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The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to
interpret experimental data using structural models. On the other hand, molecular
dynamics simulations of IDPs often suffer from force-field inaccuracies, and long
simulation times or enhanced sampling methods are needed to obtain converged
ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting
approaches to integrate prior knowledge of the system with experimental data, while also
dealing with various sources of errors and the inherent conformational heterogeneity of
IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this
with simulations performed using different force fields. We find that if the force field gives
rise to ensembles that are much more compact than what is implied by the SAXS data it
is difficult to recover a reasonable ensemble. On the other hand, we show that when the
simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the
SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.

Keywords: small-angle X-ray scattering, molecular dynamics simulation, NMR, protein, intrinsically disordered
protein

INTRODUCTION

Intrinsically Disordered Proteins (IDPs) play important roles in a wide range of biological processes
including cell signaling and regulation (Uversky et al., 2005; Das et al., 2015; Snead and Eliezer,
2019), and their malfunction or aggregation is linked to neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease. A key, defining property of IDPs is that they do not adopt
well-defined, permanent secondary and tertiary structures under native conditions, and their
conformational properties are thus best described in statistical terms.

Due to the dynamic nature of IDPs and their inherent conformational heterogeneity,
IDPs are not easily amenable to high-resolution characterization solely through experimental
measurements. To characterize their structural and dynamic properties it is often necessary to
integrate various biophysical experiments, and particularly nuclear magnetic resonance (NMR)
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spectroscopy (Dyson and Wright, 2001), small angle X-
ray scattering (SAXS) (Bernado and Svergun, 2012), circular
dichroism (Chemes et al., 2012), and single-molecule Förster
resonance energy transfer (sm-FRET) (LeBlanc et al., 2018)
have been widely used to characterize the structural properties
of IDPs. For instance, pulsed-field-gradient NMR diffusion
and SAXS experiments are especially useful to quantify the
level of compaction of the IDP. Techniques such as sm-FRET
and NMR paramagnetic relaxation enhancement (PRE) provide
distance information between different residues or regions of the
IDP (Dedmon et al., 2005; Eliezer, 2009). Nevertheless, since
most experimental methods only convey ensemble-averaged
information and are also affected by random and systematic
errors, it is difficult to directly extract information on the
underlying heterogeneous ensemble of the IDP. To address this
problem, theoretical and computational models can be used to
extract detailed structural information from these experiments.

Molecular dynamics (MD) simulations that use physics-based
force fields may provide high-resolution temporal and spatial
information about the structure and dynamics of IDPs. Extensive
sampling of a force field with MD simulations can thus be used
to generate conformational ensemble of the IDP. The quality
of the results, however, depends heavily on the accuracy of
the force field employed. For example, it has been shown that
many earlier generations of force fields produce overly compact
conformations for many IDPs (Piana et al., 2015). It appears that
these force fields fail to accurately describe the solvation of the
protein by underestimating protein-water interactions (Sun and
Kollman, 1995; Nerenberg et al., 2012; Best et al., 2014; Piana
et al., 2015). Recently, however, significant advancements have
been made to improve force field accuracy and correct the bias
toward overly compact conformations (Best et al., 2014; Piana
et al., 2015; Song et al., 2017; Robustelli et al., 2018). Adding
to these issues, the large conformational phase space of IDPs,
requires extensive sampling of the protein in order to generate
converged ensembles. To achieve sufficient sampling, and push
the sampling capacity of MD simulations, one often employs
enhanced sampling methods such as metadynamics (Barducci
et al., 2008) or parallel-tempering replica exchange (Sugita and
Okamoto, 1999). Notably, force field and sampling problems are
expected to be more severe for longer IDPs.

An approach to address the challenges of force-field accuracy
is to combine experimental and theoretical information in order
to obtain conformational ensembles of IDPs that agree with
experimental measurements. In this way, the simulations are
used as a tool to interpret experimental measurements. A number
of different approaches have been described and can, roughly,
be divided into two different classes in which the experimental
data is either (i) used for on-the-fly restraining of a simulation
to experimental data, or (ii) post-processing ensembles generated
by simulations to match experimental data by reweighting or
selection methods. Many different such methods exist, and we
refer to recent reviews for additional details (Cesari et al., 2018;
Orioli et al., 2020).

