
1. INTRODUCTION
Most state and local bridge authorities have become

aware of the urgency to develop management

technology to ensure safe performance of bridge

networks and to facilitate continuous economic growth.

Basically, asset management methodologies incorporate

economic assessments leading to cost-effective long-

term decisions concerning maintenance, repair and

rehabilitation (MR&R). It is particularly important to

plan minimum-cost MR&R activities with funding

allocations based on reliable Bridge Management

System (BMS) outcomes. BMSs are already a common

tool for many bridge authorities to extend the life of

bridge networks. However, the reliability of current

BMS outcomes is doubtful.
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Abstract: A deterioration model is the most critical component of a Bridge

Management System (BMS). Artificial Intelligence (AI)-based bridge deterioration

model has recently been developed to minimise uncertainties in predicting long-term

performance of bridge structural elements. This model contains two components: (1)

using Neural Network-based Backward Prediction Model (BPM) to generate

unavailable historical condition ratings; and (2) using Time Delay Neural Network

(TDNN) to perform long-term performance prediction of bridge structural elements.

However new problems have emerged in the process of TDNN prediction. In this

study, the BPM-generated condition ratings are used together with the actual overall

condition ratings. The incompatibility between the two sets of data produces unreliable

prediction outcomes during the TDNN process. This research therefore aims to

introduce a new data processing procedure for BPM outcomes, by removing

meaningless condition ratings that cause poor training outcomes for long-term

prediction using TDNN. Consequently, the outcome of this study can improve

accuracy of the current AI-based bridge deterioration model.
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Bridge Deterioration is a stochastic process and the

causes of deteriorations are due to diverse explanatory

variables including “non-bridge factors” such as traffic

intensity, environmental factors, climates etc (Mauch and

Madanat 2001; Madanat and Ibrahim 1995). Collection

of such variables is not included in current bridge

inspection routines. Because of this and with only limited

bridge condition rating records, it is very difficult to use

typical stochastic-based deterioration models to

accurately predict future condition ratings. This limitation

has been recognised internationally and it is a challenging

problem that has not yet been addressed (Agrawal et al.

2006; DeStefano and Grivas 1998; Madanat et al. 1997;

Morcous et al. 2000). A deterioration model is the most

critical component of a BMS. The deterioration rate is

*Corresponding author. Email address: j.lee@griffith.edu.au; Fax: +61 7 5552 8065; Tel: +61 7 5552 8349.



calculated based on historical condition ratings obtained

from the structural element-level bridge inspections

(Godar and Vassie 1999); it is used to provide

information about future bridge deficiencies. Although

most bridge authorities have previously conducted

inspection and maintenance tasks, these past inspection

records are incompatible with what are required by a

typical BMS as input. Such incompatibility is a major

cause for the deficiency of the current BMS outcomes.

Because of this sheer lack of usable inspection records i.e.

insufficient historical condition ratings, the outcomes of

all current BMSs which incorporate a deterioration model

of one type or another are inadequate and unreliable (Lee

et al. 2008). For example, the China Bridge Management

System (CBMS) has shown, in its early stage of

operation, that the reliability of BMS outcomes remains

questionable (Yan and Shao 2008). Any BMS should

provide effective evaluation and prediction of future

bridge performance to aid optimum MR&R expenditure

decisions. Due to the lack of historical inspection data and

the weakness of using the weighted overall bridge

condition rating method, subjective and qualitative

analyses are therefore required for rating, sorting, and

planning of future bridge needs. Moreover, the essential

deterioration curves, statistic assessment and optimisation

techniques are not included in the current CBMS. In

other words, the CBMS currently functions more like a

Bridge Information System (BIS). This is not the only

issue for China. Due to the lack of historical condition

rating information, many of bridge authorities worldwide

have similar problems in using BMS for accurate and

reliable prediction of long-term bridge performance and

budget planning.

