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Abstract

Using the properties of superquadratic and subquadratic functions, we establish
some new refinement multidimensional dynamic inequalities of Hardy’s type on time
scales. Our results contain some of the recent results related to classical
multidimensional Hardy’s and Pólya–Knopp’s inequalities on time scales. To show
motivation of the paper, we apply our results to obtain some particular
multidimensional cases and provide refinements of some Hardy-type inequalities
known in the literature.
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1 Introduction

Hardy [13] proved the integral inequality
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g(s)ds
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)p ∫ ∞

0
gp(t)dt (1)

for a nonnegative integrable function g in the space Lp(R+), 1 < p <∞, where the constant

(p/(p–1))p is the best possible. Rewriting (1) with the function g1/p instead of g and taking

the limit as p→ ∞, we get the limiting case of the Hardy inequality, known as the Pólya–

Knopp inequality (see [15]),
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0
g(t)dt (2)

for positive functions g ∈ L1(R+), where the constant e is the best possible. Recently, Kaijser

et al. [14] have pointed out that both (1) and (2) are just particular cases of the muchmore

general Hardy–Knopp’s inequality
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for convex functions Ψ on R+ and locally integrable positive functions g : R+ → R+. The

Hardy-type inequalities and their general forms have been studied in the literature in vari-
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ousmodifications both in the continuous and discrete settings. They have extensive appli-

cations to partial differential and difference equations, harmonic analysis, approximations,

number theory, optimization, convex geometry, spectral theory of differential and differ-

ence operators, and others (see [24–28, 30]). One such approach involves superquadratic

functions, which is a class of functions closely connected to convex functions, and vari-

ous inequalities with different kernels and extensions tomultidimensional cases have been

obtained. For example, in 1967, Godunova [10] proved the inequality
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for nonnegative functions l : Rn
+ → R+ such that

∫

Rn+
l(t)dt = 1, convex functions Ψ :

[0,∞) → [0,∞), and nonnegative functions g on Rn
+ such that the function Ψ (g(t))/

(t1 . . . tn) is integrable on Rn
+.

In 2003, Čižmešija et al. [8] proved a generalization of the Hardy–Knopp inequality (3)

with two weighted functions. In particular, they proved that if 0 < b ≤ ∞, λ : (0,b) → R

is a nonnegative function such that the function t → λ(t)/t2 is locally integrable in (0,b),

and Ψ is a convex function on (a, c), where –∞ ≤ a ≤ c≤ ∞, then

∫ b

0
λ(t)Ψ
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η(t)Ψ
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(5)

for all integrable functions g : (0,b) → R such that g(t) ∈ (a, c) for all t ∈ (0,b), where

η(s) := s
∫ b

s
λ(t)
t2

dt for s ∈ (0,b). In 2008, Oguntuase and Persson [17] used the notion of su-

perquadratic and subquadratic functions to obtain a new Hardy-type inequality for p≥ 2,

which holds in the reverse order for 1 < p < 2.

In [18] the authors obtained some new Hardy-type inequalities on time scales by using

the notion of superquadratic functions. In particular, they proved that if (Ω1,Σ1,μ1) and

(Ω2,Σ2,μ2) are two time scale measure spaces with positive σ -finite measures, λ : Ω1 →

R and k : Ω1 × Ω2 → R are nonnegative functions such that k(t, ·) is a �μ2-integrable

function for t ∈ Ω2, K : Ω1 → R is defined by K(t) :=
∫

Ω2
k(t, s)�μ2(s) < ∞, t ∈ Ω1, and

η(s) :=
∫

Ω1
λ(t) k(t,s)

K (t) �μ1(t) < ∞, s ∈ Ω2, then

∫
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λ(t)Ψ
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∫
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k(t, s)

K(t)
Ψ

(
∣

∣g(s) –Akg(t)
∣

∣

)
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�μ2(t), (6)

for nonnegative �μ2-integrable functions g : Ω2 → R and nonnegative superquadratic

functions Ψ : [a,∞) → R (a ≥ 0), where Akg : Ω1 → R is defined by Akg(t) :=
1

K (t)

∫

Ω2
k(t,

s)g(s)�μ2(s), t ∈ Ω1. The general idea in this direction is proving a result for a dynamic in-

equality, where the domain of the unknown function is a so-called time scaleT , whichmay

be an arbitrary nonempty closed subset of the real numbers R. Fore more details of calcu-

lus on time scales, we refer to the books [3, 6, 7]. Three most popular examples of calculus

on time scales are differential calculus, difference calculus, and quantum calculus, that is,
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when T = R, T =N , and T = qN0 = {qt : t ∈N0}with q > 1, respectively. A time scale T is an

arbitrary nonempty closed subset of the real numbers R. We define the time scale interval

[a,b]T by [a,b]T := [a,b] ∩ T . A function g : T → R is said to be right-dense continuous

