϕ (reflexivity)

2. ∀aϕ→ ∀a∀aϕ (transitivity)

3. ∃a∀aϕ→ ∀a∃aϕ (Church-Rosser)

4. ∃a(ϕ ∨ ψ) ↔ (∃aϕ ∨ ∃aψ) and ∀a(ϕ ∧ ψ) ↔ (∀aϕ ∧ ∀aψ)

5. ∃a3aϕ↔ 3a∃aϕ ⊣

Proof Note that the first three items directly follow from Proposition 2.

1. The trivial refinement is a refinement.

2. Composition of two refinements is a refinement.

3. Refinement satisfies the Church-Rosser property.

4. This follows from the semantics. Consider the diamond form of the equivalence. The
right-to-left direction is trivial. For the left-to-right direction note that if ϕ∨ψ is true
in some refinement of a given model, then ϕ is true or ψ is true in that refinement,
so ∃aϕ is true or ∃aψ is true in the given model.

18

5. From left to right: let Ms be such that Ms |= ∃a3aϕ, and let M ′
s′ and t

′ ∈ s′R′
a be

such that Ms �a M
′
s′ , M

′
s′ |= 3aϕ, and M

′
t′ |= ϕ. Because of back, there is a t ∈ sRa

such that Mt �a M
′
t′ . Therefore Mt |= ∃aϕ and thus Ms |= 3a∃aϕ.

From right to left: let Ms be such that Ms |= 3a∃aϕ, and let t ∈ sRa and M ′
t′ be

such that Mt �a M
′
t′ , Mt |= ∃aϕ, and M

′
t′ |= ϕ. Consider the model N with point s

that is the disjoint union of M and M ′ except that: all outgoing a-arrows from s in
M are removed (all pairs (s, t) ∈ Ra), a new a-arrow links s to t′ in M ′ (add (s, t′) to
the new Ra). Then Ns is an a-refinement of Ms that, obviously, satisfies 3aϕ, so Ms

satisfies ∃a3aϕ. (This construction is typical for refinement modal logic semantics.
It will reappear in various more complex forms later, e.g., in the soundness proof of
the axiomatization RML.)

�

The semantics of refinement modal logic is with respect to the class K of all models
(for a given set of agents and atoms). If we restrict the semantics to a specific model class
only, we get a very different logic. For example ∃2⊥ is a validity in RML: just remove all
access. But in refinement epistemic logic, interpreted on S5 models, this is not a validity:
seriality of models must be preserved in every refinement. See [56, 27].

4.2 Examples

Change of knowledge Given are two agents that are uncertain about the value of a fact
p, and where this is common knowledge, and where p is true. Both accessibility relations
are equivalence relations, so the epistemic operators model the agents’ knowledge. An
informative event is possible after which a knows that p but b does not know that; this is
expressed by

∃a(2ap ∧ ¬2b2ap)

In Figure 2, the initial state of information is on the left, and its refinement validating
the postcondition is on the right. In the visualization the actual states are underlined. If
states are accessible for both a and b we have labelled the (single) arrow with ab.

On the left, the formula ∃(2ap∧¬2b2ap) is true, because 2ap∧¬2b2ap is true on the
right. On the right, in the actual state there is no alternative for agent a (only the actual
state itself is considered possible by a), so 2ap is true, whereas agent b also considers
another state possible, wherein agent a considers it possible that p is false. Therefore,
¬2b2ap is also true in the actual state on the right.

The model on the right in the figure is neither an a-refinement of the model on the left,
nor a b-refinement of it, but an {a, b}-refinement.

Recalling Section 3.4 on action models, a refinement of a pointed model can also be
obtained by executing an epistemic action (Proposition 14). Therefore, we should be able
to see the refinement in this example as produced by an epistemic action. This is indeed the
case. The epistemic action consists of two action points t and p, they can be distinguished

19

0

1

ab

ab

ab

0

1

1

ab

b

b

ab

ab

ab

R

R

R

Figure 2: An example of refinement as change of knowledge

by agent a but not by agent b. What really happens is p; it has precondition p. Agent b
cannot distinguish this from t with precondition ⊤.

The execution of this action is depicted in Figure 3. The point of the structure is the
one with precondition p: in fact, a is learning that p, but b is uncertain between that action
and the ‘trivial’ action wherein nothing is learnt. The trivial action has precondition ⊤. It
can be executed in both states of the initial model. The actual action can only be executed
in the state where p is true. Therefore, the resulting structure is the refinement with three
states.

0

1

ab

ab

ab

× t

p

b

ab

ab

= (0, t)

(1, t)

(1, p)

ab

b

b

ab

ab

ab

Figure 3: The refinement in Example 4.2.

Action models can also be added as primitives to the multi-agent modal logical language
and are then interpreted with a dynamic modal operator — similar to automata-PDL. To
get a well-defined logical language, the set of action model frames needs to be enumerable,
and therefore such action models must be finite. Thus we get action model logic. We now
recall the result in Proposition 14 that on finite models every refinement corresponds to
the execution of an action model and vice versa (where the action model constructed from
a given refinement may be infinite), but that it is unknown if that finiteness restriction can
be lifted. If that result can be generalized, that would be of interest, as that would suggest
that refinement modal logic is equally expressive as action model logic with quantification

20

over action models. If these logics were equally expressive, action model logic with quan-
tification would be decidable—a surprising fact, given that public announcement logic with
quantification over public announcements (singleton action models) is undecidable [23].

Software verification and design Consider a class of discrete-event systems, whose
elements represent devices that interact with an environment. Each device is described
by means of actions c and u, respectively called ‘controllable’ and ‘uncontrollable’ actions.
Given an expected property described by some formula ϕ, say in Lµ, we use refinement
quantifiers to express several classic verification/synthesis problems. In this example, we
let 2ϕ stand for 2cϕ ∧ 2uϕ.

The the control problem [48], known as the question “is there a way to control actions c
of the system S so that property ϕ is guaranteed?”, can be expressed in L∀ by wondering
whether

S |= ∃cϕ .

Themodule checking problem [33] is the problem of determining whether an open system
satisfies a given property. In other words, whether the property holds when the system is
composed with an arbitrary environment. Let us say that action c is an abstract action that
denotes internal ones, while action u abstracts all external actions, i.e. actions performed
by the environment. Also, assume there is an atomic proposition e that distinguishes states
where it is the turn of the system to act (thus only action c is available) from states where it
is the turn of the environment (thus only action u is available). In this setting, we answer
positively to the module checking problem iff S |= ∀uϕ. As arbitrary environments are
too permissive, we may force hypotheses such as restricting to non-blocking environments:
the property can be captured by the Lµ-formula NonBlockingEnv := νx.(e ⇒ 3u⊤) ∧

2x, which formally says that it is always the case (νx.(....) ∧ 2x) that whenever in an
environment state, there is an outgoing transition from that state (e ⇒ 3u⊤). Now, by
‘guarding’ the universal quantification over all u-refinements (i.e. all environments) with
the NonBlockingEnv assumption, the statement becomes

S |= ∀u(NonBlockingEnv ⇒ ϕ)

The generalized control problem is the combination of the two previous problems, by
questioning the existence of a control such that the controlled system satisfies the property
in all possible environments. This is expressed by wondering whether

S |= ∃c∀u(NonBlockingEnv ⇒ ϕ) .

A last example is borrowed from protocol synthesis problems. Consider a specification,
MUTEX, of a mutual exclusion protocol involving processes 1, 2, . . . k, and some property ϕ
specified in Lµ. Now we may ask if we can find a refinement of MUTEX that satisfies ϕ but
also such that if process i is in the critical section (csi) at time n + 1, then this is known
at time n. This is expressed as

MUTEX |= ∃[AG(3csi ⇒ 2csi) ∧ ϕ]

21

where AG is the CTL-modality, which is defined in Lµ as AG(ψ) ≡ νx.ψ∧2x, and means
that this is true at any time. The refinement consists in moving the nondeterministic
choices forward, so that a fork at time n becomes a fork at time n − 1 with each branch
having a single successor at time n, as depicted in Figure 4.

cs(2)

�

cs(2)cs(1) cs(1)

Figure 4: The refinement of MUTEX.

4.3 Refinement quantification is bisimulation quantification plus

relativization

In Section 3.3 we presented a semantic perspective of refinement as bisimulation followed by
model restriction, or, alternatively and equivalently, as a restricted bisimulation, namely
except for some propositional variable, followed by a model restriction to that variable.
We now lift this result to a corresponding syntactic, logical, perspective of the refinement
quantifier as a bisimulation quantifier followed by relativization.

More precisely, in this section we will show that a refinement formula ∃aϕ is equivalent
to a bisimulation quantification over a variable not occurring in ϕ, followed by a (non-
standard) relativization for that agent to that variable, for which we write ∃̃qϕ(a,q) (to be
defined shortly). For refinement � for the set of all agents (recall that we write � for �A,
and ∃ for ∃A) we can expand this perspective to even more familiar ground: a refinement
formula ∃ϕ is equivalent to a bisimulation quantification over a variable not in ϕ followed
by (standard) relativization to that variable: ∃̃qϕq. These results immediately clarify in
what sense the refinement modality constitutes ‘implicit’ quantification, namely over a
variable not occurring in the formula bound by it.

For the syntactic correspondence we first introduce the notion of relativization (for
settings in modal logic, see [53, 39]). We propose a definition of relativization that may
be considered non-standard for several reasons. Firstly, it is relativization not merely
to a propositional variable but also for a given agent only. The standard definition is

22

then the special case of relativization to that variable for all agents (we will prove that
consecutive relativization to the same variable for two different agents is commutative, in
other words, order independent). Secondly, the relativization that we propose corresponds
in the semantics to arrow elimination and not to state elimination (in other words, it does
not correspond to submodel restriction). From the modal logical literature, the approach
in [39] is arrow-eliminating but that in [53] is state-eliminating.

The arrow-eliminating relativization need only be done in accessible states but not in
the actual state (e.g., the relativization of a variable q to a variable p is that same variable
q and not p ∧ q).

The difference between state-eliminating relativization and arrow-eliminating relativiza-
tion is similar to the difference between state-eliminating public announcement semantics
[43, 9] and arrow-eliminating public announcement semantics [32, 24], in the area of dy-
namic epistemic logic. As our relativization is with respect to a given agent, we have no
option but to use arrow-eliminating relativization.

Given our purpose to translate refinement modal logic into bisimulation quantified
modal logic, we also expand the definition of relativization to include quantifiers. This
definition will then be used in Section 6.

Definition 20 (Relativization) Relativization •(a,p) : L∀̃ → L∀̃ to propositional variable
p for agent a ∈ A is defined as follows.

q(a,p) = q
(¬ϕ)(a,p) = ¬ϕ(a,p)

(ϕ ∧ ψ)(a,p) = ϕ(a,p) ∧ ψ(a,p)

(2aϕ)
(a,p) = 2a(p→ ϕ(a,p))

(2bϕ)
(a,p) = 2bϕ

(a,p) for b 6= a

(∀̃qϕ)(a,p) = ∀̃qϕ(a,p) for q 6= p

(∀̃pϕ)(a,p) = ∀̃qϕ[q\p](a,p) choose q that does not occur in ϕ ⊣

Lemma 21 Let Ms be a model with accessibility function R and R′
a ⊆ Ra such that:

(t, t′) ∈ R′
a iff Mt′ |= p. Then Ms |= ϕ(a,p) if and only if Ms|R

′
a |= ϕ. ⊣

Proof The proof is by induction on the structure of ϕ.

• Ms |= q(a,p) ⇔
Ms |= q ⇔ propositional variables do not change value
Ms|R

′
a |= q

• The clauses for negation and conjunction are elementary.

• Ms |= (2aϕ)
(a,p) ⇔

Ms |= 2a(p→ ϕ(a,p)) ⇔
for all t ∈ sRa :Mt |= p→ ϕ(a,p) ⇔
for all t ∈ sRa :Mt |= p implies Mt |= ϕ(a,p) ⇔ I.H.

23

for all t ∈ sRa :Mt |= p implies Mt|R
′
a |= ϕ⇔ t ∈ sRa and t |= p iff t ∈ sR′

a

for all t ∈ sR′
a :Mt|R

′
a |= ϕ⇔

Ms|R
′
a |= 2aϕ

• Ms |= (2bϕ)
(a,p) ⇔

Ms |= 2bϕ
(a,p) ⇔

for all t ∈ sRb :Mt |= ϕ(a,p) ⇔ I.H.
for all t ∈ sRb (in Mt) :Mt|R

′
a |= ϕ⇔ sRb in M equals sRb in M |R′

a

for all t ∈ sRb (in Mt|R
′
a) :Mt|R

′
a |= ϕ⇔

Ms|R
′
a |= 2bϕ

• For a more natural argument we take the existential quantifier instead of the universal
quantifier. First, observe that:

Ms |= (∃̃qϕ)(a,p) ⇔
Ms |= ∃̃qϕ(a,p) ⇔
there is an Nt ≃

q Ms : Nt |= ϕ(a,p) ⇔ I.H.
there is an Nt ≃

q Ms : Nt|R
′′
a |= ϕ where R′′

a ⊆ RN
a s.t. (u, u′) ∈ R′′

a iff Mu′ |= p

We also have that, by definition:

Ms|R
′
a |= ∃̃qϕ⇔

there is an N ′
t′ ≃

q Ms|R
′
a : N

′
t′ |= ϕ

It remains to show that the two final statements in these chains of equivalences are
also equivalent.

From left to right is easy. If R : Nt ≃
q Ms, then also R : Nt|R

′′
a ≃q Ms|R

′
a. In N and

M we remove all a-arrows to ¬p states; and if it is already a bisimulation, then the
forth and back requirements still hold for fewer pairs in the accessibility relation for
a. So we can take N ′

t′ = Nt|R
′′
a.

From right to left is not easy. Let us first explain this informally. Given that N ′
t′ ≃

q

Ms|R
′
a, the part of M that is inaccessible from Ms|R

′
a (i.e., not in the s-generated

submodel) may not be bisimilar to anything in N ′. This is problematic, because we
need to transform N ′

t′ to some Nt in a way that establishes a q restricted bisimulation
between Nt and all of Ms. Fortunately, the transformation can be an extension of
N ′

t′ , wherein we uniformly treat states in that inaccessible part ofM and other states
of M : we do not need to be economic in our construction. These are the details.

LetR : N ′
t′ ≃

q Ms|R
′
a be the restricted bisimulation. To be explicit, letM = (S,R, V)

and let N ′ = (S ′, R′, V ′). Consider Sap = {u ∈ SM | ∃v ∈ S, (v, u) ∈ Ra \ R
′
a}. For

each u ∈ Sap we need an exact copy Mu of M (let Mu = (Su, Ru, V u)) in our
construction. We now define N = (SN , RN , V N) as follows:

– SN = S ′ ∪
⋃
{Su | u ∈ Sap};

– for all b 6= a, RN
b = R′

b ∪
⋃
{Ru

b | u ∈ Sap};

24

– RN
a = R′

a ∪
⋃
{Ru

a | u ∈ Sap} ∪ {(v′, u) | (v′, v) ∈ R and (v, u) ∈ Ra \R
′
a};

– for all p ∈ P , V N (p) = V ′(p) ∪
⋃
{V u(p) | u ∈ Sap}.

Now take t = t′, and let R′′
a as before be restriction of RN

a to pairs (u, u′) ∈ RN
a such

that u′ satisfies p. It is now immediate that Nt ≃
q Ms and therefore also Nt|R

′′
a |= ϕ.

• The other clause for the universal quantifier starts with a renaming operation (that
equally applies to the existential quantifier), and then proceeds as in the previous
clause.