Because the conformational ensembles are broad and the
experimental data often have low information content and
may be noisy, Bayesian inference methods (Box and Tiao,

2011) and the maximum entropy principle (Jaynes, 1957) have
emerged as particularly successful frameworks for studying
IDPs. In these frameworks, an ensemble generated using a
prior model is minimally modified to match the experimentally
observed data better. An extension of these frameworks for
integrative structural ensemble determination is Metainference
Metadynamics (M&M) (Bonomi et al., 2016a), that combines
multi-replica all-atom molecular dynamics simulations with
ensemble averaged experimental data (Bonomi et al., 2016b). In
the M&M approach, the metainference (Bonomi et al., 2016a)
part is a Bayesian inferencemethod that allows for the integration
of experimental information with prior knowledge of the system
from, e.g., physics-based force fields, while also dealing with
uncertainty and errors as well as conformationally heterogeneous
systems. In addition, metainference can be combined with
metadynamics (Laio and Parrinello, 2002; Bonomi et al., 2016b)
to accelerate sampling further. A related Maximum Entropy
approach has also been applied to determine an ensemble
of configurations from SAXS data but using a more refined
and potentially accurate method for taking solvent effects into
account (Hermann and Hub, 2019). While the above approaches
apply the bias on the fly, other Bayesian formalisms takes as input
simulations that were generated without taking the experimental
data into account, and subsequently updates this using statistical
reweighting. Such approaches include our Bayesian/Maximum
Entropy (BME) protocol (Bottaro et al., 2020), as well as related
methods (Hummer and Köfinger, 2015).

Here, we combined ensemble-averaged experimental SAXS
data with MD simulations with the aim to achieve structural
ensembles of the system which are in agreement with the
experimental data. We did so using both metainference and
BME. In particular, we used BME to refine ensembles that had
previously been generated using MD simulations (Piana et al.,
2015; Robustelli et al., 2018), while metainference was applied
to restrain experimental SAXS data during MD simulations with
an implicit solvent model (Bottaro et al., 2013). We used the
intrinsically disordered protein α-synuclein (αSN) protein as a
model, as this protein has been studied extensively by various
experimental methods including SAXS and NMRmeasurements,
and because of the availability of long MD trajectories generated
from a range of force fields and water models. αSN is a 140-
residue long IDP that is primarily expressed in the brain and
in its monomeric state is known to be disordered and populate
multiple conformational states. αSN aggregation into amyloid
fibrils is linked to Parkinson’s disease and dementia with Lewy
bodies (Spillantini and Goedert, 2000; Ulusoy and Di Monte,
2013).

We assessed the quality of existing ensembles before
refinement, and the ability of metainference and BME methods
to improve them through incorporation of experimental SAXS
data, by comparing with independent measurements of the level
of compaction (through the hydrodynamic radius, Rh, as probed
by NMR) and previously measured paramagnetic relaxation
enhancement data (Dedmon et al., 2005). We find that the
inclusion of a SAXS-restraint in the M&M simulation resulted
in the generation of a reliable and heterogenous conformational
ensemble that also improved the agreement with the NMR
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diffusion data. The BME reweighting improved the agreement
with the experimental data when we applied the approach to
simulations with the TIP4P-D water model. For simulations
using the TIP3P water model, which were substantially more
compact, it was difficult to find a suitably large ensemble
compatible with the experimental SAXS data. Together, our
result provide insight into how and when experimental SAXS
data can be used to refine ensembles of IDPs, and the role
played by the force field as a ‘prior’ in these Bayesian/Maximum
entropy approaches.

METHODS AND MATERIALS

Experimental Data
Human αSN for SAXS experiments was expressed, purified,
and lyophylized as previously described (van Maarschalkerweerd
et al., 2014). Prior to SAXS data collection, the lyophilized powder
was dissolved in PBS (20 mM Na2HPO4, 150 mM NaCl, pH
7.4) and filtered through a 0.22 µm filter to remove larger
aggregates. The final sample concentration before SEC-SAXS
was determined by A280 to be 4.5 mg/mL using an extinction
coefficient of 5960 M−1 cm−1. SAXS data was collected as SEC-
SAXS data on beamline P12 (Blanchet et al., 2015) operated by
EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg,
Germany). 50 µL 4.5 mg/mL αSN in PBS buffer (20 mM
Na2HPO4, 150 mM NaCl, pH 7.4) was injected on a Superdex
200inc 5/150 GL column with a flowrate of 0.4 mL/min. The
column was pre-equilibrated with the running buffer (PBS with
2% (v/v) glycerol). SAXS data were collected at 20 ◦C, with
continuous exposure of 1 s per frame throughout the SEC elution.
Data processing was done using CHROMIXS (Panjkovich and
Svergun, 2018), averaging sample data from the frames in the
monomeric peak and subtracting the buffer signal taken from
the flow-through prior to the sample elution to obtain the final
scattering profile (Supplementary Figure 1).

We purified αSN for NMR experiments as previously
described (Skaanning et al., 2020). Translational diffusion
constants for αSN (50µM with 2% (v/v) glycerol) and 1,4-
dioxane (0.2% v/v; as internal reference) were determined by
fitting peak intensity decay from diffusion ordered spectroscopy
experiments (Wu et al., 1995), using the Stejskal-Tanner equation
as described (Prestel et al., 2018). Spectra (a total of 64 scans) were
obtained over a gradient strength of 2 to 98%, with a diffusion
time (1) of 200 ms and gradient length (δ) of 3 ms. Diffusion
constants were used to estimate the hydrodynamic radius for
αSN described (Wilkins et al., 1999; Skaanning et al., 2020)
(Supplementary Figure 2).