(rd-continuous) if it is continuous at all right-dense points in T and its left-sided finite

limits exist at all left-dense points in T . The set of all such rd-continuous functions is de-

noted by Crd(T) := Crd(T ,R). The graininessμ on time scaleT is defined byμ(t) := σ (t)– t,

and for a function g : T → R, gσ (t) denotes g(σ (t)), where σ : T → T is the forward jump

operator given by σ (t) := inf{s ∈ T : s > t}. The basic formulas involving delta derivatives

are the following: gσ := g + μg�, (gg)� := f �g + f σ g� := fg� + f �gσ , and ( f
g
)� := f�g–fg�

ggσ
,

where g , g are delta differentiable, and ggσ �= 0 in the last formula. Let T be a time scale,

and let [a,b)⊂ T . The Lebesgue integral associated with the measure μ on [a,b) is called

the Lebesgue �-integral. If g : [a,b) → R, then we denote the corresponding �-integral

of g over [a,b) by
∫ b

a
g(t)�t. In particular, if T is an arbitrary time scale and the interval

[a,b)⊂ T contains only isolated points, then
∫ b

a
g(t)�t :=

∑

t∈[a,b)(σ (t) – t)g(t).

In [21] the authors proved the time scale version of (5) given by

∫ b

a

λ(t)Ψ

(

1

σ (t) – a

∫ σ (t)

a

g(t)�t

)

�t

t – a
≤

∫ b

a

η(t)Ψ
(

g(t)
) �t

t – a
, (7)

where λ ∈ Crd([a,b],R) is a nonnegative function, and the weight function η is defined by

η(t) := (t – a)
∫ b

t
λ(t)

(t–a)(σ (t)–a)�t for t ∈ (a,b), Ψ : (c,d) → R is a continuous convex function,

where c, d ∈ R, and g ∈ Crd([a,b],R) is a delta-integrable function such that g(t) ∈ (c,d)

for all t ∈ [a,b]. In [5] (see also [22]) the authors proved that if (Ω ,M,μ�) and (Λ,L,λ�)

are two time scale measure spaces, k : Ω × Λ → R+ is such that K(t) :=
∫

Λ
k(t, s)�s < ∞,

t ∈ Ω , and ζ :Ω → R+ is such that η(s) :=
∫

Ω

k(t,s)ζ (t)
K (t) �t < ∞, s ∈ Λ, then

∫

Ω

ζ (t)Ψ

(

1

K(t)

∫

Λ

k(t, s)g(s)�s

)

�t ≤

∫

Λ

η(s)Ψ
(

g(s)
)

�s (8)

for λ�-integrable functions g : Λ → R such that g(Λ) ⊂ I and convex functions Ψ ∈

C(I,R), where I ⊂ R.

In recent years, some authors studied the fractional inequalities using the fractional Ca-

puto andRiemann–Liouville derivatives. Note that our results can be extended to different

types of fractional operators based on fractional calculus [31]. For the advanced develop-

ment of the fractional calculus without singular kernel of exponential function, we refer

the reader to [28]. For the general fractional derivative, we refer the reader to [9, 32]. We

also refer the reader to [11, 12, 23], which give a unification of calculus of the functions on

totally disconnected and continuous real line.

In this paper, in the next section, we prove some new refinedmultidimensional dynamic

inequalities ofHardy typewithweighted functions and nonnegative kernel using the prop-

erties of superquadratic (or subquadratic) functions. Our results contain some recent re-

sults related to classicalmultidimensional Hardy’s and Pólya–Knopp’s inequalities on time

scales. To showmotivation of the paper, wewill apply our results to obtain some particular

multidimensional cases and provide refinements of some Hardy-type inequalities known

in the literature. We also discuss some particular cases of the obtained inequalities, re-

lated to power and exponential functions, and to the most simplest forms of kernels for

illustration.
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2 Main results

In this section, we obtain the multidimensional time scale for Hardy-type inequality with

general kernel and also with several functions. First, we recall the definition and some ba-

sic properties of superquadratic functions, introduced by Abramovich et al. [1] (for more

information, see also [2]).

Definition 2.1 A function Ψ : [0,∞) → R is called superquadratic if for all t ≥ 0, there

exists a constant Ct ∈ R such that

Ψ (s) –Ψ (t) –Ψ
(

|s – t|
)

≥ Ct(s – t) for all s≥ 0. (9)

Superquadratic functions are closely related to convex functions. In particular, at the

first sight, condition (9) appears to be stronger than convexity. We say that Ψ is sub-

quadratic if –Ψ is superquadratic and the reverse inequality of (9) holds.

Definition 2.2 A function g : [0,∞) → R is superadditive if g(t + s) ≥ g(t) + g(s) for all t,

s ≥ 0. If the reverse inequality holds, then g is said to be subadditive.

Lemma 2.1 SupposeΨ : [0,∞) → R is continuously differentiable and such thatΨ (0) ≤ 0.

IfΨ ′ is superadditive, that is,Ψ ′(t+s)≥ Ψ ′(t)+Ψ ′(s) for all t, s ≥ 0, or the function t �→
Ψ ′(t)
t

is nondecreasing on R+, then Ψ is superquadratic.

As a consequence, the power functionΨ : [0,∞) → R,Ψ (t) = tp, is superquadratic for all

p ∈ R+, p ≥ 2, and subquadratic for 1 < p ≤ 2. Next, we recall a refined Jensen’s inequality

for superquadratic functions and Minkowski’s inequality on time scales, which are used

in the proof of the main results.