�

Agent relativization relates as expected to the standard notion of relativization (for the
set of all agents simultaneously). This is because relativization to different variables for
different agents is commutative.

Lemma 22 Let ϕ ∈ L∀̃. Then (ϕ(a,p))(b,q) = (ϕ(b,q))(a,p). ⊣

Proof By induction on the structure of ϕ. The non-trivial cases are 2aϕ, 2bϕ (follows
dually), ∀̃pϕ, and ∀̃qϕ (also follows dually). Note that (a, p)-relativization distributes over
implication.

• ((2aϕ)
(a,p))(b,q) ⇔

(2a(p→ ϕ(a,p)))(b,q) ⇔
2a(p→ ϕ(a,p))(b,q) ⇔
2a(p

(b,q) → (ϕ(a,p))(b,q)) ⇔ I.H., and clause for variables
2a(p→ (ϕ(b,q))(a,p)) ⇔
(2aϕ

(b,q))(a,p) ⇔
((2aϕ)

(b,q))(a,p)

• ((∀̃pϕ)(a,p))(b,q) ⇔ choose r 6= q (or else, yet another step)
(∀̃rϕ[r\p](a,p))(b,q) ⇔
∀̃r(ϕ[r\p](a,p))(b,q) ⇔ I.H.
∀̃r(ϕ[r\p](b,q))(a,p) ⇔ substitution of other variables than q
∀̃r(ϕ(b,q)[r\p])(a,p) ⇔
(∀̃pϕ(b,q))(a,p) ⇔
((∀̃pϕ)(b,q))(a,p)

�

Given Lemma 22, we may view a nesting of relativizations (. . . (ϕ(a1,p)) . . .(an,p)) as a rel-
ativization ϕ({a1,...,an},p) for the set of agents {a1, . . . , an}. Furthermore, for ϕ(A,p) we can
write ϕp: the usual relativization for all agents simultaneously.

To make the syntactic correspondence we now introduce a translation.

25

Definition 23 The translation t : L∀ → L∀̃ is defined by induction on ϕ ∈ L∀. All clauses
except ∀aϕ are trivial.

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(2aϕ) = 2at(ϕ)

t(∀aϕ) = ∀̃p t(ϕ)(a,p) where p does not occur in ϕ ⊣

Example 24

t(∃a∃br) = ∃̃p t(∃br)
(a,p) =

∃̃p(∃̃p t(r)(b,p))(a,p) = ∃̃p(∃̃p r(b,p))(a,p) =

∃̃p(∃̃p r)(a,p) = ∃̃p∃̃q r(a,q) = ∃̃p∃̃q r ⊣

Proposition 25 Let ϕ ∈ L∀. Then ϕ is equivalent to t(ϕ). ⊣

Proof In the proposition we allowed ourselves a slight abuse of language: it means that,
given any Ms, the value of ϕ in the semantics for refinement modal logic is equivalent to
the value of t(ϕ) in the semantics for bisimulation quantified modal logic. The proposition
follows from Lemma 12, Lemma 21 and Def. 23. We show the case ∀aϕ of the inductive
proof—and to suit the intuition we take the existential quantifier ∃a.

Ms |= ∃aϕ
iff
there is an M ′

s′ such that Ms �a M
′
s′ and M

′
s′ |= ϕ

iff (I.H.)
there is an M ′

s′ such that Ms �a M
′
s′ and M

′
s′ |= t(ϕ)

iff (Lemma 12)
there is an N ′

t′ with R
′′
a ⊆ R′

a (restr. to p true) s.t. Ms ≃
p N ′

t′ and N
′
t′ |R

′′
a |= t(ϕ)

iff (Lemma 21)
there is an N ′

t′ such that Ms ≃
p N ′

t′ and N
′
t′ |= t(ϕ)(a,p)

iff
Ms |= ∃̃p t(ϕ)(a,p)

iff
Ms |= t(∃aϕ). �

This corollary makes the characteristic cases of Proposition 25 stand out.

Corollary 26 Consider ∃ϕ with ϕ ∈ L (i.e., ∃-free). Then

• a-refinement is bisimulation quantification plus a-relativization:
∃aϕ is equivalent to ∃̃pϕ(a,p);

• refinement is bisimulation quantification plus relativization:
∃ϕ is equivalent to ∃̃pϕp. ⊣

In the logic of public announcements, the latter is written as: ∃ϕ is equivalent to ∃̃p〈p!〉ϕ.

26

4.4 Alternating refinement relations

Alternating transition systems (ATS) were introduced [3] to model multi-agent systems,
where in each move of the game between the agents of an ATS, the choice of an agent at a
state is a set of states and the successor state is determined by considering the intersection
of the choices made by all agents. A notion of a-alternating refinement was introduced to
reflect a refined behavior of agent a while keeping intact the behavior of the others. When
restricting to turn-based ATS where only one agent plays at a time (concurrent moves are
also allowed in the full setting), a-alternating refinement amounts to requiring ‘forth’ for
all b ∈ A\{a} as we do, but ‘back’ just for agent a. As a consequence, an a-refinement is a
particular a-alternating refinement. A logical characterization of a-alternating refinement
has been proposed (it essentially relies on the modality ∃a combined with the linear time
temporal logic LTL) in the sense that if an ATS S ′ a-refines an ATS S, every formula
true in S ′ is also true in S. Notice however that the operator ∃a has a more restricted
semantics than the one we propose, since the quantification does not range over all possible
refinements of the structure but only over refinements obtained by pruning the unraveling
of the ATS. Soon after, the more general setting of alternating-time temporal logics [2]
considered universal and existential quantifications over a-refinements, for arbitrary a,
combined with LTL formulas. It is worthwhile noticing that the quantifiers still range
over particular refinements, and always in the original structure. As a consequence, the
language cannot express the ability to nest refinements for different agents. This is easily
done in our language L∀, as the formula ∃a(2bp ∧ 3a(∃b2ap)) exemplifies. This formula
tells us that one of the choices that a can make, results in b knowing p and a contemplating
a subsequent choice by b that makes her to get to know p as well.

5 Axiomatization RML

Here we present the axiomatization RML for the logic RML. We show the axioms and
rules to be sound, we give example derivations, and this is followed by the completeness
proof.

The axiomatization presented is a substitution schema, since the substitution rule is
not valid. The substitution rule says that: if ϕ is a theorem, and p occurs in ϕ, and ψ is
any formula, then ϕ[ψ\p] is a theorem. Note that for all atomic propositions p, p→ ∀p is
valid, but the same is not true for an arbitrary formula, e.g. 3a⊤ → ∀3a⊤ is not valid,
because after the maximal refinement there is no accessible state, so that 3a⊤ is then false
even if it was true before. The logic RML is therefore not a normal modal logic.

Definition 27 (Axiomatization RML) The axiomatization RML consists of all sub-

27

stitution instances of the axioms

Prop All tautologies of propositional logic
K 2a(ϕ→ ψ) → 2aϕ→ 2aψ
R ∀a(ϕ→ ψ) → ∀aϕ→ ∀aψ

RProp ∀ap↔ p and ∀a¬p↔ ¬p
RK ∃a∇aΦ ↔

∧
3a∃aΦ

RKmulti ∃a∇bΦ ↔ ∇b∃aΦ where a 6= b
RKconj ∃a

∧
b∈B ∇bΦ

b ↔
∧

b∈B ∃a∇bΦ
b

and the rules
MP From ϕ→ ψ and ϕ infer ψ

NecK From ϕ infer 2aϕ
NecR From ϕ infer ∀aϕ

where a, b ∈ A, p ∈ P , and B ⊆ A. If ϕ is derivable, we write ⊢ ϕ, and ϕ is called a
theorem, as usual. The well-known axiomatization K for the logic K consists of the axioms
Prop, K, and the rules MP and NecK. ⊣

In the definition, given Φ = {ϕ1, . . . , ϕn}, note that ∃a∇aΦ ↔
∧

3a∃aΦ stands for
∃a∇aΦ ↔

∧
ϕ∈Φ 3a∃aϕ (see the technical preliminaries) and so for ∃a∇a{ϕ1, . . . , ϕn} ↔

3a∃aϕ1 ∧ . . . ∧ 3a∃aϕn. The axiomatization RML is surprisingly simple given the com-
plexity of the semantic definition of the refinement operator ∀; and given the well-known
complexity of axiomatizations for logics involving bisimulation quantifiers instead of this
single refinement quantifier. We note that while refinement is reflexive, transitive and sat-
isfies the Church-Rosser property (Proposition 2, and Proposition 19), the corresponding
modal axioms are not required. These properties are schematically derivable. First, we
demonstrate soundness of RML.

Given the definitions of 2 and 3 in terms of cover, it may be instructive to
see how the RK axiom works as a reduction principle for ∃2ϕ and ∃3ϕ—note
that we need both, as there is no principle for ∃¬ϕ. For simplicity we do not
label the operators with agents. We get (for the second equivalence, see also
Prop. 33, later):

∃2ϕ ↔ ∃(∇{ϕ} ∨ ∇∅)
(use R, Prop and MP) ↔ ∃∇{ϕ} ∨ ∃∇∅

(use RK) ↔ ∃∇{ϕ} ∨
∧

3∃∅
(empty conjunction is true) ↔ ∃∇{ϕ} ∨ ⊤

↔ ⊤

and
∃3ϕ ↔ ∃∇{ϕ,⊤}
(use RK) ↔ 3∃ϕ ∧ 3∃⊤

↔ 3∃ϕ

28

One may wonder why we did not choose ∃2ϕ↔ ⊤ and ∃3ϕ↔ 3∃ϕ (we recall
Proposition 19) as primitives in the axiomatization, as, after all, these are very
simple axioms. They are of course valid, but the axiomatization would not be
complete. The axiom RK is much more powerful, as this not merely allows
Φ = {ϕ}, Φ = ∅, and Φ = {ϕ,⊤}, but any finite set of formulas.

5.1 Soundness

Theorem 28 The axiomatization RML is sound for RML. ⊣

Proof As all models of L∀ are models of L, the schemas Prop, K and the rule MP and
NecK are all sound. We deal with the remaining schemas and rules below.

R
Suppose that Ms is a model such that Ms |= ∀a(ϕ → ψ), and Ms |= ∀aϕ. Then for

every Nt, where Nt �a Ms, we have Nt |= ϕ → ψ, and also Nt |= ϕ. From Nt |= ϕ → ψ
and Nt |= ϕ follows Nt |= ψ. As Nt was arbitrary model such that Nt �a Ms, from that
and Nt |= ψ follows Ms |= ∀aψ.

RProp
Let Ms and Nt be given such that Nt �a Ms. By Definition 1 for the semantics of

refinement, we have that s ∈ V M(p) if and only if t ∈ V N(p). ThereforeMs |= p iff Nt |= p,
for every Ms and Nt with Nt �a Ms. Therefore Ms |= p iff Ms |= ∀ap for every Ms, i.e.
|= p↔ ∀ap. Similarly, for |= ¬p↔ ∀a¬p, using that s 6∈ V M(p) if and only if t 6∈ V N(p).

RK
Suppose Ms is a model, where M = (S,R, V), such that for some set Φ, Ms |= ∃a∇aΦ.

Therefore, there is a model Nt �a Ms such that Nt |= ∇aΦ—where N = (SΦ, RΦ, V Φ).
Expanding the definition, we have that for every ϕ ∈ Φ there is some u ∈ tRΦ

a such that
Nu |= ϕ. Also, because of back, for every such u ∈ tRΦ

a there is some v ∈ sRa such
that Nu �a Mv. Combining these statements we have that for every ϕ ∈ Φ there is some
v ∈ sRa such that Mv |= ∃aϕ, and thus Ms |=

∧
3a∃aΦ.

Conversely, suppose that Ms |=
∧

3a∃aΦ. Therefore, for every ϕ ∈ Φ there is some
tϕ ∈ sRa such that Mtϕ |= ∃aϕ. Thus, for each ϕ ∈ Φ, there is some model Nϕ

uϕ �a Mtϕ ,
where Nϕ = (Sϕ, Rϕ, V ϕ), such that Nϕ

uϕ |= ϕ. Without loss of generality, we may assume
that for all ϕ, ϕ′ ∈ Φ the models Nϕ and Nϕ′

are disjoint.
We construct the model MΦ = (SΦ, RΦ, V Φ) such that:

SΦ = {s′} ∪ S ∪
⋃

ϕ∈Φ S
ϕ

RΦ
a = {(s′, uϕ) | ϕ ∈ Φ} ∪Ra ∪

⋃
ϕ∈ΦR

ϕ
a

RΦ
b = {(s′, t) | (s, t) ∈ Rb} ∪ Rb ∪

⋃
ϕ∈ΦR

ϕ
b for b 6= a

V Φ(p) = {s′} ∪ V (p) ∪
⋃

ϕ∈Φ V
ϕ(p) for p ∈ P

where {s′} = {s′} if s ∈ V (p) and else {s′} = ∅.

29

We can see that Ms �a M
Φ
s′ , via the relation RΦ = {(s, s′)} ∪ I ∪

⋃
ϕ∈Φ Rϕ where I

is the identity on S and each Rϕ is the refinement relation corresponding to Mtϕ �a N
ϕ
uϕ

(see also [25]). Furthermore, for each t ∈ s′RΦ
a it is clear that MΦ

t ≃ Nϕ
uϕ for some ϕ, and

thus MΦ
t |= ϕ, and so MΦ

t |=
∨

Φ. Therefore MΦ
s′ |= 2a

∨
Φ. Finally, for each ϕ ∈ Φ there

is some uϕ ∈ s′RΦ
a where MΦ

uϕ |= ϕ, so for each ϕ ∈ Φ we have MΦ
s |= 3aϕ, so we have

MΦ
s′ |=

∧
3aΦ. Combined, MΦ

s′ |= 2a

∨
Φ and MΦ

s′ |=
∧

3aΦ state that MΦ
s′ |= ∇aΦ, and

therefore Ms |= ∃a∇aΦ.

RKmulti
Suppose that Ms |= ∃a∇bΦ. Therefore, there is a model M ′

t �a Ms such that M ′
t |=

∇bΦ—let the accessibility relation for agent b in M ′ be R′
b. Expanding the definition, we

have that for every ϕ ∈ Φ there is some u ∈ tR′
b such that M ′

u |= ϕ. Also, because of
back, for every such u ∈ tR′

b there is some v ∈ sRb such that M ′
u �a Mv. Combining

these statements we have that for every ϕ ∈ Φ there is some v ∈ sRb such that Mv |= ∃aϕ,
and thus Ms |=

∧
3b∃aΦ. However, as forth also holds for agent b, the v ∈ sRb we

could construct above are also all the states v accessible from s. Therefore we also have
Ms |= 2b

∨
∃aΦ, so together we get Ms |= ∇b∃aΦ.

For the converse direction, suppose that Ms |= ∇b∃aΦ. From the definition of ∇b it
follows that Ms |=

∧
3b∃aΦ. We now proceed in a similar way as in the case RK. From

Ms |=
∧

3b∃aΦ it follows that for every ϕ ∈ Φ there is some tϕ ∈ sRb such thatMtϕ |= ∃aϕ.
Thus, for each ϕ ∈ Φ, there is some model Nϕ

uϕ �a Mtϕ , where N
ϕ = (Sϕ, Rϕ, V ϕ), such

that Nϕ
uϕ |= ϕ. Define the model MΦ = (SΦ, RΦ, V Φ) similar to the case RK, except

that: the roles of a and b have been swapped, and the accessibility relation for all agents
c different from a and b is defined as that for a.