We used previously measured PRE data obtained by
measuring intensity ratios with spin-labels added at five different
positions (residue: 24, 42, 62, 87, and 103) (Dedmon et al., 2005).

Bayesian/Maximum Entropy Reweighting
of Unbiased MD Simulations
We used previously generated ensembles of αSN obtained by
long-timescale MD simulations with different force fields from
the CHARMM and Amber families (here abbreviated by C and
A, respectively) and water models (Piana et al., 2015; Robustelli

et al., 2018) (Table 1). The published simulation using Amber
ff99SB-disp (Robustelli et al., 2018) was later found to be affected
by interactions with its periodic image and has here been replaced
by a 73 µs long simulation performed using the same setup but
in a 160Å box and available directly from D. E. Shaw Research.

We used our Bayesian/Maximum Entropy (BME) protocol
(Ahmed et al., 2020; Bottaro et al., 2020) to reweight the initial
force field ensembles (Table 1) with the experimental SAXS data,
thus obtaining ensembles that are in closer agreement to the
experimental data. Briefly described, the BME approach is based
on a combined Bayesian/Maximum entropy framework, that
enables one to refine a simulation using experimental data while
also taking into account the potential noise in the data and
in the so-called forward model used to calculate observables
for the ensemble. The purpose of the reweighting is to derive
a new set of weights for each configuration in a previously
generated ensemble so that the reweighted ensemble satisfies the
following two criteria: (i) it matches the experimental data better
than the original ensemble and (ii) it achieves this improved
agreement by a minimal perturbation of the original ensemble.
The BME reweighting approach seeks to update the weights, wj,
by minimizing the function:

L (w1 . . .wn) =
1

2
χ2 (w1 . . .wn)− θSrel (w1 . . .wn) (1)

Here, χ2 quantifies the agreement between the experimental
data and the corresponding observable calculated from the

reweighted ensemble. Srel = −
∑n

j wj log
(

wj/w
0
j

)

measures

the deviation between the original ensemble weights, w0
j , in

our case taken as 1/n, and the reweighted ensemble weights.
Finally, the hyperparameter θ tunes the balance between the
two terms, and needs to be determined, by evaluating the
compromise between the two terms in Equation (1) (Orioli
et al., 2020). Reweighting and analysis scripts are available at
github.com/KULL-Centre/papers/blob/master/2021/aSYN-ahme
d-et-al/.

Metainference Metadynamics
We conducted a SAXS-restrained MD simulation using the
metainference metadynamics (M&M) method, where we
employed the parallel-bias (PBMetaD) flavor of well-tempered
metadynamics (Pfaendtner and Bonomi, 2015) in combination
with the multiple-walkers scheme (Raiteri et al., 2006). During
the M&M simulation, the SAXS back-calculation step utilizes a
hybrid-resolution approach, where the SAXS data is calculated
on-the-fly using “Martini beads” that are superimposed on the
all-atom structures using PLUMED (Bonomi and Camilloni,
2017; Paissoni et al., 2019, 2020; Jussupow et al., 2020). The
approach is particularly efficient as the SAXS back-calculation
is calculated using the Debye equation from a coarse-grained
model and the excess of electron density in the hydration shell
is neglected (Niebling et al., 2014; Paissoni et al., 2020). We
note here that the Martini model is only used for calculating the
SAXS data, and the simulations are performed using an all-atom,
implicit solvent model as detailed below.
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TABLE 1 | Ensembles analyzed and refined.

Force field Water model Time(µs) Rg Force field(Å) Rg Reweighted(Å) Rh Force field(Å) Rh Reweighted(Å)