Lemma 2.2 Let (Ω ,M,μ�) and (Λ,L,λ�) be two finite-dimensional time scale measures

spaces. and let λ, η, and g be nonnegative functions on Ω , Λ, and Ω × Λ, respectively. If

p≥ 1, then

[∫

Ω

(∫

Λ

g(t, s)η(s)dη�(s)

)p

λ(t)dμ�(t)

]
1
p

≤

∫

Λ

(∫

Ω

gp(t, s)λ(t)dμ�(t)

)

η(s)dη�(s), (10)

provided that all integrals in (10) exist. If 0 < p < 1 and

∫

Ω

(∫

Λ

gηdη�

)p

λdμ� > 0 and

∫

Λ

gηdη� > 0, (11)

then (10) is reversed. For p < 0, if in addition to (11),
∫

Ω
gpλdμ� > 0, then (10) is also

reversed.

In addition, another important characterization of superquadratic functions is the fol-

lowing version of the refined Jensen inequality which is adapted from [4, Theorem 2.5].
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Lemma 2.3 Let a,b ∈ T and suppose that g : [a,b]Tk → [0,∞) is rd-continuous and Ψ :

[0,∞) → R is continuous and superquadratic. Then

Ψ

(

1

b – a

∫ b

a

g(t)�t

)

≤
1

b – a

∫ b

a

[

Ψ
(

g(s)
)

–Ψ

(
∣

∣

∣

∣

g(s) –
1
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∫ b

a

g(t)�t

∣

∣

∣

∣

)]

�s. (12)

For the case Ψ (t) = tp, (12) gives the inequality

(

1

b – a

∫ b

a

g(t)�t

)p

≤
1

b – a

∫ b

a

[

gp(s) –

(
∣

∣

∣

∣

g(s) –
1

b – a

∫ b

a

g(t)�t

∣

∣

∣

∣

)p]

�s. (13)

We will further assume (usually without mentioning) that all measures are positive, all

functions in the statements of the theorems are nonnegative and measurable, and the

integrals considered exist. Before presenting the main results for multidimensional in-

equalities, it is necessary to introduce some further notations. First, let n ∈ Z+ and set

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1) ∈ Rn, and for λ = (λ1, . . . ,λn), η = (η1, . . . ,ηn) ∈ Rn, denote
λ
η
= ( λ1

η1
, λ2

η2
, . . . , λn

ηn
) and λη = λ

η1
1 λ

η2
2 . . .ληn

n , and let Ω1,Ω2 ⊂ Rn be time scale measure

spaces. In particular,

λ1 =
n

∏

i=1

λi, λ2 =

(

n
∏

i=1

λi

)2

and λ–1 =

(

n
∏

i=1

λi

)–1

, (14)

where n = (n1, . . . ,nn). Correspondingly, [a,b) means the set [a1,b1) × [a2,b2) × · · · ×

[an,bn), �λ = (�λ1 . . .�λn), and λp = (λ1 . . .λn)p. Furthermore, for λ, η ∈ Rn, we write

λ < η if componentwise λi < ηi, i = 1, 2, . . . ,n, and the relations ≤, ≥, and < are defined

analogously. Also, for a,b ∈ Rn, a < b, we define (a,b) = {t ∈ Rn : a < t < b}. Moreover,

(a,∞) = {t ∈ Rn : a < t < ∞}, and the n-cells [a,b), (a,b], and [a,b] are defined similarly.

Finally, the integral
∫

[a,b) g(t)�t is interpreted as

∫

[a,b)
g(t)�t :=

∫ b1

a1

∫ b2

a2

. . .
∫ bn

an

g(t1, t2, . . . , tn)�t1 . . .�tn. (15)

In this setting, we can easily prove the following multidimensional time scale Hardy-type

inequality with general kernel. We further assume that (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) are

two time scale measure spaces with positive σ -finite measures.

Theorem 2.1 Let λ : Ω1 → R and k : Ω1 × Ω2 → R be nonnegative functions such that

k(t, ·) is a �μ2-integrable function for t ∈ Ω2. Suppose that K :Ω1 → R is defined by

0 < K(t) :=
∫

Ω2

k(t, s)�μ2(s1) . . .�μ2(sn) < ∞, t ∈ Ω1, (16)

and the function η be defined by

η(s) :=

(∫

Ω1

λ(t)

(

k(t, s)

K(t)

)r

�μ1(t1) . . .�μ1(tn)

)
1
r

<∞, s ∈ Ω2, (17)
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where r ≥ 1. Furthermore, assume that g : Ω2 → R is a nonnegative �μ2-integrable func-

tion and define Akg :Ω1 → R by

Akg(t) :=
1

K(t)

∫

Ω2

k(t, s)g(s)�μ2(s1) . . .�μ2(sn), t ∈ Ω1. (18)

If Ψ : [a,∞)T → R (ai ≥ 0, i = 1, 2, . . . ,n) is a nonnegative superquadratic function, then

∫

Ω1

λ(t)Ψ r
(

Akg(t)
)

�μ1(t1) . . .�μ1(tn)

+ r

∫

Ω1

∫

Ω2

λ(t)
k(t, s)

K(t)
Ψ r–1

(

Akg(t)
)

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

× �μ1(t1) . . .�μ1(tn)�μ2(s1) . . .�μ2(sn)

≤

(∫

Ω2

η(s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

. (19)

If Ψ is subquadratic, then the inequality sign in (19) is reversed.