Further limitation with the current deterioration

model is related to the Overall Condition Rating (OCR)

methodology used in most existing bridge management

technologies. At present, the condition rating

information is collected via a quantitative bridge

inspection procedure; it is then converted into OCR in a

subjective manner. The conditions of bridge elements

collected using the element-level bridge inspection

process, are expressed quantitatively via the

conventional “grading” system, i.e. the health index or

the four condition states (CSs 1 to 4). The overall

condition of one or more element types of a bridge is

calculated with the aid of a weighted average condition

state (CS) numbering system. Thus the OCR is

incapable of capturing the condition status of individual

structural members (i.e. individual beams, piers etc), be

it at CS1 (i.e. condition as new or “good”), CS2 (“fair”),

CS3 (“poor”) or the perilous CS4 (“very poor”). This is

a key drawback because bridge collapse usually occurs

as a result of the failure of single member(s). In view of

this, each of the four CSs for individual members needs

to be evaluated in order to reduce the risks of total

bridge failure. A further drawback with this stepwise

“grading” system is that there are only four CSs with

graduation of 1/4 or 25%. Such a step is too large to be

used effectively in deterioration modelling. For

example, for a CS2 rating the numerical weighting is

62.5% which is the average of 75 and 50%, whereas in

reality the condition of the member can be anywhere

between “as new” and “defective”. This indeterminacy

seriously increases the degree of uncertainty with time

in predicting long-term bridge element performance.

Note also that it is too expensive to change the current

inspection method, which has been used for many years

and already produced massive amounts of historical

condition rating records. Any change to the inspection

method will also create data-incompatibility issues.

In order to address these problems, a study has been

conducted recently in an attempt to generate unavailable

bridge condition ratings (Lee at el. 2008). This is

referred to as the Artificial Intelligence (AI)-based

Backward Prediction Model (BPM), which provides

unknown historical bridge deterioration patterns to assist

in predicting reliable long-term bridge deteriorations.

Comparisons with typical bridge deterioration models

have also been conducted demonstrating that the

prediction errors decrease when the amount of input data

increases (Son et al. 2009). This provides further

confirmation for the effectiveness of the BPM. In

additional to the above, a study has also been conducted

using AI-based bridge deterioration modelling

technique incorporating the BPM to improve accuracy

of long-term prediction (Lee et al. 2008; Son et al.

2010). However, a fundamental shortcoming is

discovered in predicting long-term performance of

bridge elements due to the use of weighted overall

condition rating method. This causes mismatch with the

BPM-generated condition ratings which in turn leads to

inaccurate long-term predictions. This paper is thus

aimed at developing a new analysis process to the

existing BPM-based deterioration method thereby

minimising the abovementioned problem.

2. OUTLINE OF THE STUDY
The BPM methodology in conjunction with the Time

Delay Neural Networks (TDNNs) technique has been

employed to overcome the fundamental shortcomings

mentioned above (Son et al. 2010). A two-stage

procedure for the proposed AI-based deterioration model

is presented in Figure 1. Also detailed in the figure are

indications of the time periods: available condition

ratings (tp − tpn); BPM inputs (t0, tp − tpn); BPM outputs

(t1 − tp−1); BPM and TDNN validation using BPM
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outputs (t1 − tp−1); and TDNN long-term prediction 

(tf1 − tfn) using condition ratings (t0 − tpn). Note that t0
refers to the year of construction completion and its

condition rating is assumed to be excellent in this study.

In Stage 1, to generate unavailable historical

condition rating (t1 − tp−1), an Artificial Neural Network

(ANN)-based BPM is used to establish a correlation

between the existing condition rating datasets (tp − tpn)

and the corresponding years’ non-bridge factors. The

correlations established are then applied to the non-

bridge factors (t1 − tp−1) to generate (backward

prediction) the missing bridge condition ratings (t1 − tp−1).

Therefore, the non-bridge factors, in combination with

the ANN technique, can reproduce the historical

deterioration trends. The BPM-generated condition

ratings for each year contains 66 spectrum rating

numbers per CS, which is a combination of learning

rates (lr) (0.0−0.5 @ 0.1 increment resulting 6 lr) and

momentum coefficients (mc) (0.0−1.0 @ 0.1 increment

resulting 11 mc) in the Neural Network configurations.

Note that “mc” is a training parameter that controls how

much momentum is used during training session in

neural networks. “lr” is also a training parameter and

controls the size of weight and bias changes (Yu and Liu

2002). The combination of “mc” and “lr”, i.e. the total

66 cases in this study represents the total quantity of a

given bridge element. For example, if the total quantity

of a given bridge element is 100 m2 in area, then each

combination of “mc” and “lr” represents 1.52 m2 (i.e.