SΦ = {s′} ∪ S ∪
⋃

ϕ∈Φ S
ϕ

RΦ
b = {(s′, uϕ) | ϕ ∈ Φ} ∪Rb ∪

⋃
ϕ∈ΦR

ϕ
b

RΦ
c = {(s′, t) | (s, t) ∈ Rc} ∪ Rc ∪

⋃
ϕ∈ΦR

ϕ
c for c 6= b

V Φ(p) = {s′} ∪ V (p) ∪
⋃

ϕ∈Φ V
ϕ(p) for p ∈ P

where {s′} = {s′} if s ∈ V (p) and else {s′} = ∅ (RΦ
c also defines RΦ

a , namely for c = a).
We can see that Ms �a M

Φ
s′ , via the relation RΦ = {(s, s′)} ∪ I ∪

⋃
ϕ∈Φ Rϕ where I

is the identity on S and each Rϕ is the refinement relation corresponding to Mtϕ �a N
ϕ
uϕ

(see also [25]). Furthermore, for each t ∈ s′RΦ
b it is clear that MΦ

t ≃ Nϕ
uϕ for some ϕ, and

thus MΦ
t |= ϕ, and so MΦ

t |=
∨

Φ. Therefore MΦ
s′ |= 2b

∨
Φ. Finally, for each ϕ ∈ Φ there

is some uϕ ∈ s′RΦ
b where MΦ

uϕ |= ϕ, so for each ϕ ∈ Φ we have MΦ
s |= 3bϕ, so we have

MΦ
s′ |=

∧
3bΦ. Combined, MΦ

s′ |= 2b

∨
Φ and MΦ

s′ |=
∧

3bΦ state that MΦ
s′ |= ∇bΦ, and

therefore Ms |= ∃a∇bΦ.

RKconj
The direction ∃a

∧
b∈B ∇bΦ

b →
∧

b∈B ∃a∇bΦ
b is merely a more complex form of pattern

∃a(ϕ ∧ ψ) → (∃aϕ ∧ ∃aψ) which is derivable similar to 3a(ϕ ∧ ψ) → (3aϕ ∧ 3aψ) in the
modal logic K, using the axiom R in place of K.

30

t s u

v

ϕ1 • ϕ2

ϕ3

a a

a

a

a

a

t s u

v

ϕ1 • ϕ2

ϕ3

a a

a

a

a

a

Figure 5: The interaction between refinement and modality involved in axiom RK.

For the other direction, suppose thatMs is such thatMs |=
∧

b∈B ∃a∇bΦ
b, where B ⊆ A.

We need to show that Ms |= ∃a

∧
b∈B ∇bΦ

b. To do this we follow the same strategy as for
proving RK: we construct an a-refinement Nt of Ms, and show that Nt |=

∧
b∈B ∇bΦ

b.
We begin by constructing the model Nt. Suppose that a ∈ B. Then we have Ms |=

∃a∇aΦ
a, and by RK this implies that Ms |=

∧
3a∃aΦ

a. We also have that for every
b ∈ B − {a}, Ms |= ∃a∇bΦ

b, and by RKmulti this implies that Ms |= ∇b∃aΦ
b, and by

the definition of the cover operator, this implies that Ms |=
∧

3b∃aΦ
b. Hence for every

b ∈ B and ϕ ∈ Φb, we have that 3b∃aϕ. (In other words, for some big set of formulas
Ψ we have that Ms |=

∧
3b∃aΨ.) At this stage it suffices to refer to the very similar

construction in the soundness proof for axiom RK, from which, similarly to there, it
follows that Nt |=

∧
b∈B ∇bΦ

b.

NecR
If ϕ is a validity, then it is satisfied by every model, so for any model Ms, ϕ is satisfied

by every model Nt �a Ms, and hence every model Ms satisfies ∀aϕ. �

The soundness of axiomRK is visualized in Figure 5. It depicts the interaction between
refinement and modality involved in this axiom ∃a∇aΦ ↔

∧
3a∃aΦ, for the case that Φ =

{ϕ1, ϕ2, ϕ3}. The single lines are modal accessibility, and the double lines the refinement
relations. The solid lines are given, and the dashed lines are required. Accessibility relations
for other agents than a are omitted. The picture on the left depicts the implication from
left to right in the axiom, and the picture on the right depicts the implication from right
to left. Note that the states satisfying ϕ2 and ϕ3 have the same origin u inM—the typical
sort of duplication (resulting in non-bisimilar states) allowed when having back but not
forth. Apart from u and t, state s in M has yet another accessible state v, that does not
occur in the refinement relation: the other typical sort of thing when having back but not

31

t s u

ϕ1 • ϕ2

ϕ3

b b

a

b

b

b

a a

a

t s u

ϕ1 • ϕ2

ϕ3

b b

a

b

b

b

a a

a

Figure 6: The interaction between refinement and modality involved in axiom RKmulti.

forth. Therefore, on the right side of the equivalence in axiom RK we only have
∧

3a∃aΦ
and we cannot guarantee that 2a

∨
∃aΦ also follows from the left-hand side.

The axiom RKmulti, defined as ∃a∇bΦ ↔ ∇b∃aΦ for a 6= b, says that refinement
with respect to one agent does not interact with the modalities (the uncertainty, say) for
another agent: the operators ∇b and ∃a simply commute. This in contrast to the axiom
RK where on the right-hand side a construct 2a

∨
∃aΦ is ‘missing’, so to speak. If it

had been 2a

∨
∃aΦ∧

∧
3a∃aΦ, then we would have had ∇a∃aΦ, as in RKmulti but with

a = b.
The axioms RK and RKmulti are different, because in an a-refinement the condition

forth is not required, whereas for other agents b forth is required. Given some refinement
wherein we have a cover of Φ, so that at least one of Φ is necessary (the ∃a∇aΦ bit), for
each of the covered states we can trace an origin before the refinement, because of back.
But there may be more originally accessible states, so whatever holds in those origins,
although it is all possible, is not necessary. So we have

∧
3a∃aΦ, but we do not have

2a

∨
∃aΦ. In contrast, when the agents are different, back and forth must hold for agent

b in a refinement �a witnessing the operator ∃a: for an a-refinement, back and forth must
hold for all agents b 6= a. Figure 6 should further clarify the issue—compare this to Figure
5. The main difference between the figures is that there cannot now be yet another state
v accessible from s but not ‘covered’ as the origin of one of the refined states. In Figure
5 what holds in t and u is not necessary for a, but in Figure 6 what holds in t and u is
necessary for b.

5.2 Example derivations

In these examples we also use ‘substitution of equivalents’, see Proposition 32, ahead.

Example 29 ⊢ 3a⊤ → ∃a(3a⊤ ∧ (2ap ∨ 2a¬p)) ⊣

In an epistemic setting, where 2ap means that the agent knows p, and where (in S5
models) the condition 3a⊤ is always satisfied, this validity expresses that the agent can

32

always find out the truth about p: if true, announce p to the agent (and announcement
is a model restriction, and therefore a refinement), after which p is known by the agent
to be true, and if false, announce that p is false, after which p is known to be false. This
validity is indeed also a theorem of RML. For that, it suffices to derive the equivalent

3a⊤ → ∃a(∇a{p} ∨ ∇a{¬p}). In some cases several deductions have been combined into
single statements, but this is restricted to cases of well-known modal theorems.

⊢ 3a⊤ ↔ 3a(p ∨ ¬p) Prop,NecK,K
⊢ 3a(p ∨ ¬p) ↔ (3ap ∨ 3a¬p) Prop,NecK,K
⊢ 3ap→ ∃a∇a{p} See below
⊢ 3a¬p→ ∃a∇a{¬p} See below
⊢ 3ap→ ∃a(∇a{p} ∨ ∇a{¬p}) Prop,NecR,R
⊢ 3a¬p→ ∃a(∇a{p} ∨ ∇a{¬p}) Prop,NecR,R
⊢ 3a⊤ → ∃a(∇a{p} ∨ ∇a{¬p}) Prop,MP

Lines 3 and 4 of the derivation require the following derivation, where ϕ is a propositional
formula (i.e., ϕ ∈ L0).

⊢ ϕ↔ ∃aϕ Proposition 34, ahead
⊢ 3aϕ↔ 3a∃aϕ Prop,NecK,K
⊢ 3aϕ↔ ∃a∇a{ϕ} RK[Φ = {ϕ}]

Example 30 ⊢ (3ap ∧ 3bp ∧ 3a¬p ∧ 3b¬p) → ∃a(2ap ∧ ¬2bp) ⊣

Consider the informative development described in Example 4.2: given an initial infor-
mation state wherein agents a and b consider either value of p possible, a can be informed
such that afterwards a believes that p but not b. This theorem formalizes that. In the
following, let ϕ be (3ap ∧ 3bp ∧ 3a¬p ∧ 3b¬p).

⊢ ϕ→ 3ap ∧ 3b¬p Prop
⊢ ϕ→ 3ap ∧∇b{¬p,⊤} Definition of ∇
⊢ ϕ→ 3a¬¬p ∧ ∇b{¬¬¬p,¬¬⊤} Prop
⊢ ϕ→ 3a¬∀a¬p ∧ ∇b{¬∀a¬¬p,¬∀a¬⊤} RProp
⊢ ϕ→ 3a∃ap ∧ ∇b{∃a¬p, ∃a⊤} Definition of ∃
⊢ ϕ→ ∃a∇a{p} ∧ ∇b{∃a¬p, ∃a⊤} RK
⊢ ϕ→ ∃a∇a{p} ∧ ∃a∇b{¬p,⊤} RKmulti
⊢ ϕ→ ∃a(∇a{p} ∧ ∇b{¬p,⊤}) RKconj
⊢ ϕ→ ∃a(2ap ∧ 3ap ∧ 3b¬p) Definition of ∇
⊢ ϕ→ ∃a(2ap ∧ 3b¬p) Prop
⊢ ϕ→ ∃a(2ap ∧ ¬2bp) Definition of 3

5.3 Completeness

Completeness is shown by a fairly but not altogether straightforward reduction argument:
every formula in refinement modal logic is equivalent to a formula in modal logic. So it

33

is a theorem, if its modal logical equivalent is a theorem. In the axiomatization RML
we can observe that all axioms involving refinement operators ∃ are equivalences, except
for R; however, ∃a(ϕ ∨ ψ) ↔ ∃aϕ ∨ ∃aψ is a derivable theorem. This means that by so-
called ‘rewriting’ we can push the ∃ operators further inward into a formula, until we reach
some expression ∃ϕ where ϕ contains no refinement operators. Now we come to the less
straightforward part. Because there is a hitch: there is no general way to push a ∃ beyond
a negation (or, for that matter, beyond a conjunction). For that, we use another trick,
namely that all modal logical formulas are equivalent to formulas in the cover logic syntax,
and that all those are equivalent to formulas in disjunctive form (see the introduction)
in cover logic. Using that, once we reached some innermost ∃ϕ where ϕ contains no
refinement operators, we can continue pushing that refinement operator downward until it
binds a propositional formula only, and disappears in smoke because of the RProp axiom.
Then, iterate this. All ∃ operators have disappeared in smoke. We have a formula in modal
logic.

For a smooth argument we first give some general results, after which we apply the
reduction argument and demonstrate completeness.

Definition 31 (Substitution of equivalents) An axiomatization satisfies substitution
of equivalents if the following holds. Let ϕ1, ϕ2, ϕ3 ∈ L and p ∈ P . If ⊢ ϕ1 ↔ ϕ2 then
⊢ ϕ3[ϕ2\p] ↔ ϕ3[ϕ1\p]. ⊣

Proposition 32 The axiomatization RML satisfies substitution of equivalents. ⊣

Proof This can be shown by induction on ϕ3. All cases are standard. The case 2aϕ is
shown by using an inductive hypothesis ⊢ ϕ[ϕ2\p] ↔ ϕ[ϕ1\p] and then successively apply-
ing NecK, K, and some elementary tautologies and applications of MP. (The required
pattern is: from ⊢ x → y, to ⊢ 2(x → y), to ⊢ 2x → 2y. Then, similarly, for the other
direction of the equivalence x ↔ y. Then, some more propositional steps to wind it up.)
Whereas the case ∀aϕ is shown with the same inductive hypothesis but applying NecR
and R instead of NecK and K. �

Proposition 33

1. ⊢ ∀a(ϕ ∧ ψ) ↔ ∀aϕ ∧ ∀aψ

2. ⊢ ∃a(ϕ ∨ ψ) ↔ ∃aϕ ∨ ∃aψ

3. ⊢ ∃a(ϕ ∧ ψ) → ∃aϕ ∧ ∃aψ ⊣

Proof Item 1. can be easily derived from R, NecR and MP, similarly to the way that in
modal logic we derive ⊢ 2(ϕ ∧ ψ) ↔ 2ϕ ∧ 2ψ. Item 2. is the dual of item 1. and requires
mere propositional reasoning. Item 3. can be derived using the tautologies ϕ∧ψ → ϕ and
ϕ ∧ ψ → ψ, respectively, propositional reasoning, and R. (Alternatively, for Item 3., we
can think of deriving its dual, with the crucial steps in the derivation that ϕ→ ϕ ∨ ψ is a
tautology, from which with R and MP we get ∀ϕ→ ∀(ϕ ∨ ψ).) �

34

Proposition 34

1. ⊢ ∀aϕ↔ ϕ for all propositional ϕ.

2. ⊢ ∃aϕ↔ ϕ for all propositional ϕ.

Proof We show ⊢ ∀aϕ ↔ ϕ for all propositional ϕ.5 The proof of ⊢ ∃aϕ ↔ ϕ for all
propositional ϕ is similar. For convenience in the proof we omit the agent label and write
∀.

We first show ⊢ ϕ→ ∀ϕ. Assume that ϕ is in disjunctive normal form (i.e., for propo-
sitional logic, different from the disjunctive form, df, often used in this work). Formula
ϕ therefore has the form

∨
γ∈Γ, where each formula γ is a conjunction of atoms or their

negation, for which we write, slightly abusing the language, γ =
∧

p∈γ p — where p = p if
p is a conjunct of γ and p = ¬p if ¬p is a conjunct of γ. We now get the following. We
omit trivial steps of chaining implications and applying MP. For readability we assume
the ‘ϕ→’ part in some derived formulas.

⊢ ϕ →
∨

γ∈Γ

∧
p∈γ p DNF of ϕ,Prop

⊢ . . .
∨

γ∈Γ

∧
p∈γ ∀p RProp

⊢ . . .
∨

γ∈Γ ∀
∧

p∈γ p R, NecR, and Prop. 33.1 (∀(ϕ ∧ ψ) ↔ ∀ϕ ∧ ∀ψ)
⊢ . . . ∀

∨
γ∈Γ

∧
p∈γ p R, NecR, and tautology ϕ→ ϕ ∨ ψ

⊢ ϕ → ∀ϕ DNF of ϕ

For the converse direction we convert ϕ to the conjunctive normal form for propositional
formulas, i.e., ϕ is equivalent to

∧
γ∈Γ

∨
p∈γ p (where we now write p = p if p is a disjunct—

not conjunct—of γ and p = ¬p if ¬p is a disjunct of γ).

⊢ ∀ϕ → ∀
∧

γ∈Γ

∨
p∈γ p CNF of ϕ,Prop,NecR,R

⊢ . . .
∧

γ∈Γ ∀
∨

p∈γ p Prop. 33.1

⊢ . . .
∧

γ∈Γ

∨
p∈γ p ∗

⊢ ∀ϕ → ϕ CNF of ϕ

We show why * holds by outlining the method and giving an example: write the conjunct∨
p∈γ p in implicative fashion, e.g., instead of p ∨ q ∨ ¬r ∨ s we write ¬p → ¬q → r → s.