Proof We start with the identity

Ψ
(

Akg(t)
)

= Ψ

(

1

K(t)

∫

Ω2

k(t, s)g(s)�μ2(s1) . . .�μ2(sn)

)

. (20)

By applying the refined Jensen inequality to (20), we find that

Ψ
(

Akg(t)
)

+
1

K(t)

∫

Ω2

k(t, s)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

�μ2(s1) . . .�μ2(sn)

≤
1

K(t)

∫

Ω2

k(t, s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn).

Then, since Ψ is nonnegative and r ≥ 1, we have that

(

Ψ
(

Akg(t)
)

+
1

K(t)

∫

Ω2

k(t, s)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

�μ2(s1) . . .�μ2(sn)

)r

≤

(

1

K(t)

∫

Ω2

k(t, s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

. (21)

Further, by the well-known Bernoulli inequality it follows that the left-hand side of in-

equality (21) is not less than

Ψ r
(

Akg(t)
)

+ r
Ψ r–1(Akg(t))

K(t)

∫

Ω2

k(t, s)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

�μ2(s1) . . .�μ2(sn), (22)

that is,

Ψ r
(

Akg(t)
)

+ r
Ψ r–1(Akg(t))

K(t)

∫

Ω2

k(t, s)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

�μ2(s1) . . .�μ2(sn)

≤

(

1

K(t)

∫

Ω2

k(t, s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

. (23)
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Multiplying (23) by λ(t) and integrating it over Ω1 with respect to �μ1(t1) . . .�μ1(tn), we

have

∫

Ω1

λ(t)Ψ r
(

Akg(t)
)

�μ1(t1) . . .�μ1(tn)

+ r

∫

Ω1

λ(t)Ψ r–1(Akg(t))

K(t)

(∫

Ω2

k(t, s)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

�μ2(s1) . . .�μ2(sn)

)

× �μ1(t1) . . .�μ1(tn)

≤

∫

Ω1

λ(t)

(

1

K(t)

∫

Ω2

k(t, s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

× �μ1(t1) . . .�μ1(tn). (24)

Applying the Minkowski inequality (10) to the right-hand side of (24), we have

∫

Ω1

λ(t)

(

1

K(t)

∫

Ω2

k(t, s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

�μ1(t1) . . .�μ1(tn)

≤

[∫

Ω2

Ψ
(

g(s)
)

(∫

Ω1

λ(t)

(

k(t, s)

K(t)

)r

�μ1(t1) . . .�μ1(tn)

)
1
r

× �μ2(s1) . . .�μ2(sn)

]r

. (25)

Finally, substituting (25) into (24) and taking into account definition (17) of the weight

function η, we obtain that

∫

Ω1

λ(t)Ψ r
(

Akg(t)
)

�μ1(t1) . . .�μ1(tn)

+ r

∫

Ω1

∫

Ω2

λ(t)
k(t, s)

K(t)
Ψ r–1

(

Akg(t)
)

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

× �μ1(t1) . . .�μ1(tn)�μ2(s1) . . .�μ2(sn)

≤

(∫

Ω2

η(s)Ψ
(

g(s)
)

�μ2(s1) . . .�μ2(sn)

)r

.

This gives us the desired inequality (19). Similarly to the proof of (19), by the same cal-

culations with Ψ subquadratic, we see that only the inequality sign will be reversed. The

proof is complete. �

As a particular case of Theorem 2.1, when Ψ (λ) = λp for p ≥ 2, we have the following

result.

Corollary 2.1 Let the assumptions of Theorem 2.1 be satisfied, and let p≥ 2. Then

∫

Ω1

λ(t)
(

Akg(t)
)pr

�μ1(t1) . . .�μ1(tn)

+ r

∫

Ω1

∫

Ω2

λ(t)
k(t, s)

K(t)

(

Akg(t)
)p(r–1)∣

∣g(s) –Akg(t)
∣

∣

p



Saker et al. Journal of Inequalities and Applications        (2019) 2019:306 Page 8 of 16

× �μ1(t1) . . .�μ1(tn)�μ2(s1) . . .�μ2(sn)

≤

(∫

Ω2

η(s)gp(s)�μ2(s1) . . .�μ2(sn)

)r

. (26)

The inequality sign in (26) is reversed if 1 < p ≤ 2.

Also, by choosing Ψ : [a,∞)T → R (ai ≥ 0, i = 1, 2, . . . ,n) and Ψ (t) = et – t – 1 and re-

placing g(t) by ln g(t) in Theorem 2.1, we obtain the following multidimensional version

of refined weighted Pólya–Knopp-type inequality with a kernel on time scale.