A12 TIP3P 5 15.4 ± 0.1 19 ± 1 20.8 ± 0.1 23.0 ± 0.1

A99SB-ILDN TIP3P 5 15.3 ± 0.2 16.0 ± 0.3 20.6 ± 0.3 21.3 ± 0.3

C22* TIP3P 6 17.1 ± 0.4 23 ± 1 22.2 ± 0.3 26.1 ± 0.5

A99SB-ILDN TIP4P-EW 5 17.9 ± 0.8 24 ± 1 22.8 ± 0.6 26.4 ± 0.6

C22* TIP4P-D 20 23.3 ± 0.6 29.3 ± 0.9 26.7 ± 0.3 29.6 ± 0.4

A99SB-ILDN TIP4P-D 11 25.7 ± 0.1 31 ± 1 27.2 ± 0.6 30 ± 1

A12 TIP4P-D 11 29.7 ± 0.5 34.1 ± 0.3 29.7 ± 0.2 32 ± 0.5

A03ws TIP4P/2005 20 30 ± 2 34.3 ± 0.6 29.1 ± 1.1 32 ± 1

A99SB-disp 1 73 26 ± 1 31.9 ± 0.6 27.7 ± 0.5 30.8 ± 0.4

CHARMM362 EEF1-SB 3.23 46 ± 4 35.4 ± 0.5 38 ± 3 33.1 ± 0.5

Experiment 35.5 ± 0.5 28.6 ± 0.7

1 A99SB-disp uses a modified version of the TIP4P-D water model.
2 CHARMM36 with EEF1-SB was only used for the metainference metadynamics simulations; here “force field” and “reweighted” refers to two different simulations with and without

the experimental bias, respectively. 3 Metadynamics simulation time.

We used GROMACS 2018.1 (Abraham et al., 2015) with
PLUMED version 2.4 (Tribello et al., 2014) to perform theM&M
simulations. We used the CHARMM36 force field (Best et al.,
2012) with the EEF1-SB implicit solvent model (Bottaro et al.,
2013). We used a previously generated structure of αSN bound
to micelles (Ulmer et al., 2005) as starting point for an initial
100-ns long high temperature (500 K) simulation, from which
we extracted 64 starting conformations for the multi-replica
M&M simulation. Charged amino acids were neutralized in line
with the parameterization of the EEF1 model (Lazaridis and
Karplus, 1999; Bottaro et al., 2013), leaving a neutral molecule,
and performed a minimization to a maximum force of 100
kJ/mol/nm. The system was further equilibrated for 20 ns per
replica with the metainference bias.

We performed production simulations in the NVT ensemble
using Langevin dynamics (Goga et al., 2012) with a friction
coefficient of 0.5 ps−1 at T = 310 K, and a timestep of 2 fs. The
Coulomb interactions were evaluated with a distance dependent
dielectric constant of ǫ = 15r (Lazaridis and Karplus, 1999;
Bottaro et al., 2013) and a cut-off at 9 Å. Constraints were applied
on the hydrogens with the LINCS algorithm (Hess et al., 1997).
For the production simulations the sampling of each replica
was enhanced by PBMetaD along with twelve collective variables
(CVs) consisting of the radius of gyration and 11 AlphaRMSD
CVs to enhance sampling of local backbone conformations
(Tribello et al., 2014).

Gaussians were deposited every 200 steps with a height of 0.1
kJ/mol/ps, and the σ values were set to 0.2 nm for CVrg and 0.010
for all AlphaRMSD CVs, respectively. We rescaled the height of
the Gaussians using the well-tempered scheme with a bias-factor
of 20 (Barducci et al., 2008).

Because calculation of the SAXS data is limiting in these
simulations, we re-binned the experimental SAXS data to a set
of 19 SAXS intensities at different scattering vectors, ranging
between 0.01 Å−1 and 0.20 Å−1. Metainference was applied every
10 steps of the simulation. We used a Gaussian noise model,
that applies a single Gaussian per SAXS data-point. The scaling
factor between experimental and calculated SAXS intensities was

sampled with a flat prior between 0.5 and 2.0 (Löhr et al., 2017).
We averaged the estimated metainference weights over a time
window of 200 steps; this is done to avoid large fluctuations
and prevent numerical instabilities due to too high instantaneous
forces (Löhr et al., 2017). The Plumed input file is available in the
PLUMED-NEST database (Bonomi et al., 2019) (plumID:21.003;
www.plumed-nest.org/eggs/21/003/).

Paramagnetic Relaxation Enhancement
Paramagnetic Relaxation Enhancement (PRE) via nitroxide spin-
labels has been used extensively to study long-range interactions
within IDPs. The measured PRE depends in particular on the
distance between a paramagnetic centre and protein nuclei, in
this case backbone amides. Because the PRE originates from a
dipolar interaction, the observed PRE depends on r−6, and is
thus particularly sensitive to transient, short distances. Because
simulations were performed without the spin-labels, and because
multiple spin-labels were used to probe the structural ensemble of
αSN, we used a post-processing approach to estimate the location
of the unpaired electron on the nitroxide label. In particular,
we used DEER-PREdict (Tesei et al., 2020), which is based on a
Rotamer Library Approach to place spin labels on the protein,
to estimate PRE rates. We calculated and compared results from
five paramagnetic labeling positions (residue: 24, 42, 62, 87, 103)
in αSN (Dedmon et al., 2005). Additional details are available
in the Supplementary Information and in the DEER-PREdict
paper (Tesei et al., 2020).