100/66). The cross-validation is utilised to confirm the

reliability of the BPM results. The BPM produces

forward prediction (tp − tpn) using BPM-generated

outcomes (t1 − tp−1) only as input values. The results of

the forward predictions are then compared with the

actual BMS condition ratings (tp − tpn). Once validated,

the BPM backward prediction (t1 − tp−1) together with its

forward prediction (tp − tpn) are eligible to be used as

input values for long-term predictions to be carried out

in Stage 2.

However when the BPM backward prediction 

(t1 − tp−1) and its forward prediction (tp − tpn) are used

together as TDNN input, some of the BPM predicted

condition ratings are found to be slightly higher than

those of the preceding years. Bridge deterioration is a

stochastic process and may progress continuously,

gradually and slowly (Mauch and Madanat 2001). Thus,

the condition rating should not be improved if no

MR&R, i.e. preservation, is undertaken. In other words,

this study considers “Do-nothing” – no maintenance

effects in long-term prediction. The higher predicted

condition ratings cause confusion during the TDNN

training session which in turn can yield less-accurate

predictions during TDNN testing. To minimise this

problem, all BPM-generated condition ratings are

required to undergo a filtering process for further

improvement of long-term prediction quality. This

process is a new addition to the originally developed AI-

based deterioration model. The filtering process follows

a simple criterion, i.e. Condition Rating(year n−1) ≥
Condition Rating(year n).

In Stage 2, the outcomes of filtered data (t1 − tpn)

from Stage 1 and assumed condition rating of the initial

year (t0) are used as TDNN input to predict long-term

bridge element performance. The input data is converted

to time sequences for time series prediction in the

TDNN. The TDNN provides only one-step ahead

prediction at a time (one cycle), i.e. 1-year interval in the

actual time domain. The result of the first one-step-

ahead prediction is added onto the original TDNN input

(t0 − tpn). This indicates that the number of inputs to the

TDNN increases in the second cycle of the one-step-

ahead prediction. Iterations of the above-described

process are required until prediction up to year tfn is

completed. The number of yearly prediction by TDNN

is also 66, which is in an identical form as the BPM

outcomes obtained in Stage 1. Cross-validation is also

required to evaluate prediction accuracy of the TDNN

outcomes. This is done by comparing the results of

TDNN predictions (tp − tpn) to the known or “actual”

BMS condition ratings (tp − tpn). All TDNN outcomes

are considered acceptable if the comparisons are within

the same Condition State of the original inspection

records. It should be noted that the final results of the

TDNN, upon calibration, are also in the same form as

the bridge element-level inspection.

3. IMPROVEMENT OF BPM-BASED BRIDGE
DETERIORATION MODEL

This study is conducted using sample bridge condition

rating datasets (i.e. Reinforced Concrete Pier Cap)

provided by the Maryland Department of Transport

(DoT), USA. Based on the approximate bridge locations

provided by the Maryland DoT, non-bridge factors

including 4 factors related to the number of vehicles, 2 to

the population growth and 15 to climate have been

obtained from the Federal Highway Administration, U.S.
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Figure 1. The proposed AI-based bridge deterioration model



Census Bureau, and the U.S. Department of Commerce

National Oceanic and Atmospheric Administration (Lee

et al. 2008).

Figure 2 describes the timeframe of input and output

for the proposed deterioration model. Only three sets of

actual condition rating records (from years 1996 to 2000

with a 2-year increment) are available for both BPM and

TDNN. The timeframe shows: (a) available condition

ratings; (b) BPM inputs; (c) BPM-generated historical

condition ratings; (d) BPM validation inputs; (e) BPM

validation outputs; (f) TDNN validation inputs; 

(g) TDNN validation outputs; (h) TDNN inputs; and (i)

TDNN outputs for long-term prediction of bridge

elements. Detailed in the following sub-sections are the

study outcomes for Stages 1 and 2.