Then, applying NecR and R and MP repeatedly, we get first ∀(¬p → ¬q → r → s) and
then ∀¬p→ ∀¬q → ∀r → ∀s. Then, applying RProp, we get ¬p→ ¬q → r → s, in other
words, we have p ∨ q ∨ ¬r ∨ s back. �

Proposition 35 ⊢ (ϕ ∧ ∃aψ) ↔ ∃a(ϕ ∧ ψ) for all propositional ϕ (and any ψ ∈ L∀). ⊣

5Of course we do not have for all ϕ ∈ L∀ that ⊢ ∀aϕ ↔ ϕ. But we then still have ⊢ ∀ϕ → ϕ, or, dually,
⊢ ϕ → ∃ϕ. This can be easily shown by induction on the disjunctive form structure of a formula.

35

Proof Proposition 33 demonstrated that ∃a(ϕ∧ψ) → ∃aϕ∧∃aψ from which, using Proposi-
tion 34.2, also follows ϕ∧∃aψ. For the other direction we first derive (∀aϕ∧∃aψ) → ∃a(ϕ∧ψ)
by propositional means and applications of Nec and R. This goes as follows. For conve-
nience of applying the available axioms, instead of (∀aϕ ∧ ∃aψ) → ∃a(ϕ ∧ ψ) use the
equivalent form ∀a¬(ϕ∧ψ) → ∀aϕ→ ∀a¬ψ. Now we observe that ¬(ϕ∧ψ) → ϕ→ ¬ψ is
a tautology and therefore derivable, applying NecR gets us ∀a(¬(ϕ ∧ ψ) → ϕ→ ¬ψ) and
successively applying R gets us ∀a¬(ϕ ∧ ψ) → ∀aϕ → ∀a¬ψ. Then, finally, we use that
∀aϕ↔ ϕ (Proposition 34.1) and thus get (ϕ ∧ ∃aψ) → ∃a(ϕ ∧ ψ). �

We now first show that every L∀ formula is logically equivalent to a L formula. We
then show that if the latter is a theorem in K, the former is a theorem in RML.

Proposition 36 Every formula of L∀ is logically equivalent to a formula of L. ⊣

Proof Given a formula ψ ∈ L∀, we prove by induction on the number of the occurrences
of ∃a in ψ (for any a ∈ A) that it is equivalent to an ∃a-free formula, and therefore to a
formula ϕ ∈ L, the standard modal logic. The base is trivial. Now assume ψ contains
n + 1 occurrences of ∃a-operators for some a ∈ A (so these may be refinement operators
for different agents). Choose a subformula of type ∃aϕ of our given formula ψ, where ϕ
is ∃b-free for any b ∈ A (i.e. choose an innermost ∃a). Let ϕ′ be a disjunctive formula
that is equivalent to ϕ. We prove by induction on the structure of ϕ′ that ∃aϕ

′ is logically
equivalent to a formula χ without ∃a. There are two cases:

• ∃a(ϕ ∨ ψ);

• ∃a(ϕ0 ∧
∧

b∈B ∇bΦ
b) where ϕ0 is propositional, B ⊆ A, and each Φb a set of dfs.

In the first case, apply Proposition 33.2, we get ∃aϕ ∨ ∃aψ, and then apply induction. In
the second case, if B = ∅ we use that ∃aϕ0 ↔ ϕ0 (Proposition 34.2). If B 6= ∅, then from
Proposition 35 follows that this is equivalent to ϕ0 ∧ ∃a

∧
b∈B ∇bΦ

b, and we further reduce
the right conjunct with one of the axioms RK (if B = {a}), RKmulti (if B = {b} with
b 6= a), or RKconj (if |B| > 1), and apply induction again.

Thus we are able to push the refinement operators deeper into the formula until they
eventually reach a propositional formula, at which point they disappear and we are left
with the required ∃-free formula χ that is equivalent to ∃ϕ. Replacing ∃ϕ′ by χ in ψ gives
a result with one less ∃-operator, to which the (original) induction hypothesis applies. �

Proposition 37 Let ϕ ∈ L∀ be given and ψ ∈ L be equivalent to ϕ. If ψ is a theorem in
K, then ϕ is a theorem in RML. ⊣

Proof Given a ϕ ∈ L∀, Proposition 36 gives us an equivalent ψ ∈ L. Assume that ψ is a
theorem in K. We can extend the derivation of ψ to a derivation of ϕ by observing that
all steps used in Proposition 36 are not merely logical but also provable equivalences —
where we also apply Proposition 32 of substitution of equivalents. �

36

Theorem 38 The axiom schema RML is sound and complete for the logic RML. ⊣

Proof The soundness proof is given in Theorem 28, so we are left to show completeness.
Suppose that ϕ ∈ L∀ is valid: |= ϕ. Applying Lemma 36 we know that there is some
equivalent formula ψ ∈ L, i.e., not containing any refinement operator. As ϕ is valid,
from that and the validity ϕ↔ ψ it follows that ψ is also valid in refinement modal logic,
and therefore also valid in the logic K (note that the model class is the same). From the
completeness of K it follows that ψ is derivable, i.e. it is a theorem. From Proposition 37
it follows that ϕ is a theorem. �

5.4 The single-agent case

The axiomatization for the single-agent case is the unlabelled version of RML, minus the
axioms RKmulti and RKconj.6 The single-agent axiomatization was presented in [56].
The completeness proof there is (slightly) different from the multi-agent case of the proof
here. In [56] it is used that every refinement modal logical formula is equivalent to a formula
in cover logic with the special syntax ϕ ::= ⊥ | ⊤ | ϕ ∨ ϕ | p ∧ ϕ | ¬p ∧ ϕ | ∇{ϕ, . . . , ϕ}
[10, 34], plus induction on that form. (This syntax is of course very ‘disjunctive formula
like’.) That proof was suggested by Yde Venema, as a shorter alternative to the proof with
disjunctive forms.

5.5 Refinement epistemic logic

Refinement modal logic RML is presented with respect to the class of all models. As
mentioned in Section 4.1, by restricting the class of models that the logic is interpreted
over, we may associate different meanings with the modalities. For example, the epistemic
logic S5, a.k.a. the logic of knowledge, is interpreted over the model class S5, and the
logic of belief KD45 is interpreted over the class KD45. Given any class of models C, the
semantic interpretation of ∀ is given by:

Ms |= ∀aϕ iff for all M ′
s′ ∈ C : Ms �a M

′
s′ implies M ′

s′ |= ϕ.

Thus we can consider various refinement epistemic logics. Although ∃2⊥ is a validity in
RML (just remove all access) it is not so in the refinement logic of knowledge, interpreted
on S5 models, because seriality of models must be preserved in every refinement. And
therefore it is also not valid in the refinement logic of belief.

Our axiomatization RML may not be sound for more restricted model classes. Let us
consider the single-agent case, and the axiom

RK ∃∇Φ ↔
∧

3∃Φ.

6It is clear that axiom RKmulti is not needed in the single-agent case, as this is for different agents.
But axiom RKconj is also not necessary in the single-agent case. We recall that ∇aΦ∧∇aΨ is equivalent
to ∇a((Φ ∧

∨
Ψ) ∪ (Ψ ∧

∨
Φ)), see page 6. So, we can assume that there are no conjunctions of cover

formulas in the single-agent case.

37

For example, in S5 we have that ∃∇{2p,¬2p} is inconsistent, but that 3∃2p∧3∃¬2p is
consistent: you do not consider an informative development possible after which you both
know and don’t know p at the same time. Therefore, axiom RK is invalid for that class.

The axioms replacing RK in refinement logic of knowledge and refinement logic of
belief are, respectively:

RS5 ∃∇Φ ↔ (
∨

Φ ∧
∧

3Φ),

and, for Φ 6= ∅,

RKD45 ∃∇Φ ↔
∧

3Φ,

where Φ is a set of purely propositional formulas. Now if apart from RS5 we also add the
usual S5 axioms T, 4, and 5, we have a complete axiomatization for the refinement logic
of knowledge. In the case of the refinement logic of belief, we add axioms D (for seriality),
4, and 5 and RKD45 to get a complete axiomatization. For details, see [27].

A study of how various classes of models affect the properties of bisimulation quantified
logics is given in [22]. Refinement epistemic logics are investigated in [27, 25]. In [25] a
multi-agentKD45 axiomatization is also reported. (For multi-agent S5, see ‘Recent results’
in Section 8.)

6 Axiomatization RMLµ

In this section we give the axiomatization for refinement modal µ-calculus. We restrict
ourselves to single-agent refinement modal µ-calculus. The axiomatization is an extension
of the (single-agent) axiomatization RML for refinement modal logic.

We recall the definition of modal µ-calculus in the technical introductory Section 2.
In [22, Lemma 2.43] a bisimulation quantifier characterization of fixed points is given.
The characterization employs the universal modality � which quantifies over all states in
the model. Let L∀̃� be the language of bisimulation quantified modal logic with � as
well. First, observe that this impacts the semantics of bisimulation quantification. For
two models to be bisimilar, it must now also be the case that every state in one model is
bisimilar to a state in the other.

We can inductively define a truth-preserving translation t : Lµ 7→ L∀̃�. The crucial
clauses are those for the fixed-point operators. The atoms p introduced in the translation
are required not to occur in ϕ.

t(νx.ϕ) is equivalent to ∃̃p(p ∧�(p → t(ϕ[p\x])))

t(µx.ϕ) is equivalent to ∀̃p(�(t(ϕ[p\x]) → p) → p)

The first equation captures the intuition of a greatest fixed point as a least upper bound
of the set of states that are postfixed points of ϕ, whereas the second equation captures a
least fixed point as the greatest lower bound of the set of states that are prefixed points
of ϕ. From [15] we know that bisimulation quantifiers are also expressible in the modal
µ-calculus, and thus these equivalences also hold in the modal µ-calculus.

38

Having these tools for modal µ-calculus at our disposal, let us now apply them in
refinement modal µ-calculus. In order to demonstrate the soundness of the axiomatization
defined below, we need to expand the relativization •p : L∀̃ → L∀̃ (Definition 20), single-
agent version, to a version •p : L∀̃� → L∀̃� by including a clause for the universal modality:

(�ϕ)p = �ϕp

Employing that expanded relativization we can expand the translation t : L∀ → L∀̃ (Defi-
nition 23) to a translation

t : Lµ
∀ → L∀̃�

by adding the two clauses above for fixed points (this explains why we also wrote t(•) there).
This translation t remains truth-preserving (due to Proposition 25 and [22, Lemma 2.43]).
We recall the crucial interaction of the translation and the relativization, namely that t(∃ϕ)
is equivalent to ∃̃p t(ϕ)p. The translation plays an important role in the soundness proof:
axioms are shown to be sound by showing that their translations are valid.

Definition 39 (axiomatization RMLµ) The axiomatization RMLµ is a substitution
schema of the (single-agent) axioms and rules of RML along with the axiom and rule for
the modal µ-calculus:

F1 ϕ[µx.ϕ\x] → µx.ϕ
F2 From ϕ[ψ\x] → ψ infer µx.ϕ→ ψ

and two new interaction axioms:

Rµ ∀µx.ϕ↔ µx.∀ϕ where ϕ is a df
Rν ∀νx.ϕ ↔ νx.∀ϕ where ϕ is a df

For single-agent RML, see Definition 27 and Section 5.4. We recall that single-agent RML
does not contain the axioms RKmulti and RKconj.

We emphasize that the interaction axioms have the important associated condition
that the refinement quantification will only commute with a fixed-point operator if the
fixed-point formula is a disjunctive formula.

6.1 Soundness

The soundness proofs of Section 5.1 still apply and the soundness of F1 and F2 are well
known [5], so we are left to show that Rµ and Rν are sound. In the proof we use the
characterization of refinement quantification in terms of bisimulation quantification and
relativization that was established in Proposition 25. We will also use the characterization
of both fixed points in terms of bisimulation quantification as in the previous subsection.

Theorem 40 The axioms Rµ and Rν are sound. ⊣

39

Proof The proof consists of two cases, Rµ and Rν .

Case Rµ

It is more convenient in this proof to reason about the axiom in its contrapositive
form: ∃νx.ϕ ↔ νx.∃ϕ. The proof demonstrates that t(∃νx.ϕ) is equivalent to t(νx.∃ϕ)
in bisimulation quantified logic (with the universal modality). Using the translation and
relativization equivalences above we have that, for any ϕ ∈ L∀:

t(∃νx.ϕ) ⇔ ∃̃p t(νx.ϕ)p

⇔ ∃̃p(∃̃q(q ∧�(q → t(ϕ[q\x]))))p

⇔ ∃̃p∃̃q(q ∧ (�(q → t(ϕ[q\x])))p)

⇔ ∃̃p∃̃q(q ∧�(q → t(ϕ[q\x])p))

⇔ ∃̃q∃̃p(q ∧�(q → t(ϕ[q\x])p))

⇔ ∃̃q(q ∧ ∃̃p�(q → t(ϕ[q\x])p))

⇒ ∃̃q(q ∧�∃̃p(q → t(ϕ[q\x])p)) (∗)

⇔ ∃̃q(q ∧�(q → ∃̃p t(ϕ[q\x])p))

⇔ ∃̃q(q ∧�(q → t(∃ϕ[q\x])))
⇔ t(νx.∃ϕ)

This proof simply applies known validities of bisimulation quantifiers. Note that line (∗)
is not an equivalence. The other direction holds if ϕ is a df . This we now prove.

We may assume w.l.o.g. that disjunctive formula νx.ϕ contains no free variables, i.e.,
ϕ is (also) a disjunctive formula with only the free variable x. We recall that in a disjunc-
tive formula, a conjunction can only be between a purely propositional part and a cover
modality part, and that fixed-point variables are not allowed in the propositional part (see
Section 2). Importantly, this means that propositional variable q (witnessing fixed-point
variable x), that occurs in the formula (ϕ[q\x])p, can only appear in a conjunction if it
appears in the scope of a cover operator within that conjunction. This has the following
significant consequence:

If Ms |= ϕ[q\x], where ϕ is a disjunctive formula, then there is a model Nu ≃q

Ms such that N∗
u |= ϕ[q\x] where N∗

u is the restriction of Nu to states that are
not successors of q states.

That is, whether or not Nu satisfies ϕ[q\x] is invariant to any successors of states in
V N∗

(q).7 To see this, we note that a disjunctive formula ϕ[q\x] is true at Ms only if there
is some pointed model Nu that is bisimilar to Ms, and some minimal relation ρ between
the states of SNu and subformulas of ϕ[q\x] such that:

1. u ρ ϕ[q\x];

7Throughout this proof we will assume that all models are trees or forests (i.e. every state has at most
one predecessor). As every model is bisimilar to a tree, and Lµ

∀ and L∀̃� are bisimulation invariant, this
will not affect the validity of the presented argument.

40

2. if v ρ (ψ1 ∨ ψ2), then either v ρ ψ1 or v ρ ψ2 but not both;

3. if v ρ (χ∧∇Φ), then Nv |= χ and for every successor v′ of v there is a unique ψ ∈ Φ
such that v′ ρ ψ, and for every ψ ∈ Φ, there is at least one successor v′ of v where
v′ ρ ψ;

4. if v ρ σy.ψ, then v ρ ψ[σy.ψ\y], where σ ∈ {ν, µ}.