RESULTS AND DISCUSSION

Using αSN as an example, we compared conformational
ensembles generated either directly using molecular dynamics
simulations with a molecular mechanics force field, or the
same ensemble refined using SAXS data. We also analyzed the
results of an approach (M&M) that performs this refinement
during the simulation. We thus performed (i) a SAXS-restrained
multi-replica simulations using metainference metadynamics
and (ii) a reference simulation both using CHARMM36 force
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field (Best et al., 2012) used with the EEF1-SB implicit solvent
model (Bottaro et al., 2013). Both simulations consisted of 64
replicas, with one simulation using metainference to enforce
the agreement with experimental SAXS data, whereas a second,
reference simulation did not use experimental restraints and thus
sampled the force field only. We also analyzed nine previously
published multi-µs MD simulations which had been generated
using different combinations of proteins force fields and water
models (Piana et al., 2015; Robustelli et al., 2018) from the
AMBER (Hornak et al., 2006; Best and Hummer, 2009; Lindorff-
Larsen et al., 2010; Robustelli et al., 2018) and CHARMM (Piana
et al., 2011) families in combination with either standard TIP3P
(Jorgensen, 1981), TIP4P-EW (Horn et al., 2004), TIP4P/2005
(Abascal and Vega, 2005), or the TIP4P-D (Piana et al., 2015)
water model. Table 1 summarizes the simulations and below
we refer to the prior (not refined) ensemble as the “force
field” ensemble and the posterior (refined) ensemble as the
“reweighted” ensemble.

Force Field Accuracy and Sampling
Before the refinement procedure we calculated SAXS intensity
curves from each structure in the ensembles using PEPSI-SAXS
(Grudinin et al., 2017). We also calculated the Rg from the
protein coordinates and used them to estimate the hydrodynamic
radius (Rh) for each conformation using a previously described
empirical relationship (Nygaard et al., 2017; Ahmed et al., 2020)
(Table 1). The experimental Rg = 35.5 Å was obtained through
Guinier analysis of the experimental SAXS curve (see Methods),
while the experimental Rh = 29.0 Å was obtained through NMR
diffusion measurements (Table 1).

In line with previous observations (Piana et al., 2015;
Robustelli et al., 2018), the ensembles show very different levels
of compaction depending on the force field and, in particular,
water model used (Table 1 and Figure 1). When paired with
the TIP3P water model, both the Amber or CHARMM force
fields produce very compact conformations and show poor
agreement with the experimental value of Rg . On the other hand,
when paired with the recently parameterized TIP4P-D water
model the force fields give rise to more expanded structures
and match the experimental values of Rg and Rh considerably
better. The ensemble generated using CHARMM36 with the
EEF1-SB implicit solvent model on the other-hand produce
more expanded structures (Table 1). Of particular relevance to
the reweighting described below it is worth noting how the
compact ensembles either do not sample any, or at most very
few, structures that are expanded as the average Rg observed in
experiment (Figure 1). This observation already suggests that it
will be difficult robustly to derive ensembles that are in agreement
with the SAXS data as this in particular is sensitive to the Rg .

Ensemble Refinement Using SAXS Data
In the following section we exemplify the BME refinement
against the SAXS data using two representative combinations
of force field and water models, specifically A12 paired with
either the TIP3P or the TIP4P-D water model (Figure 2).
We also present the results obtained from “on-the-fly” SAXS-
restrained simulation with M&M which we compared to an

unrestrained simulation with otherwise identical simulation
settings (see Methods). Note that while the Rg values for
the simulations were calculated using protein coordinates, the
experimental value also includes potential contributions from the
solvent. The refinement, analysis and plots for the remaining
force fields are shown in the supplementary information
(Supplementary Figures 4–10).

The BME procedure works by assigning weights to a
previously generated ensemble so as to fit the experimental data
better. For BME to successfully reweight an ensemble it is thus
required that the initial prior ensemble contains themost relevant
conformational states of the protein, such that the ensemble that
gives rise to the experimental data is a sub-ensemble of the initial
prior ensemble. Consequently, if the sampling is incomplete or
the unbiased ensemble is very far away from the true ensemble,
it may not be possible to reweight the ensemble to reach a
satisfactory agreement with the experiments. An indication that
this is occurring is that BME will effectively down-weight most of
the structures in the prior ensemble and the posterior ensemble
will be dominated by a few structures with large weights. This
can in turn be quantified by calculating the (effective) fraction
of structures, φeff = exp(Srel), that contribute to the ensemble
(Orioli et al., 2020), so that when φeff ≈ 1 most of the structures
are retained, whereas φeff ≈ 0 indicates a few structures with very
large weights