Corollary 2.2 Assume that the claims in Theorem 2.1 are satisfied, and let

Akg(t) :=
1

K(t)

∫

Ω2

k(t, s) ln g(s)�μ2(s1) . . .�μ2(sn), t ∈ Ω1. (27)

Then

∫

Ω1

λ(t)
[

expAkg(t) –Akg(t) – 1
]r

�μ1(t1) . . .�μ1(tn) + I

≤

(∫

Ω2

η(s)
[

g(s) – ln g(s) – 1
]

�μ2(s1) . . .�μ2(sn)

)r

, (28)

where

I := r

∫

Ω1

∫

Ω2

λ(t)
k(t, s)

K(t)

[

expAkg(t) –Akg(t) – 1
]r–1

×
[

exp
∣

∣ln g(s) –Akg(t)
∣

∣ –
∣

∣ln g(s) –Akg(t)
∣

∣ – 1
]

× �μ1(t1) . . .�μ1(tn)�μ2(s1) . . .�μ2(sn). (29)

Remark 2.1 In Theorem 2.1, if r = 1, then we see that the result coincides with Theo-

rem 3.4 in [18].

In the following, we will establish some particular cases of inequalities (19) and (26) by

applying Theorem 2.1 with

Ω = Ω1 = Ω2 = [a1,b1)T × [a2,b2)T × · · · × [an,bn)T ⊂ Rn, 0≤ ai < bi ≤ ∞, (30)

for all i = 1, 2, . . . ,n, where T is an arbitrary time scale, and the Lebesgue scale mea-

sures �μ1(t) = �t and �μ2(s) = �s, and replacing λ(t) by λ(t)/
∏n

i=1 σ (ti) and η(s) by

ω(s)/
∏n

i=1 si. Then we have the following corollary.

Corollary 2.3 Let λ : Ω → R be a nonnegative function, and let k : Ω × Ω → R be non-

negative such that k(t) is a �-integrable function. Suppose that K :Ω → R is defined by

0 < K(t) :=
∫

Ω

k(t, s)�s <∞, t ∈ Ω , (31)
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and the function η is defined by

ω(s) :=

(

n
∏

i=1

si

)

(∫

Ω

(

k(t, s)

K(t)

)r
λ(t)

∏n
i=1 σ (ti)

�t

)
1
r

< ∞, s ∈ Ω , (32)

where r ≥ 1. Furthermore, assume that g : Ω → Rn be �-integrable function such that

g(Ω) ⊂ R and define Akg :Ω → R by

Akg(t) :=
1

K(t)

∫ b1

a1

. . .
∫ bn

an

k(t, s)g(s)�s. (33)

If Ψ :Ω → R is a nonnegative superquadratic function, then

∫ b1

a1

. . .
∫ bn

an

λ(t)Ψ r
(

Akg(t)
) �t
∏n

i=1 σ (ti)

+ r

∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

λ(t)Ψ r–1
(

Akg(t)
)

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

) �t�s
∏n

i=1 σ (ti)

≤

(∫ b1

a1

. . .
∫ bn

an

ω(s)Ψ
(

g(s)
) �s
∏n

i=1 si

)r

. (34)

If Ψ is subquadratic, then the inequality sign in (34) is reversed.

As a particular case of Corollary 2.3 when Ψ (λ) = λp for p ≥ 2, we have the following

result.

Corollary 2.4 Let the assumptions of Corollary 2.3 be satisfied. Then

∫ b1

a1

. . .
∫ bn

an

λ(t)
(

Akg(t)
)pr �t

∏n
i=1 σ (ti)

+ r

∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

λ(t)
(

Akg(t)
)p(r–1)∣

∣g(s) –Akg(t)
∣

∣

p �t�s
∏n

i=1 σ (ti)

≤

(∫ b1

a1

. . .
∫ bn

an

ω(s)gp(s)
�s

∏n
i=1 si

)r

. (35)

The inequality sign in (35) is reversed if 1 < p ≤ 2.

Remark 2.2 For r = 1, Corollaries 2.3 and 2.4 provide refinements of Theorem 3.6 and

Corollary 3.7 in [5], respectively.

In the following, we present some particular inequalities with special kernels. Namely,

we have the following result.

Corollary 2.5 Suppose the assumptions of Corollary 2.3 are satisfiedwith the kernel k such

that

k(t1, . . . , tn, s1, . . . , sn) := 0 if ai ≤ si ≤ σ (ti) ≤ bi, 1≤ i≤ n. (36)
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Let g :Ω → Rn be a �-integrable function such that g(Ω) ⊂ R, and define

K(t) :=
∫ b1

σ (t1)
. . .

∫ bn

σ (tn)
k(t1, . . . , tn, s1, . . . , sn)�s > 0, t ∈ Ω , (37)

ω(s) :=

(

n
∏

i=1

si

)

(∫ s1

a1

. . .
∫ sn

an

(

k(t, s)

K(t)

)r
λ(t)

∏n
i=1 σ (ti)

�t

)
1
r

< ∞, s ∈ Ω , (38)

and

Akg(t) :=
1

K(t)

∫ b1

σ (t1)
. . .

∫ bn

σ (tn)
k(t1, . . . , tn, s1, . . . , sn)g(s1, . . . , sn)�s. (39)

If Ψ : Ω → R is a nonnegative superquadratic function, then inequality (34) holds. If Ψ is

subquadratic, then the inequality sign in (34) is reversed.