It is clear that such a relation exists when Nu |= ϕ[q\x]. As q is replacing the fixed-point
variable x, the minimality of ρ guarantees that if v ρ q, then there is no formula (χ∧∇Φ)
such that v ρ (χ ∧ ∇Φ). To see this we consider how the formulas q and χ ∧ ∇Φ may
have appeaed in ϕ[q\x], and specifically what is their smallest common super-formula: if
it is a disjunction, then only the disjunct containing q will be considered; and if it is a
cover operator, ∇Φ, we may assume that each disjunctive formula in Φ is related to a
unique successor state in N . The smallest common super-formula can not be a fixed-point
formula. Consequently, if v ρ p the successors of v do not impact the existence of the
relation ρ, and thus do not affect whether or not Nu |= ϕ[q\x].

An explicit construction for Nu can be given via the tableaux of Janin and Walukiewicz
[30]. Using their tableaux [30, Def. 3.1], the concept of a marking [30, Def. 3.6] can be
adapted to give the required model, Nu. This construction is important for the proof now
to follow.

Suppose Ms is any countable model such that Ms |= ∃̃q(q ∧ �∃̃p(q → t(ϕ[q\x])p)),
where ϕ is a df . We would like to build some model Mω

u such that

• Mω
u ≃p,q Ms,

• Mω
u |= q ∧�(q → t(ϕ[q\x])p)

We inductively build a sequence of (pointed) models M i
u = (Si, Ri, V i, u) such that

M i
u ≃p,q Ms, and furthermore, the models M i are fixed up to a given set of states.

Definition 41 Suppose that Ms = (S,R, V, s) is a pointed tree-like model (so for each
t ∈ S, there is at most one t′ ∈ S such that (t′, t) ∈ R). Let T ⊆ S − {s}. The model Ms

up to T (written Ms ↑ T) is the model (S ′, R′, V, s) where S ′ is the set of states that are
not proper descendants of T and R′ = R ∩ (S ′ × S ′). ⊣

Effectively, the model Ms ↑ T is the model Ms with all the successors of any state in
T removed. For each i there will be a set of states T i ⊂ Si such that for all j > i,
M i ↑ T i =M j ↑ T i.

This means we are able to give a well-defined limit for this sequence. At each point
of the induction, T i will represent a frontier of states in the model where we require
q∧ t(ϕ[q\x])p to be true. Because we are working with disjunctive formulas, we can change
the submodels rooted at states in T i, without affecting the interpretation of t(ϕ[q\x])p in
other parts of the model. This way we are able to find a single modelMω

s with the required
properties.

41

We now define the sequence of models M i. For each i we define a model and a set of
states T i ⊆ Si on which we will extend the construction. The proposition to be shown by
inductive proof is

M i
u ≃p,q Ms

∀u′ ∈ T i, M i
u′ |= ∃̃q(q ∧�∃̃p(q → t(ϕ[q\x])p)),

∀j < i, ∀u′ ∈ T j, M i
u′ |= q ∧ t(ϕ[q\x])p, and

∀j < i,N i ↑ T j = N j ↑ T j.

To define the base case, it is sufficient to let M0 = M and T 0 = {s}. It is clear that the
induction hypothesis holds here. Now, for the inductive step, assume that the proposition
holds for i. For each u ∈ T i, we have

M i
u |= ∃̃q(q ∧�∃̃p(q → t(ϕ[q\x])p)).

Hence, for each u ∈ T i, there is some (tree-like) Nu
vu ≃p,q M i

u such that

Nu
vu |= q ∧ t(ϕ[q\x])p ∧�∃̃p(q → t(ϕ[q\x])p).

We will assume w.l.o.g. that all models Nu for u ∈ T i and M i have disjoint sets of states.
As ϕ is a disjunctive formula, we may further assume that Nu

vu |= t(ϕ[q\x])p is invariant
to any successors of V Nu

(q)\{vu}. This allows us (as the induction proceeds) to replace
the submodels rooted at vu without affecting whether t(ϕ[q\x])p is satisfied in other parts
of the model.

We now append the models Nu
vu (for u ∈ T i) to the model M i. Formally, let M ′ =

M i ↑ T i = (S ′, R′, V ′), and T ′ = T i ∩ S ′. Then

Si+1 = S ′ ∪
⋃

u∈T ′(SNu

− {vu});
Ri+1 = R′ ∪

⋃
u∈T ′(RNu

− {(vu, v)|v ∈ SNu

}) ∪ {(u, v) | u ∈ T ′, vuRNu

v};
for all r : V i+1(r) = V ′(r)

⋃
u∈T ′(V Nu

(r)− {vu}).

Finally, we let T i+1 =
⋃

u∈T ′(V Nu

(q)− {vu}).
We can see that the proposition to be shown holds for i+ 1 as follows:

• M i+1
s ≃p,q Ms since, for all u ∈ T i, M i

u ≃p,q Nu
vu , and M i

s ≃p,q Ms from the induc-
tion hypothesis. A {p, q}-bisimulation between M i+1

s and Ms can be constructed by
composing these bisimulations.8

• ∀v ∈ T i+1, M i+1
v |= ∃̃q(q∧�∃̃p(q → t(ϕ[q\x])p)), since for all u ∈ T i+1, u ∈ V i+1(q),

and Nu
vu |= q ∧�∃̃p(q → t(ϕ[q\x])p).

8Specifically, let Ru be the {p, q}-bsimulation between M i
u and Nu

vu , and R
i be the {p, q}-bisimulation

between M i
s and Ms. We define the {p, q}-bisimulation R

i+1 from M i+1
s to Ms by: for all t ∈ Si+1, for

all t′ in S, (t, t′) ∈ R
i+1 if and only if either (t ∈ Si and (t, t′) ∈ R

i), or (t ∈ SNu

, and for some v ∈ Si,
(t, v) ∈ R

u and (v, t′) ∈ R
i). It is straightforward to check that Ri+1 is a bisimulation.

42

• ∀j < i + 1, ∀u ∈ T j, M j
u |= q ∧ t(ϕ[q\x])q; by the reasoning presented above, M j

u |=
t(ϕ[q\x])q is invariant to the successors of the states in T j+1. Therefore, if M j

u |=
q ∧ t(ϕ[q\x])q, then M j+1

u |= t(ϕ[q\x])q.

• ∀j < i,M i ↑ T j =M j ↑ T j follows immediately from the construction.

We now let Mω = (Sω, Rω, V ω) where

• s′ ∈ Sω iff for some i, s′ ∈ Sj for all j > i,

• uRωv iff for some i, uRjv for all j > i,

• u ∈ V ω(r) iff for some i, u ∈ V j(r) for all j > i,

and let T ω = ∅. It is clear that the limit step will also preserve the induction hypothesis,
so we have Mω

u ≃p,q Ms and M
ω
u |= q ∧�(q → t(ϕ[q\x])p), since by construction V ω(q) =⋃

i<ω T
i. Thus, Ms |= ∃̃p∃̃q(q ∧�(q → t(ϕ[q\x])p)) (i.e., Ms |= ∃νx.ϕ) as required.

The construction is represented in Figure 7.

1

s

u
u

1

0

pp
p ppp

vv0

Figure 7: The inductive step for the construction of Mω. The formula t(ϕ[q\x])p is in-
dependent of any state where p is not true, or any state beyond the frontier defined by
u0, u1,

Case Rν

We also use the contrapositive form of the axiom: ∃µx.ϕ↔ µx.∃ϕ. For any ϕ ∈ L∀ we

43

have that:

t(∃µx.ϕ) ⇔ ∃̃p t(µx.ϕ)p

⇔ ∃̃p(∀̃q(�(t(ϕ[q\x]) → q) → q))p

⇔ ∃̃p∀̃q(�(t(ϕ[q\x])p → q) → q)

⇒ ∀̃q∃̃p(�(t(ϕ[q\x])p → q) → q) (∗∗)

⇔ ∀̃q∃̃p(�(t(ϕ[q\x])p ∧ ¬q) ∨ q)

⇔ ∀̃q(∃̃p�(t(ϕ[q\x])p ∧ ¬q) ∨ q)

⇔ ∀̃q(�∃̃p(t(ϕ[q\x])p ∧ ¬q) ∨ q) (∗ ∗ ∗)

⇔ ∀̃q(�(∃̃p t(ϕ[q\x])p ∧ ¬q) ∨ q)

⇔ ∀̃q(�(∃̃p t(ϕ[q\x])p → q) → q)

⇔ ∀̃q(�(∃ϕ[q\x] → q) → q)
⇔ t(µx.∃ϕ)

The equivalence in (***) is true because � is the existential modality which quantifies over
all states in the model. Obviously, the implication in line (**) is only true in one direction
(the usual quantifier swap ∃∀ → ∀∃).

To prove the other direction in the equivalence ∃µx.ϕ↔ µx.∃ϕ, we now show directly
that |= µx.∃ϕ→ ∃µx.ϕ in refinement µ-calculus, for ϕ a df (observe that µx.ϕ is then a df
as well). We use the inductive characterization of µx.∃ϕ of [5] which tells thatMs |= µx.∃ϕ
if and only if s ∈ ‖∃ϕ‖τ for some ordinal τ , where we recall the definition of the semantic
operation ‖ • ‖: ‖∃ϕ‖0 = ∅, and s ∈ ‖∃ϕ‖τ whenever M τ

s |= ∃ϕ, where M τ = M [σ] with
σ = x 7→

⋃
τ ′<τ ‖∃ϕ‖τ ′.

Suppose Ms |= µx.∃ϕ. Since Lµ
∀ is bisimulation invariant, without loss of generality

we may suppose that M is a countable tree-like model. As Ms satisfies µx.∃ϕ, there must
be some least ordinal τ whereby s ∈ ‖∃ϕ‖τ . We give a proof by induction over τ that
s ∈ ‖∃ϕ‖τ implies Ms |= ∃µx.ϕ. The base case where τ = 0 is trivial. Now consider
M τ = M [σ] with σ = x 7→

⋃
τ ′<τ ‖∃ϕ‖τ ′. Then M τ

s |= ∃ϕ. As µx.ϕ is a df , there is a
refinement of M τ with a frontier such that x may only be true at s or on this frontier, and
no point beyond the frontier affects the interpretation of ϕ. Formally, there is a set of states
{u0, u1, ...} ∈ V τ (x) such that M ′

s |= ∃ϕ (i.e., M ′
s |= ∃̃p t(ϕ)p), where M ′ = (S ′, R′, V ′)

with

• S ′ ⊆ Sτ is the set of states reachable from s, but not from any ui;

• V ′(x) = {t, u0, u1, ...}, V
′(y) = V Mτ

(y) for y 6= x; and

• R′ = Rτ\{(ui, t) | t ∈ Sτ , i = 0, 1, ...}.

We note that M ′
s is a refinement of M τ

s . Now as for each i, ui ∈ ‖∃ϕ‖j for some j < τ , by
the inductive hypothesis we may assume there is some model N i = (Si, Ri, V i) where N i

vi
�

M τ
ui

and N i
ui

|= µx.ϕ. We may append these models to M ′, to define M∗ = (S∗, R∗, V ∗)
where S∗ = S ′∪

⋃
i S

i, R∗ = R′∪
⋃

iR
i∪{(t, vi) | (t, ui) ∈ R′}, and V ∗(y) = V ′(y)∪

⋃
i V

i(y)
for all y ∈ P . (Notice the similar construction in the soundness proof of axiom RK.) It

44

is clear that M∗
s is a refinement of Ms, and by the axiom F1 we can see M∗

s |= µx.ϕ as
required. �

The general form of Rµ is not sound. For example, take ϕ = µz.3(p→ q) → 3(¬p→
x). Then ∀µx.ϕ is true if p is true at every immediate successor of the current state,
whereas µx.∀ϕ is only true at states with no successor. Likewise Rν is not true in the
general case, as can be seen by taking ϕ = p ∧ 2(3⊤ → x). Then νx.∀ϕ is true if and
only if p is true at every reachable state, and ∀νx.ϕ is true only if p is true at every state
within one step.

6.2 Completeness

The completeness proof of RMLµ proceeds exactly as for Theorem 38, replacing the for-
mulas in cover logic with disjunctive formulas, to get a statement similar to that of Propo-
sition 36.

Proposition 42 Every formula of Lµ
∀ is equivalent to a formula of Lµ. ⊣

Proof Given a formula ψ, we prove by induction on the number of the occurrences of ∃
in ψ that it is equivalent to an ∃-free formula, and therefore to a formula in the modal
µ-calculus Lµ. The base is trivial. Now assume ψ contains n + 1 ∃-operators. Choose a
subformula of type ∃ϕ of our given formula ψ, where ϕ is ∃-free (i.e. choose an innermost
∃). As ϕ is ∃-free, it is semantically equivalent to a formula in disjunctive normal form, and
by the completeness of Kozen’s axiom system [59] this equivalence is provable in RMLµ.
By NecR and R it follows that ∃ϕ is provably equivalent to some formula ∃ψ where ψ
is a disjunctive formula (analogously to Proposition 32 one can easily show that RMLµ

satisfies substitution of equivalents). Thus without loss of generality, we may assume in
the following that ϕ is in disjunctive normal form. We may now proceed by induction over
the complexity of ϕ, and conclude that ∃ϕ is logically equivalent to a formula χ without
∃. All cases of this induction are as before, we only show the final two, different cases:

• ∃µx.ϕ iff µx.∃ϕ (by Rν noting that all subformulas of a disjunctive formula are
themselves disjunctive); IH.

• ∃νx.ϕ iff νx.∃ϕ (by Rµ); IH.

Replacing ∃ϕ by χ in ψ gives a result with one less ∃-operator, to which the (original)
induction hypothesis applies. �

Theorem 43 The axiom schema RMLµ is sound and complete for the logic RMLµ ⊣

Proof Soundness follows from Theorem 40 and Theorem 28. To see RMLµ is complete,
suppose ϕ ∈ Lµ

∀ is a valid formula. Then by Lemma 42, ϕ is provably equivalent to some
valid formula ψ ∈ Lµ. As ψ is valid, it must be provable since Prop, K, F1, F2, NecK,
and MP give a sound and complete proof system for the modal µ-calculus [59]. A proof
of ϕ follows by MP. �

45

7 Complexity

Decidability for both L∀ and Lµ
∀ follows from the fact that a computable translation is

given in the completeness proofs of Sections 5 and 6: note that the given translations to L
and Lµ respectively, are recursive and involve transforming formulas into their disjunctive
normal forms. Hence they are non-elementary in the size of the original formula. This
non-elementary procedure for Lµ

∀ is optimal as shown in Section 7.1 below.
Unfortunately we were not able to corroborate in this paper the upper complexity

claims for RML reported in [56]. But towards some indication of a result in that direction,
we further establish a doubly exponential succinctness proof for L∀ in Section 7.2. (On
complexity, see also ‘Recent results’ in Section 8.)

7.1 RMLµ is non-elementary

This section is dedicated to the proof of the following result.

Theorem 44 The satisfiability problem for RMLµ is non-elementary, even for the single-
agent setting. ⊣

In the rest of this section, we only consider a single-agent setting.
First, we recall a fragment, written CTL−, of the standard branching-time logic Com-

putation Tree Logic (CTL) [14], which in turn is a fragment of Lµ (see also the example
Section 4.2).

CTL− ∋ ϕ ::= ⊤ | ⊥| p | ¬ϕ | ϕ ∧ ϕ |2ϕ | 3ϕ | EFϕ | AFϕ

Let M be a model and s be an M-state. A path from s is a finite or infinite sequence
of states π = s0, s1, . . . s.t. s0 = s and each si+1 is an successor of si. Only the semantics
of AF and EF is recalled (as for other formulas it is clear):

Ms |= EFϕ iff there are a maximal path π = s0, s1, . . . from s and i ≥ 0
such that Msi |= ϕ

Ms |= AFϕ iff for each maximal path π = s0, s1, . . . from s,
there is i ≥ 0 such that Msi |= ϕ

Directly translating CTL− in Lµ is routine via the following mapping τ : CTL− → Lµ,
defined by induction over the formulas: τ(⊤) = ⊤, τ(p) = p, τ(¬ϕ) = ¬τ(ϕ), τ(ϕ ∧ ϕ′) =
τ(ϕ) ∧ τ(ϕ′), τ(2ϕ) = 2τ(ϕ), τ(3ϕ) = 3τ(ϕ), τ(EFϕ) = µx.τ(ϕ) ∨ 3x, τ(AFϕ) =
µx.τ(ϕ) ∨ 2x.