In the BME reweighting the confidence in the prior ensemble
with respect to the experimental data can be tuned by the hyper-
parameter θ (Equation 1). One usually does not know the optimal
value for θ beforehand. Here, we choose θ by performing an L-
curve analysis (Hansen and O’Leary, 1993; Orioli et al., 2020)
in which we plot the χ2

red
value (quantifying the difference

between experiments and calculated value) as a function of φeff ,
for different values of θ and choose a value corresponding to
the “elbow” region (blue region in Figures 2A,B). The L-curve
analysis for the A12 force field paired with TIP4P-D water model,
lead us to choose θ = 1, 000, after which the ensemble retains
88% of the initial structures in the final reweighted ensemble,
and show much better agreement with the experimental data,
indicative by a low χ2

red
(Figure 2A). In contrast, the analysis

for the TIP3P water model, after reweighting with θ = 6, 000,
show that only 12% of the initial structures are used in the final
reweighted ensemble in order to achieve significant improved
agreement with the experimental data (Figure 2B). Even at
a lower θ value there is still a large discrepancy between
experimental and calculated SAXS data (χ2

red
= 17 at θ = 500).

This is a clear example of a poor prior ensemble, which is caused
by insufficient overlap between the force field ensemble and that
probed by experiment. In fact, the highest value observed (Rg
=23 Å) is significantly lower than the experimental value (black).
As a consequence, BME ‘throws out’ most of the structures from
the initial force field ensemble, and the final reweighted ensemble
mainly consist of a few highly weighted structures (Figure 2D).

The ensemble generated with the TIP4P-D water model
(Figure 2C) contains structures that span a greater range of
Rg values, both above and below the experimental value. After
refinement, the reweighted ensemble is shifted to give greater
weight to more expanded structures and bringing the average Rg
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FIGURE 1 | Radius of gyration during simulations with different force fields and water models. As representative examples we show the time-evolution of the radius of
gyration for simulations of αSN performed with the A12 force field (orange), C22* (blue), and A12 (green) with the TIP4P-D, TIP4P-D, and TIP3P water model,
respectively. The experimental value (black) was obtained from a Guinier analysis of the SAXS data. The orange and blue curves have been smoothed to ease
visualization. The insert shows probability densities and averages of Rg. Representative structures with different degrees of compaction are also shown. The length of
the simulations is 11, 20, and 5 µs, respectively, but are shown here on a normalized timescale to make comparisons easier.

substantially closer to the value estimated from the SAXS data.
We note here that we do not fit the Rg value but rather the
SAXS data. Because the experimental value of Rg (obtained from
a Guinier analyses of the data) contains a contribution from the
solvent we do not expect a perfect agreement with the average Rg
calculated from the protein coordinates (Henriques et al., 2018).
Indeed, this is one of the reasons whywe fit the SAXS data directly
rather than the Rg .

The effect of reweighting of the two ensembles can also be
seen on the distributions of Rh (Figures 2E,F). Similar to Rg
distributions, the TIP4P-D ensemble is shifted to give greater
weight to more expanded structures (Figure 2E). As was also
evident from the distribution of Rg , the more compact TIP3P
ensemble gives rise to a very noisy distribution, because the
reweighted ensemble predominantly consists of a few highly
weighted structures (Figure 2F). To illustrate the consequences
of reweighting we also compared the calculated SAXS data
from the initial force field and reweighted ensembles to the
experimental scattering data (Figures 2G,H). As expected, the
refined ensembles show better agreement with experiments, in
particular for the A12 paired with TIP4P-D. As agreement
between experimental and calculated data is the target for BME
this observation again just illustrates that the BME method is
indeed optimizing agreement.

We repeated these analyses for the remaining combinations
of force fields and water models (Supplementary Figures 4–10)
and summarize the results by assessing how well the ensembles
reproduce Rg and Rh before and after refinement (Figure 3). We

note that the improvement of the Rg observed is due to the use of
SAXS data in the refinement, as SAXS intensity curve inherently
contains information of the Rg , and that improved agreement
with the Rg is thus a sign of the BME approach working rather
than a validation of the ensemble.

To evaluate the effectiveness of the SAXS-restrained M&M
simulation we monitored the agreement between the back-
calculated and the experimental data over the simulation time by
monitoring their correlation rather than the χ2 (Paissoni et al.,
2020). Both the SAXS-restrained and the unrestrained reference
simulation show a high correlation between back-calculated
and experimental data (> 0.98) (Supplementary Figure 3A).
As expected, the agreement improves substantially when
the experimental data is used as a bias in the metainference
simulations, confirming the effectiveness of the inclusion
of experimental SAXS data (Supplementary Figure 3A).
Likewise, the average Rg , Rh and the back-calculated SAXS
intensity data show improved agreement with the experimental
data in the metainference produced ensemble (Figure 3 and
Supplementary Figure 3).