Remark 2.3 If in Corollary 2.5, we take T = R, r = 1, and bi = ∞ for 1≤ i≤ n, then we see

that σ (ti) = ti for 1≤ i≤ n, and then (34) takes the form

∫ ∞

a1

. . .
∫ ∞

an

λ(t1, . . . , tn)Ψ
(

Akg(t1, . . . , tn)
)dt

t

+
∫ ∞

a1

. . .
∫ ∞

an

(∫ ∞

s1

. . .
∫ ∞

sn

λ(t)Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)dt

t

)

ds

≤

∫ ∞

a1

. . .
∫ ∞

an

ω(s1, . . . , sn)Ψ
(

g(s1, . . . , sn)
)ds

s
, (40)

where

K(t) :=
∫ ∞

t1

. . .
∫ ∞

tn

k(t1, . . . , tn, s1, . . . , sn)ds > 0, (41)

ω(s) := s1 . . . sn

∫ s1

a1

. . .
∫ sn

an

λ(t1, . . . , tn)k(t1, . . . , tn, s1, . . . , sn)

K(t1, . . . , tn)

dt

t
< ∞, (42)

and

Akg(t) :=
1

K(t)

∫ ∞

t1

. . .
∫ ∞

tn

k(t1, . . . , tn, s1, . . . , sn)g(s1, . . . , sn)ds. (43)

If Ψ is subquadratic, then the inequality sign in (40) is reversed. This result provides a

refinement of inequality (2.5) in [19, Proposition 2.2].

Corollary 2.6 Assume that the assumptions of Corollary 2.3 are satisfied with the kernel

k such that

k(t1, . . . , tn, s1, . . . , sn) := 0 if ai ≤ σ (ti) ≤ si ≤ bi, 1≤ i≤ n. (44)

If Ψ : Ω → R is a nonnegative superquadratic function, then inequality (34) holds for all

�-integrable functions g :Ω → Rn such that g(Ω) ⊂ R, and

Akg(t) :=
1

K(t)

∫ σ (t1)

a1

. . .
∫ σ (tn)

an

k(t1, . . . , tn, s1, . . . , sn)g(s1, . . . , sn)�s, (45)
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where

K(t) :=
∫ σ (t1)

a1

. . .
∫ σ (tn)

an

k(t1, . . . , tn, s1, . . . , sn)�s < ∞, t ∈ Ω , (46)

ω(s) :=

(

n
∏

i=1

si

)

(∫ b1

s1

. . .
∫ bn

sn

(

k(t, s)

K(t)

)r
λ(t)�t

∏n
i=1 σ (ti)

)
1
r

<∞, s ∈ Ω . (47)

If Ψ is subquadratic, then the inequality sign in (34) is reversed.

Remark 2.4 If in Corollary 2.6, we take T = R, r = 1, and ai = 0 for 1 ≤ i ≤ n, then we see

that σ (ti) = ti for 1≤ i≤ n, and then (34) takes the form

∫ b1

0
. . .

∫ bn

0
λ(t1, . . . , tn)Ψ

(

Akg(t1, . . . , tn)
)dt

t

+
∫ b1

0
. . .

∫ bn

0

(∫ s1

0
. . .

∫ sn

0
λ(t)Ψ

(
∣

∣g(s) –Akg(t)
∣

∣

)dt

t

)

ds

≤

∫ b1

0
. . .

∫ bn

0
ω(s1, . . . , sn)Ψ

(

g(s1, . . . , sn)
)ds

s
, (48)

where

K(t) :=
∫ t1

0
. . .

∫ tn

0
k(t1, . . . , tn, s1, . . . , sn)ds > 0, (49)

ω(s) := s1 . . . sn

∫ b1

s1

. . .
∫ bn

sn

k(t1, . . . , tn, s1, . . . , sn)λ(t1, . . . , tn)

K(t1, . . . , tn)

t

t
<∞, (50)

and

Akg(t) :=
1

K(t)

∫ t1

0
. . .

∫ tn

0
k(t1, . . . , tn, s1, . . . , sn)g(s1, . . . , sn)ds. (51)

If Ψ is subquadratic, then the inequality sign in (48) is reversed. This result provides a

refinement of inequality (2.2) in [19, Proposition 2.1].

Remark 2.5 For r = 1, Corollaries 2.5 and 2.6 provide refinements of Corollaries 4.1 and

4.3 in [5], respectively.

We further present some examples. Let K and Akg be defined as in the statements of

Corollary 2.5 and use

k(t, s) :=

⎧

⎨

⎩

1, if ai ≤ si ≤ σ (ti) ≤ bi, 1≤ i≤ n,

0, si > σ (ti).
(52)

Then we have the following corollary.
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Corollary 2.7 Let λ : Ω → R be a nonnegative function, and let k : Ω × Ω → R be non-

negative such that k(t) is a �-integrable function. Suppose that K :Ω → R is defined by

K(t) :=
∫ σ (t1)

a1

. . .
∫ σ (tn)

an

�s1 . . .�sn =
n

∏

i=1

(

σ (ti) – ai
)

, t ∈ [a,b)T , (53)

and let

η(s) :=

(∫ b1

s1

. . .
∫ bn

sn

λ(t)

(

1
∏n

i=1(σ (ti) – ai)

)r

�t

)
1
r

<∞, s ∈ [a,b)T , (54)

where r ≥ 1. Furthermore, assume that g : Ω → Rn is a �-integrable function such that

g(Ω) ⊂ Rn and Akg :Ω → R is defined by

Akg(t) :=
1

∏n
i=1(σ (ti) – ai)

∫ σ (t1)

a1

. . .
∫ σ (tn)

an

g(s)�s. (55)

If Ψ :Ω → R is a nonnegative superquadratic function, then

∫ b1

a1

. . .
∫ bn

an

λ(t)Ψ r
(

Akg(t)
)

�t (56)

+ r

∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

λ(t)Ψ r–1
(

Akg(t)
)

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

×
�t�s

∏n
i=1(σ (ti) – ai)

≤

(∫ b1

a1

. . .
∫ bn

an

η(s)Ψ
(

g(s)
)

�s

)r

. (57)

If Ψ instead is subquadratic, then (56) holds in the reversed direction.