We also use standard abbreviations for the duals AGϕ iff ¬EF¬ϕ (‘universal always’),
and EGϕ iff ¬AF¬ϕ (‘existential always’). A CTL− formula is in positive form if negation is
applied only to propositional variables. A CTL− formula ϕ is existential if it is in positive
form and there are no occurrences of the universal modalities AF and AG and the modality

2. The following can be proved by using Proposition 8, enriched for the case of EF formulas
(with a transfinite induction argument for this fixed-point formula).

46

Proposition 45 Let Ms and Nt be two models with Ms � Nt. Then for each existential
CTL− formula ϕ, Nt |= ϕ implies Ms |= ϕ. ⊣

Definition 46 (Refinement CTL
−) Refinement CTL− (CTL−∀ , for short) is the exten-

sion of CTL− with the refinement quantifiers ∃ and ∀. ⊣

Definition 47 (Refinement Quantifier Alternation Depth) We first define the al-
ternation length ℓ(χ) of finite sequence χ ∈ {∃, ∀}∗ of quantifiers, as the number of al-
ternations of existential and universal refinement quantifiers in χ. Formally, ℓ(ǫ) = 0,
ℓ(Q) = 0 for every Q ∈ {∃, ∀}∗, and ℓ(QQ′χ) = ℓ(Q′χ) if Q = Q′, ℓ(Q′χ) + 1 otherwise.

Given a L∀ (resp., Lµ
∀, resp., CTL

−
∀) formula ϕ, the refinement quantifier alternation

depth δ(ϕ) of ϕ is defined via the standard tree-encoding T (ϕ) of ϕ, where each node
is labeled by either a modality, a boolean connective, or a propositional variable. Then,
δ(ϕ) is the maximum of the alternation lengths ℓ(χ) where χ is the sequence of refinement
quantifiers along a maximal path of T (ϕ) from the root. ⊣

Theorem 48 Let the class Ck = {ϕ ∈ CTL−∀ | δ(ϕ) ≤ k}. The satisfiability problem for Ck
is k-Expspace-hard, for any k. ⊣

Theorem 48 is proved by a polynomial-time reduction from satisfiability of Quantified
Propositional Temporal Logic (QPTL) [50]. First, we recall the syntax and the semantics
of QPTL. The syntax of QPTL formulas ϕ over a countable set P of propositional variables
is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | ∃p.ϕ

where p ∈ P , X is the ‘next’ modality, F is the ‘eventually’ modality, and ∃ is the existential
quantifier.9 We also use standard abbreviation Gϕ for ¬F¬ϕ (‘always’).

The semantics is given w.r.t. elements of (2P)ω, namely infinite words w over 2P . Be-
forehand, we need some technical notions. Let w ∈ (2P)ω. For each i ≥ 0, w(i) denotes the
ith symbol of w. Moreover, for each P ′ ⊆ P , we define the equivalence relation ≡P ′ over
(2P)ω: two infinite words w1 and w2 are ≡P ′-equivalent whenever their projections onto P ′

are equal. The projection of an infinite word w onto P ′, written proj(w, P ′), is obtained
by removing from each symbol of w all the propositions in P \ P ′. Hence, w1 ≡P ′ w2 iff
proj(w1, P

′) = proj(w2, P
′).

Given a QPTL formula ϕ, an infinite word w over 2P , and a position h ≥ 0 along w,
the satisfaction relation (w, h) |= ϕ is inductively defined as follows (we omit the clauses
for the boolean connectives):

(w, h) |= p iff p ∈ w(h)
(w, h) |= Xϕ iff (w, h+ 1) |= ϕ
(w, h) |= Fϕ iff there is h′ ≥ h such that (w, h) |= ϕ

(w, h) |= ∃p.ϕ iff there is w′, w′ ≡P\{p} w and (w′, h) |= ϕ

9We distinguish (domain) quantifiers ∃ and ∀ in use here, from the refinement quantifiers ∃ and ∀, and
from the bisimulation quantifiers ∃̃ and ∀̃.

47

We say that the word w satisfies ϕ, written w |= ϕ, if (w, 0) |= ϕ. A QPTL formula
ϕ is in positive normal form if it is of the form Q1p1.Q2p2. . . . Qnpn.ϕn+1, where Qj ∈
{∃, ∀} for each 1 ≤ j ≤ n, and ϕn+1 is a quantification-free QPTL-formula in which
negation is applied only to propositional variables10. The quantifier alternation depth
of Q1p1.Q2p2. . . . Qnpn.ϕn+1 is the number of alternations of (existential and universal)
quantifiers in the string Q1Q2 . . . Qn. The following is a well-known result.

Theorem 49 [50] Let k ≥ 0. Then, the satisfiability problem for the class of QPTL

formulas in positive normal form whose quantifier alternation depth is k is k-Expspace-
hard. ⊣

Note that Theorem 49 holds even if we assume that formulas in positive normal form
like Q1p1.Q2p2. . . .Qnpn.ϕn+1 (with ϕn+1 quantification-free) are such that p1, . . . , pn are
pairwise distinct, each proposition occurring in ϕn+1 is in {p1, . . . , pn}, and Qn = ∀.

Theorem 48 directly follows from Theorem 49 and the following theorem, whose proof
is given in the rest of this section.

Theorem 50 For every ϕ ∈ QPTL, one can construct in time polynomial in the size of ϕ
a formula ϕ̃ ∈ CTL−∀ , such that ϕ is satisfiable if, and only if, ϕ̃ is satisfiable. Moreover,
the refinement quantifier alternation depth of ϕ̃, δ(ϕ̃), is equal to the quantifier alternation
depth of ϕ. ⊣

Before proving Theorem 50, we need additional definitions. Let P = {p1, . . . , pn} and

P̃ = P ∪ {p0, p1, . . . , pn}, where p0, p1, . . . , pn are fresh propositional variables (intuitively,
pi is used to encode the negation of pi for each 1 ≤ i ≤ n, and p0 is a new variable that
will be used to mark a path). For a model M and two states s and s′ in M , s′ is reachable
from s if there is a finite path from s leading to s′. Let 0 ≤ j ≤ n. A pointed model Ms

(over P̃) is well-formed w.r.t. j if the following holds:

1. for each state s′ of M which is reachable from s, there is exactly one proposition
p ∈ P̃ such that s′ ∈ V M(p) (we say that s′ is a p-state); moreover, s is a p0-state;

2. each state s′ reachable from s which is not a p0-state has no successor;

3. each p0-state s
′ which is reachable from s satisfies: (i) s′ has some p0-successor, (ii)

for all 1 ≤ i ≤ j, either s′ has a pi-state successor or (exclusive) a pi-state successor,
and (iii) for all j+1 ≤ i ≤ n, s′ has both a pi-state successor and a pi-state successor.

For each 0 ≤ j ≤ n, the following CTL− formula ψj over P̃ characterizes the set of pointed
models which are well-formed w.r.t. j:

10Every QPTL formula is constructively equivalent to a formula in positive normal form, with linear
size.

48

ψj := p0 ∧ AG
{[∨

p∈P̃ (p ∧
∧

p′∈P̃\{p} ¬p
′)
]
∧
[
¬p0 → 2⊥

]
∧

p0 →
[
3p0 ∧

∧
j+1≤i≤n(3pi ∧ 3pi) ∧

∧
1≤i≤j(3(pi ∨ pi) ∧ (2¬pi ∨ 2¬pi))

]}

Intuitively, ψj enforces the existence of infinite paths π = s0s1 . . . which visit only p0-
states si such that the following holds: the set of successors of si ‘encodes’ a specific truth
valuation of the variables p1, . . . , pj and all the possible truth valuations of the variables
pj+1, . . . , pn.

A pointed model Ms is well-formed if it is well-formed w.r.t. j for some 0 ≤ j ≤ n. In
this case, we say that Ms is minimal if, additionally, each p0-state which is reachable from
s has exactly one p0-successor.

A well-formed pointed model Ms encodes a set of infinite words over 2P , written
words(Ms), given by: w ∈ words(Ms) iff there is an infinite path π = s0, s1, . . . of M
from s (note that π consists of p0-states) such that for all h ≥ 0 and 1 ≤ j ≤ n, either
pj ∈ w(h) and sh has some pj-successor, or pj /∈ w(h) and sh has some pj-successor.

Note that if Ms is well-formed w.r.t. 0, then words(Ms) = (2P)ω. If instead Ms is
well-formed w.r.t. j for some 0 < j ≤ n and Ms is also minimal, then there is an infinite
word uj ∈ (2{p1,...,pj})ω such that words(Ms) = {w ∈ (2P)ω | proj(w, {p1, . . . , pj}) = uj}. In
particular, when j = n, words(Ms) is a singleton.

Also, one can easily see that if Ms � Nt then words(Ms) ⊇ words(Nt).

Construction of the CTL−∀ formula ϕ̃ (in Theorem 50). Pick an QPTL formula ϕ =
Q1p1.Q2p2. . . . Qnpn.ϕn+1. For each 1 ≤ j ≤ n, we let ϕj = Qjpj.Qj+1pj+1. . . . Qnpn.ϕn+1

(note that ϕ1 corresponds to ϕ).

First, we construct a CTL−∀ formula ϕ̃j over P̃ by using the CTL− formulas ψj−1, for
each 1 ≤ j ≤ n + 1. The construction is based on an induction on n+ 1 − j = 0, . . . , n as
follows:

Base case (j = n+1). Recall that ϕn+1 is a quantification-free QPTL formula in positive
normal form over P . Let Υ be the following mapping from the set of quantification-
free QPTL formulas ξ over P in positive normal form to the set of existential CTL−

formulas over P̃ (it is defined by induction).

• Υ(p) = 3p and Υ(¬p) = 3p for each p ∈ P ;

• Υ(ξ1 ∨ ξ2) = Υ(ξ1) ∨Υ(ξ2) and Υ(ξ1 ∧ ξ2) = Υ(ξ1) ∧Υ(ξ2);

• Υ(Xξ) = 3(p0 ∧ Υ(ξ)), Υ(Fξ) = EF(p0 ∧ Υ(ξ)), and Υ(Gξ) = EG(p0 ∧ Υ(ξ)).

Then, ϕ̃n+1 := Υ(ϕn+1).

Induction case (1 ≤ j ≤ n). Recall ϕj = Qjpj.ϕj+1.

Then, ϕ̃j :=

{
∃(ψj ∧ ϕ̃j+1) if Qj = ∃
∀(ψj → ϕ̃j+1) if Qj = ∀

Finally, the CTL−∀ formula ϕ̃ over P̃ is given by ϕ̃ := ψ0 ∧ ϕ̃1.

49

Correctness of the construction. Note that the size of ϕ̃ is polynomial in the size of
ϕ. Moreover, the refinement quantifier alternation depth of ϕ̃ is equal to the quantifier
alternation depth of ϕ. Thus, in order to prove Theorem 50, it remains to show that ϕ is
satisfiable iff ϕ̃ is satisfiable. For this, we need three preliminary lemmata.

Lemma 51 Let Ms be a pointed model which is well-formed w.r.t. n and minimal, with
words(Ms) = {w}. Then, for each quantification-free QPTL formula ξ in positive normal
form, w |= ξ if and only if Ms |= Υ(ξ). ⊣

Proof Let π = s0, s1, . . . be the unique infinite path of M from state s (note that π
consists of p0-states). Then, by a straightforward structural induction, one can show that
for each quantification-free QPTL formula in positive normal form ξ, the following holds:
for all h ≥ 0, Msh |= Υ(ξ) iff (w, h) |= ξ. Hence, the result follows. �

Let 0 ≤ j ≤ n and let Ms be a pointed model which is well-formed w.r.t. j. For each
j ≤ i ≤ n, an h-segment of Ms is a refinement Nt of Ms which is well-formed w.r.t. h and
minimal. Note that for each w ∈ words(Ms) and for each j ≤ h ≤ n, by construction, there
exists an h-segment Nt of Ms such that w ∈ words(Nt).

Lemma 52 Let 1 ≤ j ≤ n and Ms be a pointed model which is well-formed w.r.t. j − 1
such that for each w ∈ words(Ms), w |= ϕj. Then, Ms |= ϕ̃j. ⊣

Proof The proof is by induction on n− j = 0, . . . , n− 1.

Base case (j = n). Recall ϕn = ∀pn.ϕn+1, where ϕn+1 is a quantification-free QPTL

formula in positive normal form. By construction, ϕ̃n = ∀(ψn → Υ(ϕn+1)). Let Nt

be a refinement of Ms which satisfies formula ψn (if any). We need to show that
Nt |= Υ(ϕn+1). By definition of ψn, Nt is well-formed w.r.t. n. Let N ′

u be any n-
segment of Nt, and let words(N ′

u) = {w}. By transitivity, N ′
u is a refinement of Ms,

so that w ∈ words(Ms). Thus, by hypothesis, w |= ϕn = ∀ pn.ϕn+1, which implies
w |= ϕn+1. By Lemma 51, it follows that N ′

u |= Υ(ϕn+1). Since N
′
u is a refinement of

Nt and Υ(ϕn+1) is an existential CTL− formula, by Proposition 45 we deduce that
Nt |= Υ(ϕn+1) as well. Hence, the result holds.

Induction step (1 ≤ j ≤ n− 1). By construction, there are two cases:

(1) ϕj = ∃ pj .ϕj+1 and ϕ̃j = ∃(ψj ∧ ϕ̃j+1): let w0 ∈ words(Ms). By hypothesis,
w0 |= ϕj . Hence, there is infinite word w′

0 over 2P such that w′
0 ≡P\{pj} w0 and

w′
0 |= ϕj+1. Since Ms is well-formed w.r.t. j − 1 and w0 ∈ words(Ms), it follows that

w′
0 ∈ words(Ms) as well. Let Ns be any j-segment of Ms such that w′

0 ∈ words(Ns).
By definition of ψj , Ns |= ψj . Thus, it suffices to show that Ns |= ϕ̃j+1. Since
Ns is well-formed w.r.t. j and minimal, and w′

0 ∈ words(Ns), it holds that for each
w′ ∈ words(Ns), w

′ ≡{p1,...,pj} w
′
0. Since every proposition in {pj+1, . . . , pn} does not

occur free in ϕj+1 and w
′
0 |= ϕj+1, it follows that for each w

′ ∈ words(Ns), w
′ |= ϕj+1.

Thus, by the induction hypothesis, we obtain that Ns |= ϕ̃j+1, and the result holds.

50

(2) ϕj = ∀ pj.ϕj+1 and ϕ̃j = ∀(ψj → ϕ̃j+1): let Nt be a refinement of Ms which
satisfies formula ψj (if any). We need to show that Nt |= ϕ̃j+1. By definition of ψj ,
Nt is well-formed w.r.t. j. Thus, by the induction hypothesis it suffices to show that
for each w ∈ words(Nt), w |= ϕj+1. Let w ∈ words(Nt). Since Nt is a refinement of
Ms, it holds that w ∈ words(Ms). Thus, by hypothesis, w |= ϕj = ∀ pj .ϕj+1. Hence,
w |= ϕj+1, and the result follows.