In total our analyses show that it is possible to refine MD
simulations against SAXS data, though the extent to which
agreement can be reached depends on the quality of the
input ensemble. For the most compact ensembles we are able
to increase the average compaction by fitting to the data,
though the average Rg and Rh are still substantially below the
experimental values. While the SAXS data (and thus Rg) were
used as target values, we also cross-validated with Rh which
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FIGURE 2 | Refinement of two ensembles using BME with SAXS data. SAXS refinement of an ensemble sampled with A12 and either (left) the TIP4P-D water model
or (right) the TIP3P water model. (A,B) In the L-curve analysis to select the parameter θ we plot χ2 against φeff . θ balances the prior (force field) and the experimental
data, φeff is the effective number of frames used in the final reweighted ensemble. A value of θ is selected from the region marked in blue. We here used θ = 1,000 and

(Continued)
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FIGURE 2 | θ = 6,000 for the TIP4P-D ensemble and TIP3P ensemble, respectively. Probability distribution of (C,D) Rg and (E,F) Rh for the prior (red) and reweighted
(blue) ensembles. Solid vertical lines represent the ensemble averaged Rg and Rh. The experimental values are shown in black. The error of the distributions and on
the averages (shown as shades) were estimated by block averaging. (G,H) Calculated SAXS intensities from the prior ensemble and the reweighted ensembles are
compared to the experimental SAXS data.

FIGURE 3 | Radius of gyration and hydrodynamic radius calculated from the initial force field ensemble (red) and the experimentally refined ensembles (blue).
Experimental values from SAXS (Rg = 35.5Å) and NMR (Rh = 29.0Å) are shown as horizontal lines with the shaded area indicating the error of the experimental values.

was not used in the fitting. Here, the picture is less clear.
Overall, for the more compact ensembles, fitting the SAXS
data lead to improved prediction of Rh. For other ensembles,
such as A12 with TIP4P-D, that show good agreement with Rh
before reweighting, the agreement became slightly worse after
reweighting. Finally, for the most expanded ensemble obtained
with CHARMM36/EEF1-SB, agreement with Rh improved after
biasing with the SAXS data. As discussed further below, the
approach that we use to estimate Rh from the ensembles is
approximate and requires further assessment before these small
differences can be interpreted in detail.

Validation With PRE Data
PRE experiments probe the population-weighted average of the
distance (as r−6) between a paramagnetic centre and protein
nuclei and, given the r−6 dependency, is sensitive to the shorter
distances even if the populations are small. Here, we compare
previously published PREs from spin-labeled αSN (Dedmon
et al., 2005) and back-calculated PRE intensity ratios from
five labeling sites, for each of the force fields in Table 1,
before and after refinement (see also Supporting Information).
PRE intensity-ratio profiles from a more expanded ensemble

generated using A12 with TIP4P-D (Figure 4A) and a more
compact one generated with A12 with TIP3P (Figure 4B)
show clear differences in agreement with experiments before
refinement with the SAXS data.

BME refinement leads only to small changes in the
calculated PRE data for A12/TIP4P-D, whereas the selection
of more expanded structures, by applying BME to the
ensemble generated with A12/TIP3P, leads to more substantial
changes as quantified for example by calculating the RMSD
between simulation and experimental data (Figures 4C,D). We
performed similar calculations and analyses for all ensembles
(Supplementary Figures 11–18) and summarize the overall
RMSD before and after BME (Figure 4E). For the force fields
paired with TIP3P in particular, we observe many of the long-
range contacts diminish after reweighting. These results suggest
that the reweighting decreases contributions from structures
that are too compact, and that the final reweighted ensemble
contains more extended structures. In the TIP4P-D ensembles
we still observe that some long-range contacts persist even after
reweighting and the better agreement is not alone achieved
at the cost of a complete elimination of long-range contacts;
nevertheless, the improvements of the PREs are generally small
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FIGURE 4 | Comparing ensembles to PRE data. We calculated the PRE intensity ratios both from the prior (red) and the reweighted (blue) ensembles and compared
to the experimental data (gray). As representative examples we again show results with the A12 protein force field combined with either (A) TIP4P-D or (B) TIP3P
water models, and where the location of the spin label probe is denoted in each plot. Experimental intensity ratios slightly exceeding the value 1 were set to 1 in these
plots. (C,D) We also calculated the RMSD between the experimental and calculated intensity ratios for each probe and the two force fields both before and after
reweighting. (E) Finally, we calculated the RMSD between experiment and calculated values over all probe position for and all force fields in Table 1.

for these ensembles, and in the case of the metainference
ensemble we even observe a small worsening of the agreement.

Comparison of Ensembles
An important question is whether and how much ensembles
become more similar to one another after reweighting using
experimental data. Clearly, the properties of the final ensembles
reflect information both in the prior and in the experimental
data. Previously we and others have shown that experimental data
make ensembles more similar to one another (Lindorff-Larsen
and Ferkinghoff-Borg, 2009; Camilloni et al., 2012; Tiberti et al.,
2015; Larsen et al., 2020), though the extent to which this occurs
depends on how the ensembles are compared.