Remark 2.6 For r = 1, inequality (56) provides a refinement of inequality (5.2) in [5, The-

orem 5.1] and coincides with inequality (3.7) in [18, Corollary 3.8].

Corollary 2.8 Let the assumptions of Corollary 2.7 be satisfied, let λ(t) be replaced by

λ(t)/(
∏n

i=1(ti – ai)), and let η(s) be replaced by ω(s)/(
∏n

i=1(si – ai)). Then inequality (56)

reads as

∫ b1

a1

. . .
∫ bn

an

λ(t)Ψ r
(

Akg(t)
) �t
∏n

i=1(ti – ai)

+ r

∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

λ(t)Ψ r–1
(

Akg(t)
)

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

)

×
�t�s

∏n
i=1(ti – ai)(σ (ti) – ai)

≤

(∫ b1

a1

. . .
∫ bn

an

ω(s)Ψ
(

g(s)
) �s
∏n

i=1(si – ai)

)r

, (58)

where r ≥ 1,

ω(s) :=

(

n
∏

i=1

(si – ai)

)

(∫

[s,b)

(

1
∏n

i=1(σ (ti) – ai)

)r
λ(t)

∏n
i=1(ti – ai)

�t

)
1
r

(59)

for s ∈ [a,b)T , and the operator Akg is defined by (55). If Ψ instead is subquadratic, then

(58) holds in the reversed direction.
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Remark 2.7 For r = 1, Corollary 2.8 provides a refinement of Theorem 3.1 and Remark 3.1

in [16, Theorem 3.1].

Remark 2.8 As a particular case of Corollary 2.8, when T = R, r = 1, and ai = 0 for 1≤ i ≤

n, we see that σ (ti) = ti for 1≤ i≤ n, and inequality (58) reads as

∫ b1

0
. . .

∫ bn

0
λ(t)Ψ

(

1

t

∫ t1

0
. . .

∫ tn

0
g(s)ds

)

dt

t

+
∫ b1

0
. . .

∫ bn

0

∫ b1

s1

. . .
∫ bn

sn

λ(t)Ψ

(
∣

∣

∣

∣

g(s) –
1

t

∫ t1

0
. . .

∫ tn

0
g(s)ds

∣

∣

∣

∣

)

dtds

t21 . . . t
2
n

≤

∫ b1

0
. . .

∫ bn

0
ω(s)Ψ

(

g(s)
)ds

s
, (60)

where

ω(s) := s1 . . . sn

∫ b1

s1

. . .
∫ bn

sn

λ(t)

t21 . . . t
2
n

dt <∞, s ∈ [0,b). (61)

If Ψ is subquadratic, then the inequality sing in (60) is reversed, which coincides with

inequality (2.2) in [20, Proposition 2.5].

Example 2.1 If we set the weight function λ(t) = 1 and r = 1 in Corollary 2.8, then the

weight function (59) yields

ω(s) :=

(

n
∏

i=1

(si – ai)

)

(∫ b1

s1

. . .
∫ bn

sn

�t
∏n

i=1(ti – ai)(σ (ti) – ai)

)

= –

(

n
∏

i=1

(si – ai)

)

(∫ b1

s1

. . .
∫ bn

sn

(

1
∏n

i=1(ti – ai)

)�

�t

)

= –

(

n
∏

i=1

(si – ai)

)(

n
∏

i=1

(

1

bi – ai
–

1

si – ai

)

)

=

⎧

⎨

⎩

∏n
i=1(1 –

si–ai
bi–ai

) if bi <∞, 1≤ i ≤ n,

1 if bi = ∞, 1≤ i≤ n.

Hence inequality (58) in this setting for the case bi < ∞ reads

∫ b1

a1

. . .
∫ bn

an

Ψ
(

Akg(t)
) �t
∏n

i=1(ti – ai)

+
∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

) �t�s
∏n

i=1(ti – ai)(σ (ti) – ai)

≤

∫ b1

a1

. . .
∫ bn

an

n
∏

i=1

(

1 –
si – ai

bi – ai

)

Ψ
(

g(s)
) �s

(si – ai)
, (62)
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whereas the case bi = ∞ yields

∫ b1

a1

. . .
∫ bn

an

Ψ
(

Akg(t)
) �t
∏n

i=1(ti – ai)

+
∫ b1

a1

. . .
∫ bn

an

∫ b1

s1

. . .
∫ bn

sn

Ψ
(
∣

∣g(s) –Akg(t)
∣

∣

) �t�s
∏n

i=1(ti – ai)(σ (ti) – ai)

≤

∫ b1

a1

. . .
∫ bn

an

n
∏

i=1

Ψ
(

g(s)
) �s

(si – ai)
, (63)

where the operatorAkg is defined by (55). If Ψ instead is subquadratic, then the inequality

sign in (62) and (63) is reversed.