3.1. Stage 1: Backward Prediction Model (BPM)
BMS condition rating records obtained from the

Maryland DoT is related to a superstructure element -

Reinforced Concrete Pier Cap (Element #234 on Bridge

#0301xxxx1). The actual BMS condition rating inputs

are collected to periodically update the BMS database.

The Condition States (CSs) of BMS condition ratings is

5 grade condition states (CSs) and scaled between CS1

(excellent) and 5 (fail) for the bridge element. The

original condition rating information is detailed in

Table 1.

The specifications for the inputs, outputs and

functions of the BPM are detailed in Table 2. The input

layer may have such variables as the number of

vehicles, population growth and climatic conditions

and more.

3.1.1. Generating historical condition ratings
The average quantity of each CS between 1996 and

2000 is about 80%, 14% and 6% of the total element

quantities in CS1, CS2 and CS3, respectively. Figure 3

demonstrates that the BPM generates historical

condition ratings from 1967 to 1995 (i.e. 29 years) in

three different proportions of the element quantity using

the existing condition ratings (1996 to 2000, i.e. 5 years)

together with the assumed condition rating (CS1-

Excellent) at initial year (t0, i.e. 1966). Note that in

Figure 3 and subsequent similar figures (i.e. Figures 4, 6

and 7) where prediction results are presented, the

number of outcomes in each year is 66 which is the

combined number of learning rate (lr: 0.0−0.5) and

momentum coefficient (mc: 0.0−1.0) in the neural

network configuration.

It is noted that the ratio of period of missing/available

condition ratings = 29/34 and the ratio of period of

available condition ratings/entire period of bridge life =

5/34. This is equivalent to 85.3% of BPM generated

missing years’ condition ratings using only 14.7% of the

available condition ratings during the entire period of

bridge life.

3.1.2. Cross validation of BPM-generated
condition ratings

To validate the BPM outcomes, only generated

historical condition ratings (years 1967 to 1995) are

used as input for forward-prediction of the present years

(years 1996 to 2000). Figure 4 shows prediction results

(years 1996 to 2000) for three different proportions of

the element quantity, i.e. 80%, 16% and 4% of total

element quantity. Note that only 3 years’ condition

ratings (years 1996, 1998 and 2000) can be used to
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Table 1. Raw data of actual condition ratings (Element #234 on Bridge #0301xxxx1)

Quantity (Each, %)

Year of inspection Total CS1 CS2 CS3 CS4 CS5

1996 350 (100) 280 (80) 50 (14) 20 (6) 0 0

1998 350 (100) 280 (80) 50 (14) 20 (6) 0 0

2000 350 (100) 280 (80) 50 (14) 20 (6) 0 0

Average (%) 100 80 14 6 0 0

Time (t)

66 10

1001

66

67 95

96 00

96 00

96 00

96 00

00

95

95

67

66

66

(a) Available condition ratings

(b) BPM inputs

(c) BPM outputs

(d) BPM validation inputs

(e) BPM validation outputs

(f) TDNN validation inputs

(g) TDNN validation outputs

(h) TDNN inputs

(i) TDNN outputs

Figure 2. Timeframe of testing the proposed deterioration model

(Element #234 in Bridge #0301xxxx1)



conduct cross-validation. In this study, the maximum

prediction error allowance is defined as ±10%. This is

half magnitude of a Condition State for a 5 CS-scale.

In Figure 4(c), the predicted minimum condition

rating in year 2000 is 35.8%. This value, compared to

the lower bound of CS3 (40% to 60%), results in a 4.2%

prediction error (CS3min - Predicted condition rating =

40% to 35.8%). This is within the error allowance.

Therefore, cross-validation of BPM-generated condition

rating is considered satisfactory.

Upon calibration, the BPM-generated condition

ratings (i.e. in an identical form as inspection records)

are then directly compared to the element quantity with

the existing condition information. The prediction error

refers to the difference between the BPM-generated

condition ratings and the actual element-level condition

ratings. If the predictions are slightly over/under-

estimated for elements in CS1, 2 and 3, the failure risks

are minimal because major maintenance and repair

work is not required in high condition states. On the

other hand, if the predictions are under-estimated for

elements in CS4 and 5, they are considered

unsatisfactory and unsafe.

Table 3 shows the prediction errors for all five CSs.