The results described above suggest that the description
of the level of compaction indeed becomes more similar after

reweighting, and this is reflected also in more similar distribution
of the radius of gyration (Supplementary Figure 19).
Nevertheless, it is also clear that differences remain, in
particular when the prior gives a very poor description of the
data. A more complex situation arises when the ensembles are
compared using properties that are only little correlated with
those probed by the SAXS experiments, such as for example local
(secondary) structure. We therefore used STRIDE (Frishman
and Argos, 1995) to calculate the secondary structure in all
ensembles, both before and after reweighting with the SAXS
data (Supplementary Figures 19, 20). As also previously shown
(Robustelli et al., 2018) there is little transient helical structure
in these simulations, though with some variation across force
fields. Previous analyses suggest that compaction and secondary
structure are only weakly coupled in disordered proteins
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(Piana et al., 2012; Crehuet et al., 2019; Zerze et al., 2019), and
indeed we in general find that reweighting against the SAXS
data only has a modest effect on the secondary structure. The
M&M simulations, however, do not follow this pattern, but
we note here that in contrast to the other simulations, these
are two independent simulations. In summary, these analyses
demonstrate that inclusion of experimental restraints make
ensembles more similar in some properties, but not necessarily
in others. Reweighting against a set of experimental data will thus
only affect properties that affect, or are otherwise coupled to, the
experimental data. As argued previously (Crehuet et al., 2019),
this also means that cross-validation is only useful when using
types of experiments that probe related molecular properties.

CONCLUSIONS

We have employed “on-the-fly” or “post-facto” integration
of MD simulations and SAXS data αSN to derive structural
ensembles that are in improved agreement with experiments.
These approaches take their outset in a Bayesian framework,
and thus the results of the posterior distribution may depend
on the choice of the prior. Our results clearly show, in line
with previous observations (Larsen et al., 2020), that if the
prior distribution is a poor model for the experimental data,
reweighting becomes noisy. Despite this we find that fitting
against SAXS data generally improved or had no effect on the
agreement with NMR data (Rh and PREs) that were not target of
the optimization. Thus, the inclusion of a SAXS-restraint in the
metainference simulation and the BME refinement showed that
both methods were able to generate a reliable and heterogenous
ensemble that maintained good agreement with independent
experimental data. We nevertheless also find that the prior used
in such protocols are important, and that more robust analyses
are obtained with the best priors.

Our results also reflect an important point when including
experimental data to refine ensembles, namely that the ensembles
will only be affected along degrees of freedom that are sensitive to
the experiments (or vice versa). Thus, as shown by our analyses,
while the level of compaction (p(Rg)) becomes more similar
after inclusion of the SAXS data, this is not the case for the
description of the secondary structure. In order to improve the
description of both global and local structure one thus needs
to include data sensitive to both properties, either individually
(such as SAXS and chemical shifts) or combined such as residual
dipolar couplings.

Our calculations of Rh and PREs suggest that when the
ensembles are “far” away from the experimental data, then
improvements driven by the SAXS refinement lead to clear
improvements in independent parameters. For ensembles that
show better agreement between with the SAXS data to begin
with, the picture is less clear. While we on average observe
improvements, they are often modest. While some of this is likely
because the ensembles are already in reasonably good agreement
with the experiment, we also suggest that we are observing the
limitations of the forward models for calculating SAXS, Rh and

PREs. In particular, we suggest that more research is needed on
comparing the accuracy and domains of applicability of existing
methods for calculating Rh (Kirkwood and Riseman, 1948; de la
Torre et al., 2000; Nygaard et al., 2017; Fleming and Fleming,
2018). Methods for calculating SAXS data (Henriques et al., 2018;
Hub, 2018), however, also require choices to be made for how to
deal with solvent effects, and calculations of PREs rely on models
and parameters to describe effects of dynamics (Tesei et al.,
2020). In all cases, further work is needed to make it possible to
extract as much as possible information from the data, such as for
example the independent information about the moments of the
Rg-distribution contained within the SAXS and NMR diffusion
measurements (Choy et al., 2002; Ahmed et al., 2020).

Thus, we conclude that in order to obtain improved
descriptions of the conformational ensembles of disordered
proteins, work is needed in several areas. First, improved force
fields and sampling methods give rise to better initial estimates
that require less (or no) reweighting. Second, refinement should
ideally use data from experiments that are sensitive to as many
conformational properties as possible, and at least those that
probe the properties of interest. Finally, improved and consistent
forward models are required to use this data to provide better
models for intrinsically disordered proteins. Importantly, these
different aspects work in synergy as accurate prior ensembles
are more robust toward reweighting, and that accurate forward
models make it possible to extract more information from the
experimental data.
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