�

Lemma 53 Let 1 ≤ j ≤ n and letMs be a pointed model which is well-formed w.r.t. (j−1)
and such that Ms |= ϕ̃j. Then, there is a (j − 1)-segment Nt of Ms such that Nt |= ϕ̃j and
for each w ∈ words(Nt), w |= ϕj. ⊣

Proof The proof is by induction on n − j = 0, . . . , n − 1, for which there are two cases.
Recall that ϕn = ∀pn.ϕn+1.
(1) ϕj = ∀ pj .ϕj+1 and ϕ̃j = ∀(ψj → ϕ̃j+1): let Nt be any (j − 1)-segment of Ms. By
hypothesisMs |= ϕ̃j . Since every refinement of Nt is also a refinement ofMs, it follows that
Nt |= ϕ̃j. Thus, it suffices to show that for each w ∈ words(Nt), w |= ϕj . Fix w ∈ words(Nt)
and let w′ be an infinite word over 2P such that w′ ≡P\{pj} w. Since Nt is well-formed
w.r.t. j−1, w′ ∈ words(Nt) as well. Let N

′
u be a j-segment of Nt such that w′ ∈ words(N ′

u).
By definition of ψj , N

′
u |= ψj . Thus, since Nt |= ϕ̃j, we deduce that N ′

u |= ϕ̃j+1. There are
two cases:

• j = n (base step): by construction, words(N ′
u) is a singleton, ϕ̃n+1 = Υ(ϕn+1), and

ϕn+1 is a quantification-free QPTL-formula in positive normal form. Since w′ ∈
words(N ′

u) and N
′
u |= ϕ̃n+1, by Lemma 51, it follows that w′ |= ϕn+1.

• j ≤ n − 1 (induction step): since w′ ∈ words(N ′
u) and N

′
u |= ϕ̃j+1, by the induction

hypothesis (note that since N ′
u is minimal, for each j-segment N ′′

v of N ′
u, words(N

′′
v) =

words(N ′
u)), it follows that w

′ |= ϕj+1.

Thus, in both cases w′ |= ϕj+1. Since w′ is an arbitrary infinite word over 2P such that
w′ ≡P\{pj} w, we obtain that w |= ∀ pj .ϕj+1 = ϕj, and the result follows.

(2) ϕj = ∃ pj.ϕj+1, ϕ̃j = ∃(ψj ∧ ϕ̃j+1), and j ≤ n − 1 (induction step): since Ms |= ϕ̃j ,
there is a refinement Nt of Ms satisfying both ψj and ϕ̃j+1. By definition of ψj , Nt is
well-formed w.r.t. j. Thus, since Nt |= ϕ̃j+1 and j ≤ n − 1, by the induction hypothesis,
there is a j-segment N ′

u of Nt such that N ′
u |= ψj , N

′
u |= ϕ̃j+1, and for each w ∈ words(N ′

u),
w |= ϕj+1. Since Nt is a refinement of Ms, it easily follows that N ′

u is the refinement of
some (j − 1)-segment M ′

v of Ms. Since N
′
u |= ψj ∧ ϕ̃j+1, it holds that M

′
v |= ϕ̃j . Hence, it

suffices to show that for each w ∈ words(M ′
v), w |= ϕj. Let w ∈ words(M ′

v). Then, since
M ′

v (resp., N ′
u) is minimal and well-formed w.r.t. j − 1 (resp., j) and N ′

u is a refinement
of M ′

v, it follows that there is w
′ ∈ words(N ′

u) such that w′ ≡P\{pj} w. Since w
′ |= ϕj+1, we

obtain that w |= ∃ pj.ϕj+1 = ϕj, and the result follows. �

51

Now, we can prove the correctness of the construction.

Theorem 54 ϕ is satisfiable if, and only if, ϕ̃ is satisfiable. ⊣

Proof First, assume that ϕ̃ = ψ0 ∧ ϕ̃1 is satisfiable. Hence, there is a pointed model Ms

which satisfies both ψ0 and ϕ̃1. By definition of formula ψ0, it follows that Ms is well-
formed w.r.t. 0. Since Ms |= ϕ̃1, by Lemma 53, we deduce that there is an infinite word w
over 2P such that w |= ϕ1. Since ϕ = ϕ1, it follows that ϕ is satisfiable.

Now, assume that ϕ is satisfiable. Since any proposition in P does not occur free in ϕ, it
follows that for each infinite word w over 2P , w |= ϕ. Let Ms be any pointed model which
is well-formed w.r.t. 0. By definition of formula ψ0, it holds that Ms |= ψ0. Moreover,
since w |= ϕ for each w ∈ words(Ms), and ϕ = ϕ1, by Lemma 52 it follows that Ms |= ϕ̃1.
Therefore, Ms |= ψ0 ∧ ϕ̃1 = ϕ̃. Hence, ϕ̃ is satisfiable. �

By using Theorem 48 and the fact that there exists a linear time translation of CTL−∀
into Lµ

∀ (see page 46) we now obtain the required proof of Theorem 44.

7.2 Succinctness

In this section we establish the following result.

Theorem 55 RML is doubly exponentially more succinct than K, and RMLµ is doubly
exponentially more succinct than modal µ-calculus. ⊣

Theorem 55 directly follows from the following result whose proof is given in the rest
of this section.

Proposition 56 There is a finite set P of propositional variables and a family (ϕn)n∈N of
one-agent L∀ formulas over P such that for each n ∈ N, ϕn has size O(n2) and refining
quantifier alternation depth 2, and each equivalent one-agent Lµ formula has size at least
22

Ω(n)
.11 ⊣

Construction of the L∀ formulas ϕn in Proposition 56: let P = {l, r,#, 0, 1, a, b}.
An n-configuration is a string on {a, b} of length exactly 22

n

. We define a class Cn of
pointed models, where each pointed model in the class encodes, in a suitable way, a pair of
n-configurations. Then, we construct the L∀ formula ϕn in such a way that the following
holds: a pointed model Ms ∈ Cn satisfies ϕn iff the two n-configurations encoded by Ms

coincide. In order to formally define the class Cn, we need additional definitions. An n-
block is a pair bl = (c, i) such that c ∈ {a, b} and 1 ≤ i ≤ 22

n

. We say that c is the
content of bl and i is the position of bl. Intuitively, bl represents the ith symbol of some
n-configuration. First, we define an encoding of (c, i) by a set code(c, i) of strings over 2P

of length n + 3. Since 1 ≤ i ≤ 22
n

, i can be encoded by a binary string over {0, 1} of
length exactly 2n. Moreover, we keep track, for each 1 ≤ j ≤ 2n, of the binary encoding (a

11Recall that f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n)).

52

string over {0, 1} of length n)12 of the position j of the jth bit in the binary encoding of i.
This leads to the following definition. An n-sub-block is a string over 2P of length n+2 of
the form sbl = {#}, {b1}, . . . , {bn}, {B}, where b1, . . . , bn, B ∈ {0, 1}. The content of sbl
is B and the position of sbl is the integer 1 ≤ j ≤ 2n whose binary encoding is b1, . . . , bn.
Intuitively, sbl encodes the position and the content B of a bit along the binary encoding
of an integer 1 ≤ i ≤ 22

n

. Then, code(c, i) is the set of strings over 2P of length n+3 such
that

• for each u ∈ code(c, i), u = sbl · {c}, where sbl is an n-sub-block whose position j
and content b satisfy the following: b is the jth bit in the binary encoding of i.

• for each 1 ≤ j ≤ 2n, let Bj be the jth bit in the binary encoding of i and sblj be the
n-sub-block whose position is j and whose content is Bj . Then, sblj · {c} ∈ code(c, i).

Let Ms be a pointed model over P . We denote by Traces(Ms) the set of finite or infinite
strings over 2P of the form (V M)−1(s0), (V

M)−1(s1), . . . such that s0, s1, . . . is a maximal
path of M starting from s. A pointed model Ms encodes an n-block (c, i) if

Traces(Ms) = code(c, i) and Ms |=
n−1∧

d=0

2
d(31 ∧ 30) ∈ L

Note that the set of pointed models encoding (c, i) is nonempty. Let (wl, wr) be a pair of
n-configurations. A pointed model Ms encodes the pair (wl, wr) if it holds that:

• s has two successors sl and sr (called the left successor and right successor of s,
respectively). Moreover, (V M)−1(s) = ∅, (V M)−1(sl) = {l} and (V M)−1(sr) = {r};

• for each dir ∈ {l, r}, sdir has 22
n

successors s1,dir, . . . , s22n ,dir. Moreover, for each
1 ≤ i ≤ 22

n

, Msi,dir encodes the n-block (ci,dir, i), where ci,dir is the ith symbol of the
n-configuration wdir.

If additionally wl = wr, then we say that Ms is balanced. The class Cn is the class of
pointed models Ms such that Ms encodes some pair (wl, wr) of n-configurations. In order
to define the L∀ formula ϕn (for each n ≥ 0), we first show Lemma 57. This lemma asserts
that there is an L∀ formula ψn of size O(n2) which allows one to select, for a given pointed
model Ms ∈ Cn, only the n-blocks encoded by Ms having the same position.

Lemma 57 For each n ≥ 0, one can construct a one-agent L∀ formula ψn of size O(n2)
and refinement quantifier alternation depth 1 satisfying the following for all pairs (wl, wr)
of n-configurations: for each Ms ∈ Cn encoding the pair (wl, wr) and each refinement M ′

s′

of Ms,

• M ′
s′ satisfies ψn iff there is 1 ≤ i ≤ 22

n

such that the set of #-states (i.e. states whose
label is {#}) s′# reachable from s′ is nonempty and for each of such states s′#, M

′
s′#

encodes an n-block whose position is i and whose content is either the ith symbol of
wl or the ith symbol of wr. ⊣

12Here, it is not relevant to specify the form of the binary encoding which is used.

53

Proof The L∀ formula ψn is defined as follows:

ψn := ξn ∧ ∀(θn →
∨

b∈{0,1}

2
n+3b)

where ξn and θn are L formulas defined as follows:

ξn := 3⊤ ∧ 23⊤ ∧
n−1∧

d=0

2
d+2(31 ∧ 30) ∧ 2

n+2
3⊤ ∧ 2

n+3
3⊤

θn := 3⊤ ∧ 23⊤ ∧ 2
2
3⊤ ∧

n∧

d=1

∨

b∈{0,1}

2
d+2(b ∧ 3⊤) ∧ 2

n+3
3⊤

Note that ψn has size O(n2) and that δ(ψn) = 1 (refinement alternation depth). Thus, it
remains to prove the second part of the lemma. Fix Ms ∈ Cn encoding some pair (wl, wr)
of n-configurations, and let M ′

s′ be a refinement of Ms. By construction, for each #-state
s′# reachable from s′ in M ′, there is a #-state s# reachable from s in M such that M ′

s′#
is

a refinement of Ms# . Moreover, Ms# encodes some n-block (c, i), where the content c is
either the ith symbol of wl or the ith symbol of wr. Thus, by definition of ξn, we obtain
the following.

Fact 1: M ′
s′ satisfies ξn iff the set of #-states s′# reachable from s′ is nonempty and for

each of such states s′#, M
′
s′#

encodes some n-block (c, i), where the content c is either the

ith symbol of wl or the ith symbol of wr.

In the second conjunct ∀(θn →
∨

b∈{0,1} 2
n+3b) of the definition of ψn, the formula θn

intuitively enforces one to select the refinements M ′
s′ of Ms encoding only n-blocks having

the same position. Formally, by definition of θn, we obtain the following.

Fact 2: Let M ′′
s′′ be a refinement of M ′

s′ . Then, M ′′
s′′ satisfies θn iff for all u, u′ ∈

Traces(M ′′
s′′), u, u

′ ∈ Traces(Ms) and the n-sub-block in u and the n-sub-block in u′ have
the same position.

Thus, by Fact 2 it follows that the second conjunct ∀(θn →
∨

b∈{0,1} 2
n+3b) of definition

of ψn requires that all the n-sub-blocks in Traces(M ′
s′) having the same position have also

the same content, i.e., all the n-blocks encoded by M ′
s′ have the same position. Thus, by

Fact 1 the result follows. �

For each n ≥ 0, let ψn be the L∀ formula satisfying the statement of Lemma 57. Then, the
one-agent L∀ formula ϕn is defined as follows:

ϕn = ∀(ψn →
∨

c∈{a,b}

2
n+4c)

By construction and Lemma 57, we easily obtain the following result.

Lemma 58 For each n ≥ 0, the L∀ formula ϕn has size O(n2) and δ(ϕn) = 2 (refinement
alternation depth). Moreover, for each Ms ∈ Cn, Ms satisfies ϕn iff Ms is balanced. ⊣

54

Proof of Proposition 56: by Lemma 58, in order to complete the proof of Proposi-
tion 56, we need to show that for each n ≥ 0, each one-agent Lµ formula equivalent to ϕn

has size at least 22
Ω(n)

. For this, we use a well-known automata-characterization of (one-
agent) Lµ in terms of parity symmetric alternating (finite-state) automata (PSAA) which
operate on pointed models [61]. First, we recall the class of PSAA. We need additional
definitions.

A tree T is a prefix closed subset of N∗. The elements of T are called nodes and the
empty word ε is the root of T . For x ∈ T , the set of children of x (in T) is {x·i ∈ T | i ∈ N}.
A path of T is a maximal sequence π = x0x1 . . . of T -nodes such that x0 = ε and for any
i, xi+1 is a child of xi. For an alphabet Σ, a Σ-labeled tree is a pair 〈T, r〉 where T is a
tree and r : T → Σ. For a set X , B+(X) denotes the set of positive boolean formulas over
X , built from elements in X using ∨ and ∧ (we also allow the formulas true and false).
A subset Y of X satisfies θ ∈ B+(X) iff the truth assignment that assigns true to the
elements in Y and false to the elements of X \ Y satisfies θ.

A parity symmetric alternating automaton (PSAA) over P is a tupleA = 〈P,Q, q0, δ, Acc〉,
whereQ is a finite set of locations, q0 ∈ Q is an initial location, δ : Q×2P → B+

(
{2,3}×Q)

is the transition function, and Acc : Q → N is a parity acceptance condition assigning to
each location q ∈ Q an integer (called priority). Intuitively, a target of a move of A is
encoded by an element in {2,3}×Q. An atom (3, q) means that from the current state s
(of the pointed input model) A moves to some successor of s and the location is updated to
q. On the other hand, an atom (2, q) means that from the current state s the automaton
splits in multiple copies and, for each successor s′ of s, one of such copies moves to s′ and
the location is updated to q.

Formally, for a pointed model Ms0 over P , a run of A over Ms0 is a (Q× SM)-labeled
tree 〈T, r〉.13 Moreover, we require that r(ε) = (q0, s0) (initially, A is in the initial location
q0 reading state s0), and for each y ∈ T with r(y) = (q, s), there is a (possibly empty)
minimal set H ⊆ {2,3}×Q satisfying δ(q, (V M)−1(s)) such that the set L(y) of labels of
children of y in T is the smallest set satisfying the following: for all atoms at ∈ H ,

• if at = (3, q′), then for some successor s′ of s in M , (q′, s′) ∈ L(y);

• if at = (2, q′), then for each successor s′ of s in M , (q′, s′) ∈ L(y).

For an infinite path π = y0y1 . . . of T , let inf(π) be the set of locations in Q that appear
in r(y0)r(y1) . . . infinitely often. The run 〈T, r〉 is accepting if for each infinite path π of
T , the smallest priority of the locations in inf(π) is even. The language of A is the set of
pointed models Ms over P such that A has an accepting run over Ms. The following is a
well-known result.