The total yearly prediction errors are 0.58% (about 2 out

of 350 total quantities), 0.58% (about 2 out of 350 total

quantities), and 4.62% (about 16 out of 350 total

quantities) in years 1996, 1998 and 2000 respectively.

Some elements in CS2 and 3 are slightly over/under-

estimated during this period. However, no elements in

CS4 and 5 are under-estimated in this cross-validation.

This suggests that the BPM-generated historical

condition ratings can be used with confidence as input

data in Stage 2.

As mentioned earlier in Section 2, some of the BPM

predicted condition ratings are found to be slightly

higher than those of the preceding years. This does not
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Table 2. Components of the BPM

Training Algorithm Back Propagation Algorithm

Transfer Function Log-sigmoid Function

Inputs Traffic volume (4 factors), 

Population growth 

(2 factors) and Climates 

(15 factors)

Total number of input neurons 21@each year

Hidden layers 2 (15 neurons in 1st layer

and 4 neurons in 2nd layer)

Output Bridge Condition Ratings 

(1 output@each year)

Total number of output neurons 1@each year

Scale of learning rate (lr) 0.0 – 0.5 in 0.1 steps  

(5 cases)

Scale of Momentum coefficient (mc) 0.0 – 1.0 in 0.1 steps  

(11 cases)

Total number of cases generated 66 (combination of lr and

mc)@each year
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Figure 3. BPM results



match with the absence of MR&R activities. The total

number of yearly prediction by TDNN is 198, as a result

of 66 cases for each of the three proportions (80%, 14%,

6% of total element quantity). It is observed that 

88 cases out of the total 198 cases have their condition

ratings predicted unrealistically higher. The jumps in
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Table 3. Prediction errors of the BPM using forward comparisons (Bridge #0301xxxx1)

Element quantity (%)

Year CS1 CS2 CS3 CS4 CS5 Total

1996 A 80.00 14.29 5.71 0.00 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 0.29 0.29 0.00 0.00 0.58

1998 A 80.00 14.29 5.71 0.00 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 0.29 0.29 0.00 0.00 0.58

2000 A 80.00 11.69 7.79 0.52 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 2.31 1.79 0.52 0.00 4.62

A:Results, B: Existing records, C: Difference of A and B

Figure 4. BPM results for cross-validation (1996, 1998 and 2000)



condition ratings in three proportions are plotted in

Figure 5, where the maximum errors are respectively

0.61%, 3.26%, 1.14% in 80%, 14%, 6% of the total

element quantity. The corresponding average errors are

0.41%, 1.49%, 0.69%. Through a data filtering process,

the BPM-generated condition ratings satisfying the
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Case 3: ir 0, mc 0.2

Case 3: ir 0, mc 0.2
Case 6: ir 0, mc 0.5
Case 12: ir 0.1, mc 0
Case 16: ir 0.1, mc 0.4
Case 21: ir 0.1, mc 0.9
Case 28: ir 0.2, mc 0.5
Case 33: ir 0.2, mc 0.1
Case 42: ir 0.3, mc 0.8
Case 47: ir 0.4, mc 0.2
Case 50: ir 0.4, mc 0.5
Case 53: ir 0.4, mc 0.8
Case 58: ir 0.5, mc 0.2 Case 61: ir 0.5, mc 0.5

Case 4: ir 0, mc 0.3
Case 8: ir 0, mc 0.7
Case 13: ir 0.1, mc 0.1
Case 17: ir 0.1, mc 0.5
Case 22: ir 0.1, mc 1
Case 29: ir 0.2, mc 0.6
Case 37: ir 0.3, mc 0.3
Case 43: ir 0.3, mc 0.9
Case 48: ir 0.4, mc 0.3
Case 51: ir 0.4, mc 0.6
Case 56: ir 0.5, mc 0
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Case 15: ir 0.1, mc 0.3
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Figure 5. Data filtering on the BPM-generated condition ratings



following criteria, Condition Rating(year n−1) ≥ Condition

Rating(year n), should be removed and replaced by the

identical condition rating of preceding year

3.2. Stage 2: Time Delay Neural Networks
(TDNNs)

Before performing long-term prediction for years

2001–2010, the TDNN outputs are required to be

validated. A short-term prediction for years 1996 to 2000

is considered for cross-validation to measure prediction

accuracy of the proposed deterioration model.