Remark 2.9 Inequalities (62) and (63) provide a refinement of the results in [16, Exam-

ple 3.1]. For ai = 0 for 1≤ i≤ n, they provide a refinement of the results in [5, Corollary 5.3,

Example 5.4].

Remark 2.10 If we set n = 1, then Example 2.1 provides a refinement of Corollary 2.1 in

[21, Corollary 2.1]. Also, in the particular case n = 2, inequality (62) provides a refinement

of Theorem 3.2 in [21, Corollary 2.1].

Remark 2.11 As a particular case of Example 2.1, when T = R and ai = 0 for 1≤ i ≤ n, we

see that σ (ti) = ti for 1≤ i ≤ n, and so (62) reads as

∫ b1

0
. . .

∫ bn

0
Ψ

(

1

t1 . . . tn

∫ t1

0
. . .

∫ tn

0
g(s)ds

)

dt

t1 . . . tn

+
∫ b1

0
. . .

∫ bn

0

∫ b1

s1

. . .
∫ bn

sn

Ψ

(∣

∣

∣

∣

g(s) –
1

t1 . . . tn

∫ t1

0
. . .

∫ tn

0
g(s)ds

∣

∣

∣

∣

)

dtds

t21 . . . t
2
n

≤

∫ b1

0
. . .

∫ bn

0

n
∏

i=1

(

1 –
si

bi

)

Ψ
(

g(s)
) ds

s1 . . . sn
, (64)

which coincides with inequality (2.3) in [20, Remark 2.6]. In the one-dimensional case

(n = 1), this reduces to Example 4.1 in [17]. Inequality (62) yields

∫ b1

0
. . .

∫ bn

0
Ψ

(

1

t1 . . . tn

∫ t1

0
. . .

∫ tn

0
g(s)ds

)

dt

t1 . . . tn

+
∫ b1

0
. . .

∫ bn

0

∫ b1

s1

. . .
∫ bn

sn

Ψ

(
∣

∣

∣

∣

g(s) –
1

t1 . . . tn

∫ t1

0
. . .

∫ tn

0
g(s)ds

∣

∣

∣

∣

)

dt

t21 . . . t
2
n

ds

≤

∫ b1

0
. . .

∫ bn

0
Ψ

(

g(s)
)ds1 . . .dsn

s1 . . . sn
. (65)

Now we further consider some generalizations of Pólya–Knopp-type inequalities.

Corollary 2.9 Assume that the assumptions of Corollary 2.7 be satisfied with n = 1, a1 =

a ≥ 0, r ≥ 1, and b1 = ∞. If Ψ : I → R is a nonnegative superquadratic function, where
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I ⊂ R is an interval, then

∫ ∞

a

λ(t)Ψ r

(

1

σ (t) – a

∫ σ (t)

a

g(s)�s

)

�t

+ r

∫ ∞

a

∫ ∞

s

λ(t)Ψ r–1

(

1

σ (t) – a

∫ σ (t)

a

g(s)�s

)

× Ψ

(
∣

∣

∣

∣

g(s) –

(

1

σ (t) – a

∫ σ (t)

a

g(s)�s

)
∣

∣

∣

∣

)

�t

σ (t) – a
�s

≤

(∫ ∞

a

(∫ ∞

s

λ(t)

(

1

σ (t) – a

)r

�t

)
1
r

Ψ
(

g(s)
)

�s

)r

(66)

for all �-integrable functions g : Ω → R such that g(Ω) ⊂ I . If Ψ instead is subquadratic,

then (66) holds in the reversed direction.

Example 2.2 In addition to the assumptions of Corollary 2.9, if T consists of only isolated

points, then (66) takes the form

∑

t∈[a,∞)T

λ(t)Ψ r

(

1

σ (t) – a

∑

s∈[a,σ (t))T

g(s)
(

σ (s) – s
)

)

(

σ (t) – t
)

+ r
∑

s∈[a,∞)T

(

∑

t∈[s,∞)T

λ(t)Ψ r–1

(

1

σ (t) – a

∑

s∈[a,σ (t))T

g(s)
(

σ (s) – s
)

)

× Ψ

(
∣

∣

∣

∣

g(s) –
1

σ (t) – a

∑

s∈[a,σ (t))T

g(s)
(

σ (s) – s
)

∣

∣

∣

∣

)

σ (t) – t

σ (t) – a

)

(

σ (s) – s
)

≤

(

∑

s∈[a,∞)T

(

∑

t∈[s,∞)T

λ(t)

(

1

σ (t) – a

)r
(

σ (t) – t
)

)
1
r

Ψ
(

g(s)
)(

σ (s) – s
)

)r

. (67)

Remark 2.12 For r = 1, Corollary 2.7 and Example 2.2 provide refinements of Corollary 5.7

and Example 5.8 in [5], respectively. They also are a refinement of Theorem 1.1 in [29],

but here we use time scales notation instead of the notation given in [29].

Remark 2.13 As in Example 2.2, we can write a discrete version of (56) and (58).
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