Proposition 59 [61] Given a one-agent Lµ formula ϕ over P , one can construct a PSAA

Aϕ with O(|ϕ|) locations whose language is the set of pointed models over P satisfying ϕ.⊣

13Intuitively, each node of T labeled by (q, s) describes a copy of A that is in location q and reads the
state s of M .

55

Proposition 56 directly follows from Proposition 59 and the following result.

Lemma 60 Let n ≥ 0 and An be a PSAA over P whose language is the set of pointed
models satisfying the L∀ formula ϕn. Then, the number of locations of An is at least 22

n

.⊣

Proof Let n ≥ 0 and An as in the statement of the lemma (note that An exists by
Proposition 59 together with Proposition 42), and Q be the set of An-locations. For each
n-configuration w, let Mw

sw
be some balanced pointed model encoding the pair (w,w), and

H(w) be the set of sets Ql ⊆ Q such that there is an accepting run 〈T, r〉 of An over the
pointed model Mw

sw
so that:

• Ql is the set of locations associated with the replicas ofAn in the run 〈T, r〉 which read
the left successor sl of sw in Mw, i.e., Ql = {q ∈ Q | for some x ∈ T, r(x) = (q, sl)}.
(Note that Ql = ∅ if 〈T, r〉 does not visit the left successor sl of sw.)

First, we show that H(w) 6= ∅. By hypothesis and Lemma 58, there must exist some
accepting run of An over the input Mw

sw
. Now, by construction, H(w) is a set of subsets of

Q, and H(w) is non-empty if and only if there is some accepting run of An over Mw
sw
. (If

no accepting run of An visits the left successor sl of sw in Mw, then H(w) is a singleton
containing just the empty set.) Hence, non-emptiness of H(w) follows. Next, we prove the
following.

Claim: for all n-configurations w and w′ such that w 6= w′, H(w) ∩H(w′) = ∅.

Proof of the claim: for a model M and a set S ′ ⊆ SM , the restriction of M to S ′ is
defined in the obvious way. For s ∈ SM , let [Ms] denote the restriction of M to the set of
states reachable from s in M . For all n-configurations w and dir ∈ {l, r}, let sw,dir be the
dir-successor of sw in Mw. We prove the claim by contradiction. So, assume that there
are two distinct n-configurations w and w′ such that H(w) ∩H(w′) 6= ∅. Without loss of
generality we can assume that Mw and Mw′

have no states in common. Let Mw,w′

sw
be any

pointed model satisfying the following: the successors of sw inMw,w′

are sw′,l and sw,r, and
[Mw,w′

sw′,l
] = [Mw′

sw′,l
] and [Mw,w′

sw,r
] = [Mw

sw,r
]. Evidently, Mw,w′

sw
is a pointed model encoding

the pair (w′, w). Since w 6= w′, by hypothesis and Lemma 58, An does not accept Mw,w′

sw
.

On the other hand, since there is Q ∈ H(w) ∩ H(w′), by definition of the sets H(w) and
H(w′) and the semantics of PSAA, it easily follows that there is an accepting run of An

over Mw,w′

sw
, which is a contradiction. Hence, the claim holds.

By the claim above, it follows that for each n-configuration w, there is Qw ∈ H(w)
(recall that H(w) 6= ∅) such that for all n-configurations w′ distinct from w, Qw /∈ H(w′).

Since the number of distinct n-configurations is 22
2n

and the number of subsets of Q is
2|Q|, we obtain that |Q| ≥ 22

n

, and the result holds. �

8 Conclusions and perspectives

Conclusions We conclude that we hope to have established a platform for structural
refinement in various modal logics. We established results on axiomatization, complexity,

56

expressivity, and we gave applications to software verification and design, and to dynamic
epistemic logics. We clearly established the relation to bisimulation quantified logics: re-
finement quantification is bisimulation followed by relativization. The multi-agent refine-
ment modal logic and the furthest generalization in the form of refinement µ-calculus are
only the beginning. One could think of refinement CTL, refinement PDL, (yet other)
refinement epistemic logics, refinement with further structural restrictions or with proto-
col restrictions, and so on. Each of these logics may have different axiomatizations and
complexities, and equal expressivity as the logic without refinement is certainly not to be
expected; e.g., we estimate that refinement modal logic is more expressive than the base
modal logic on the KT model class.

Recent results Following the initial submission of the paper, some further results have
been obtained in this area, typically involving one of the authors. In [12] it was established
that the complexity of refinement modal logic for a single agent is AEXPpol-complete, which
means that the satisfiability of an RML formula can be decided by an exponential-time
bounded Alternating Turing Machine with a linearly-bounded number of alternations. In
[28] an axiomatization of the multi-agent refinement modal logic of knowledge is given,
among other results. As a generalization of quantifying over announcements (arbitrary
announcements), in [8] semantics were also given for quantifying over action models and
the question was posed how to axiomatize this logic: in [26] it is shown that quantifying over
action models is equally expressive as the refinement quantifier, i.e., ‘there is a refinement
after which ϕ is true’ means the same as ‘there is an action model such that after its
execution ϕ is true’. This answers one of the open questions on logics with quantification
over information change, posed in the recent survey [54]. That survey also puts various
other proposals on propositional quantification in perspective, such as [52], [18], [7] (going
back to [6]), and [60]—for details, see [54]. It should not be forgotten to mention that
many of these, including our own proposal, go back to the original publication [21].

Further research We wish to determine the complexity of model checking in the various
refinement modal logics. On the further horizon loom the detailed investigation of other
refinement logics, mainly refinement PDL and refinement CTL, and the exploration of
their applications. The relation of refinement quantification to other forms of propositional
quantification over information change also needs further investigation.

Acknowledgements

We acknowledge a very insightful and detailed review from a journal referee. Hans van
Ditmarsch is also affiliated to IMSc (Institute of Mathematical Sciences), Chennai, India.
We acknowledge support from ERC project EPS 313360, and from EU 7th Framework
Programme under grant agreement no. 295261 (MEALS).

57

References

[1] P. Aczel. Non-Well-Founded Sets. CSLI Publications, Stanford, CA, 1988. CSLI
Lecture Notes 14.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Lecture
Notes in Computer Science, 1536:23–60, 1998.

[3] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternat-
ing refinement relations. In International Conference on Concurrency Theory, pages
163–178, 1998.

[4] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski.
20 years of modal and mixed specifications. Bulletin of European Association of The-
oretical Computer Science, 1(94), 2008.

[5] A. Arnold and D. Niwinski. Rudiments of µ-calculus. North Holland, 2001.

[6] G. Aucher. Characterizing updates in dynamic epistemic logic. In Proceedings of
Twelfth KR. AAAI Press, 2010.

[7] G. Aucher. DEL-sequents for regression and epistemic planning. Journal of Applied
Non-Classical Logics, 22(4):337–367, 2012.

[8] P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and T. De Lima.
‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic, 1(3):305–
334, 2008.

[9] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In Proc. of 7th TARK, pages 43–56. Morgan Kauf-
mann, 1998.

[10] M. Bilkova, A. Palmigiano, and Y. Venema. Proof systems for the coalgebraic cover
modality. In Carlos Areces and Robert Goldblatt, editors, Advances in Modal Logic,
pages 1–21. College Publications, 2008.

[11] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
Cambridge, 2001. Cambridge Tracts in Theoretical Computer Science 53.

[12] Laura Bozzelli, Hans P. van Ditmarsch, and Sophie Pinchinat. The complexity of
one-agent refinement modal logic. In Luis Fariñas del Cerro, Andreas Herzig, and
Jérôme Mengin, editors, JELIA, volume 7519 of Lecture Notes in Computer Science,
pages 120–133. Springer, 2012.

[13] M. Browne, E. Clarke, and O. Grümberg. Characterizing Kripke structures in tem-
poral logic. In H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors, TAPSOFT
’87, LNCS 249, pages 256–270. Springer, 1987.

58

[14] E.M. Clarke and E.A. Emerson. Design and Verification of Synchronization Skele-
tons using Branching Time Temporal Logic. In Proceedings of Workshop on Logic of
Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[15] G. d’Agostino and M. Hollenberg. Logical questions concerning the µ-calculus: Inter-
polation, Lyndon and Los-Tarski. Journal of Symbolic Logic, 65(1):310–332, 2000.

[16] G. d’Agostino and G. Lenzi. An axiomatization of bisimulation quantifiers via the
µ-calculus. Theor. Comput. Sci., 338(1-3):64–95, 2005.

[17] G. d’Agostino and G. Lenzi. A note on bisimulation quantifiers and fixed points over
transitive frames. J. Log. Comput., 18(4):601–614, 2008.

[18] P. Economou. Extensions and Applications of Dynamic Epistemic Logic. PhD thesis,
Oxford University, 2010.

[19] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT
Press, Cambridge MA, 1995.

[20] Guillaume Feuillade and Sophie Pinchinat. Modal specifications for the control theory
of discrete-event systems. Discrete Event Dynamic Systems, 17(2):181–205, 2007.

[21] K. Fine. Propositional quantifiers in modal logic. Theoria, 36(3):336–346, 1970.

[22] T. French. Bisimulation quantifiers for modal logic. PhD thesis, University of Western
Australia, 2006.

[23] T. French and H. van Ditmarsch. Undecidability for arbitrary public announcement
logic. In C. Areces and R. Goldblatt, editors, Advances in Modal Logic 7, pages 23–
42, London, 2008. College Publications. Proc. of the seventh conference “Advances in
Modal Logic”.

[24] J.D. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal
of Logic, Language, and Information, 6:147–169, 1997.

[25] J. Hales. Refinement quantifiers for logics of belief and knowledge. Honours Thesis,
University of Western Australia, 2011.

[26] J. Hales. Arbitrary action model logic and action model synthesis. In Proc. of 28th
LICS, pages 253–262. IEEE, 2013.

[27] J. Hales, T. French, and R. Davies. Refinement quantified logics of knowledge. Electr.
Notes Theor. Comput. Sci., 278:85–98, 2011.

[28] J. Hales, T. French, and R. Davies. Refinement quantified logics of knowledge and
belief for multiple agents. In Advances in Modal Logic 9, pages 317–338. College
Publications, 2012.

59

[29] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge MA, 2000.
Foundations of Computing Series.

[30] D. Janin and I. Walukiewicz. Automata for the modal mu-calculus and related results.
In Proc. of 20th MFCS, LNCS 969, pages 552–562. Springer, 1995.

[31] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In Concurrency Theory, 7th
International Conference, volume 1119 of LNCS, pages 263–277. Springer, 1996.

[32] B. Kooi. Expressivity and completeness for public update logics via reduction axioms.
Journal of Applied Non-Classical Logics, 17(2):231–254, 2007.

[33] O. Kupferman, M. Vardi, and P. Wolper. Module checking. Information and Compu-
tation, 164(2):322–344, 2001.

[34] C. Kupke, A. Kurz, and Y. Venema. Completeness of the finitary moss logic. In
C. Areces and R. Goldblatt, editors, Advances in Modal Logic 7, pages 193–217. Col-
lege Publications, 2008.

[35] Ralf Küsters. Memoryless determinacy of parity games. In Automata logics, and
infinite games, pages 95–106. Springer, 2002.

[36] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O automata for
interface and product line theories. In Proceedings of the 16th European Symposium
on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science,
pages 64–79. Springer, 2007.

[37] A.R. Lomuscio and M.D. Ryan. An algorithmic approach to knowledge evolution. Ar-
tificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM),
13(2), 1998. Special issue on Temporal Logic in Engineering.

[38] René Mazala. Infinite games. Automata logics, and infinite games, pages 197–204,
2002.

[39] J.S. Miller and L.S. Moss. The undecidability of iterated modal relativization. Studia
Logica, 79(3):373–407, 2005.

[40] C. Morgan. Programming from Specifications: Second Edition. Prentice Hall Interna-
tional, Hempstead, UK, 1994.

[41] R. Parikh, L.S. Moss, and C. Steinsvold. Topology and epistemic logic. In M. Aiello,
I. Pratt-Hartmann, and J. van Benthem, editors, Handbook of Spatial Logics, pages
299–341. Springer Verlag, 2007.

[42] M. Pauly. Logic for social software. PhD thesis, University of Amsterdam, 2001. ILLC
Dissertation Series DS-2001-10.

60

[43] J.A. Plaza. Logics of public communications. In Proc. of the 4th ISMIS, pages 201–216.
Oak Ridge National Laboratory, 1989.

[44] Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation de composants.
PhD thesis, Université de Rennes I, December 2007. (In French).

[45] Jean-Baptiste Raclet. Residual for component specifications. In Proc. of the 4th In-
ternational Workshop on Formal Aspects of Component Software (FACS’07), volume
215 of Electr. Notes Theor. Comput. Sci., pages 93–110, 2008.

[46] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoit Caillaud, and Roberto
Passerone. Why are modalities good for interface theories? In Proceedings of
the 9th International Conference on Application of Concurrency to System Design
(ACSD’09), pages 199–127. IEEE Computer Society Press, 2009.

[47] P. Ramadge and W. Wonham. On the supervisory control of discrete event systems.
In Proc. of the IEEE, pages 81–98, 1989.

[48] Stéphane Riedweg and Sophie Pinchinat. Quantified mu-calculus for control synthesis.
In Branislav Rovan and Peter Vojtás, editors, MFCS, volume 2747 of Lecture Notes
in Computer Science, pages 642–651. Springer, 2003.

[49] M. Ryan and P.-Y. Schobbens. Agents and roles: Refinement in alternating-time
temporal logic. In Revised Papers from the 8th International Workshop on Intelligent
Agents VIII (ATAL ’01), pages 100–114. Springer, 2002.

[50] A.P. Sistla, M.Y. Vardi, and P. Wolper. The Complementation Problem for Buchi Au-
tomata with Applications to Temporal Logic. Theoretical Computer Science, 49:217–
237, 1987.

[51] J. Tsitsoklis. On the control of discrete event dynamical systems. Mathematics of
Control Signals and Systems, 2(2):95–107, 1989.

[52] J. van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathematical
Reasoning, volume 2605 of LNCS 2605, pages 268–276. Springer, 2005.

[53] J. van Benthem. One is a lonely number: on the logic of communication. In Logic
colloquium 2002. Lecture Notes in Logic, Vol. 27, pages 96–129. A.K. Peters, 2006.

[54] H. van Ditmarsch. Quantifying notes. In Proc. of 19th WoLLIC, LNCS 7456, pages
89–109. Springer, 2012.

[55] H. van Ditmarsch and T. French. Simulation and information. In J. Broersen and J.-J.
Meyer, editors, Knowledge Representation for Agents and Multi-Agent Systems, LNAI
5605. Presented at LOFT 2008 and KRAMAS 2008, pages 51–65. Springer, 2009.

61

[56] H. van Ditmarsch, T. French, and S. Pinchinat. Future event logic - axioms and
complexity. In L. Beklemishev, V. Goranko, and V. Shehtman, editors, Advances in
Modal Logic, Moscow, volume 8, pages 77–99. College Publications, 2010.

[57] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic, volume
337 of Synthese Library. Springer, 2007.

[58] Y. Venema. Lecture notes on the modal µ-calculus. (Draft), 2012.

[59] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. INFCTRL: Information and Computation (formerly Information and Con-
trol), 157, 2000.

[60] X. Wen, H. Liu, and F. Huang. An alternative logic for knowability. In Logic, Ratio-
nality, and Interaction (Proceedings of LORI-3), LNCS 6953, pages 342–355. Springer,
2011.

[61] T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th FSTTCS,
LNCS 1738, pages 110–121. Springer, 1999.

[62] J. Woodcock and J. Davies. Using Z — Specification, Refinement and Proof. Prentice
Hall, 1996.

62