3.2.1. A short-term prediction for
cross–validation

The BPM-generated historical condition ratings (years

1967 to 1995) together with the assumed condition rating

at the year of construction completion (year 1966) are

used as TDNN inputs for the short-term prediction (for

years 1996 to 2000). One-step-ahead TDNN prediction

is conducted up until year 2000. The outcomes (years

1996 to 2000) of TDNN are subsequently compared with

the actual condition rating records (years 1996, 1998,

2000) for further confirmation of BPM-generated data.

The TDNN short-term prediction, as cross-validation, is

presented in Figure 6. It is found in Figure 6(c) that the

minimum condition rating predicted for CS3 in year

2000 is 38.75%. When compared to the lower bound of

CS3 (40% to 60%), a 1.25% (CS3min - predicted

condition rating = 40% to 38.75%) prediction error is

produced which is within the error allowance (± 10%).

Therefore, cross-validation for TDNN short-term

prediction using BPM-generated condition ratings is also

considered satisfactory.

A post-calibration process is also required to

convert the generated condition ratings to element

quantities thereby enabling comparison with the actual
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element quantities. These are presented in Table 4. It

can be seen that differences in element quantities exist

only in CS3 and 4 in year 2000. CS4 is over-predicted

by 0.91% (i.e. about 3 out of 350 total element

quantity). This is because CS3 in the same year is

under-predicted by 5.09%. However, no elements in

CS4 and 5 are under-estimated in this cross-validation.

This means that the all BPM-generated historical data

can be used as input for the TDNN long-term

prediction.

3.2.2. TDNN long-term prediction
Once validated, all historical condition ratings, i.e.

assumed condition rating at year of construction

completion (year 1966, together with the BPM-

generated missing condition ratings (years 1967 to

2000), are used as TDNN inputs. The result of the first

one-step-ahead prediction (i.e. year 2001) is added on to

the original TDNN input (years 1967 to 2000).

Iterations of this one-step-ahead prediction process are

continued until year 2010 for a 10-year long-term

prediction. Figure 7 shows the results of long-term

prediction of condition ratings (years 2001 to 2010) for

bridge element #234: Figure 7(a) 80% of total element

quantities; Figure 7(b) 14% of total element quantities;

Figure 7(c) 6% of total element quantities. These

prediction results have assumed no maintenance effect.

Figure 8 shows a summary of the predicted condition

states in quantity form and their annual overall condition

ratings for the 10-year long-term performance (years

2001 to 2010) using yearly BPM-generated condition

ratings (years 1967 to 2000). The advantage of the

proposed deterioration model is that it can provide

quantity of each CS thereby overcoming the shortcomings

of OCR which ignores critical failure risks in small

number of bridge elements with low Condition States

(CSs).

4. DISCUSSION AND SUMMARY
The previously developed AI-based bridge deterioration

modelling technique incorporating the Backward

Prediction Model (BPM) (Son et al. 2010) has proven to

be able to improve accuracy of long-term prediction. The

current model, however, is computationally less efficient

due to the time consuming Neural Network training

process, which generates a huge amount of data. The

BPM-generated condition ratings for each year contain

66 spectra of rating numbers per CS, which is a

combination of the learning rates (lr) (i.e. lr: 0.0 to 0.5 @

0.1 increment, resulting in 6 lr), and momentum

coefficients (mc) (mc:0.0 to 1.0 @ 0.1 increment

resulting in 11 mc) in the Neural Network configurations.

The number 66 (i.e. 6x11) applies to given element type.

The 66 BPM outcomes per CS per year create a huge

number of combined scenarios in long-term prediction

stage; for four CSs in n years it gives (66 × 4)n. As the

initial settings prior to Neural Network training are a

result of a random data process, many of the combined

scenarios are less meaningful which need to be filtered

out to further increase prediction accuracy and efficiency.

To achieve this ultimate goal, this study presents a data

filtering process as a first step, by which the BPM-

generated condition ratings can provide logical

information for reliable long-term prediction of bridge

elements by TDNN. The TDNN is one of the sensitive

and reliable dynamic analysis techniques for signal

processes and speech recognitions, because it has a strong

ability to detect patterns of dynamic input data. However,

irregular noise pattern(s) or illogical pattern(s) leads poor

training results.

The first stage of the AI-based deterioration model is

to generate unavailable condition ratings. Based on 

3 sets of available condition ratings (or 14.7% of the

total period), the BPM is able to generate 29 missing

condition ratings (or 85.3% of the total period) when
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Table 4. Comparison of results

Element quantity (%)

Year CS1 CS2 CS3 CS4 CS5 Total

1996 A 80.00 14.00 6.00 0.00 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 0.00 0.00 0.00 0.00 0.00

1998 A 80.00 14.00 6.00 0.00 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 0.00 0.00 0.00 0.00 0.00

2000 A 80.00 14.00 5.09 0.91 0.00 100

B 80.00 14.00 6.00 0.00 0.00 100

C 0.00 0.00 0.91 0.91 0.00 0.91

A:Results, B: Existing records, C: Difference of A and B
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proper inspection records were missing. The prediction

error of the condition rating in year 2000 is 4.2%, which

is within the error allowance (± 10%). The maximum

total yearly prediction error is found to be 4.62% (about

16 out of 350 total element quantities) in year 2000.

This stage also involves data filtering process on all

BPM-generated condition rating outcomes. The

illogically predicted condition ratings are filtered out

which is equivalent to 44% of the predicted data (i.e. 88

cases out of 198 cases). The resulting maximum and

average maximum errors are 3.26% and 1.49%,

respectively.

During the second stage, long-term prediction of

bridge element condition ratings is performed using

TDNN technique. In this study, the TDNN process

considers “no maintenance” effects only. A short-term

prediction for cross-validation is performed to re-

confirm the prediction accuracy of BPM-generated

missing condition ratings and the reliability of TDNN.

The results of short-term prediction (years 1996 to

2000) are compared with the existing condition ratings

for the same time period (years 1996 to 2000). Some

results are over-estimated by 1.25% in CS3 in year

2000. However, this prediction error is within the error

allowance. Therefore, it can be ascertained that all

BPM-generated condition ratings can be used as input

for TDNN long-term prediction.

Upon validation, full historical condition ratings

including assumed condition rating at year of

construction completion (year 1966), BPM-generated

historical condition ratings (years 1967 to 1995), and the

existing condition ratings (years 1996 to 2000) can be

used for TDNN long-term prediction (10 years in this

study). As seen in Figure 8, the outcomes of TDNN

predictions are in the same form as quantitative

condition rating inspections. This suggests that the

predictions are more descriptive than the typical OCR

method in terms of elements quantities in each CS.

5. CONCLUSION
Recognising the historical patterns for aging bridges can

be a problem when using commonly available time

series prediction methods. This is therefore a

fundamental benefit of using AI-based BPM method for

long-term bridge performance prediction. As results

demonstrated, the predicted condition ratings can also

be expressed in the same form as the actual inspection

records. This enables prediction of element quantities

for each bridge element. The proposed AI-based

deterioration model takes into account critical failure

risks in small number of bridge elements in low CSs.

This implies that the risk, due to the limitation of the

OCR method, can be minimised in long-term

predictions. To this end, the present study has

established the methodology for reliable long-term

prediction of condition ratings of bridge elements using

only limited sample data.

Despite the advancement of the current AI-based

deterioration model, only short-term bridge element

condition ratings are found to be reliably predicted. The

longer-term predictions are practically unreasonable, i.e.

the deterioration rate increases rapidly, due to some

illogically generated condition ratings by the BPM. To

overcome this, data filtering process is added on to the

current AI-based deterioration model. Higher than

preceding year’s condition rating values in the

generated dataset are removed and replaced by 

the identical condition rating of the preceding year. 

The filtering process has helped further improvement of

the prediction accuracy. Based on the outcome of the

present study, further case studies should be carried out

to confirm the methodology and to improve time

efficiency in typical ANN training process. Further

work should also consider the maintenance effects in

predicting long-term bridge element performance.

Nevertheless, the outcome of the present study is very

useful for further development of a reliable bridge

deterioration model for BMSs.
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