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Abstract. In this paper we propose a pipeline for accurate 3D reconstruction

from multiple images that deals with some of the possible sources of inaccuracy

present in the input data. Namely, we address the problem of inaccurate camera

calibration by including a method [1] adjusting the camera parameters in a global

structure-and-motion problem which is solved with a depth map representation

that is suitable to large scenes.

Secondly, we take the triangular mesh and calibration improved by the global

method in the first phase to refine the surface both geometrically and radiomet-

rically. Here we propose surface energy which combines photo consistency with

contour matching and minimize it with a gradient method. Our main contribution

lies in effective computation of the gradient that naturally balances weight be-

tween regularizing and data terms by employing scale space approach to find the

correct local minimum. The results are demonstrated on standard high-resolution

datasets and a complex outdoor scene.

1 Introduction

The development of methods for 3D reconstruction from multiple images has led to

a number of successful methods, belonging to the group of multi-view stereo (MVS)

algorithms [2–5]. Despite the effort and availability of high resolution images, their per-

formance is still not satisfying when we compare them to the laser range measurement

systems [6]. The fact that high resolution images can be easily obtained by consumer

cameras or downloaded from the web is motivation for improving the results of MVS

algorithms, also when the time and hardware costs of range scanning are considered.

Traditionally, evaluation is performed in the terms of completeness and accuracy [7].

When comparing these two criteria, completeness is more related to models that help re-

solve ambiguities present in stereo matching. On the other hand, accuracy relates more

to the chosen representation and an ability to handle deviations of the input data from

the model. Keeping in mind that these two views still share a wide base, we will focus

on the second one in this paper, and propose a pipeline to deal with some of the possible

sources of inaccuracy in MVS.



2 Mesh refinement pipeline

Our idea is first to use a global method [1] to improve calibration and possibly to obtain

inaccurate estimate of the surface, represented as a set of depth maps, which is fol-

lowed by change of representation to mesh that allows a local approach to variational

correction of vertices.

The camera parameters originate typically from sparse correspondences [8] and can

be further improved with dense data by one of the methods [2, 1]. Both methods demon-

strate that camera calibration update is easily tractable with image based (depth maps

or patches) representations, while other are not suitable for this purpose, i.e. with volu-

metric or mesh representations the update would be difficult.

While the depth map representation in image space is useful for large scenes and

natural to the input data, it has limits for modeling arbitrary surfaces as it is not intrinsic

to them. A change of representation is thus required for further improvement of the

surface accuracy. The global method [1] provides us with a good initial estimate of the

surface, represented by a discrete triangular mesh, and a refined camera calibration. We

choose this mesh as a suitable discrete representation that is intrinsic to the surface,

and denote it as a set of vertices Xi ∈ R
3, i = 1, . . . , nX and triangle indices Tj ∈

{1, . . . ,m}3, j = 1, . . . , nT .

For the purpose of deriving our method, we will start with continuous definition, and

later discretize the results. In this task, our goal will be to find the estimate of surface S

by the minimization of a surface energy Eφ:

Eφ(S) =

∫

S

φ(X)dA, (1)

where φ(X) is a photo-consistency measure and dA is surface element. Since we as-

sume a good initial estimate of the surface S, we can resort in our method to implicit

regularization of the surface based on the minimal surface area.

The primary goal in multi-view reconstruction is to find a surface with photo con-

sistent projections to multiple images. Traditionally, MVS algorithms [9] measure the

photo consistency of a given surface point with views observing it from normal di-

rection, or choosing views close to it. This comes from the fact that deviation from

a Lambertian model becomes critical when observing surface under large angle with

respect to the surface normal. Additionally, we can also exploit the information from

views observing the surface from tangential direction, what leads to contour matching.

In the following sections we will combine these two sources to construct φ and next

propose a method for its minimization.

2.1 Photo-consistency measure

We define a photo-consistency function φI for a given world point X and a set of images

Ii, i = 1, . . . , N in the following way:

φI(X) =
∑

i,j∈V (X), i 6=j

2‖Ii(πi(X)) − Ij(πj(X))‖2

σ2
i (πi(X)) + σ2

j (πj(X))
(2)



where V (X) is a set of images in which point X is visible, and πi(X) ≃ PiX is

perspective projection function (Pi is a camera matrix). The normalizing factors σi,j

are independently pre-computed variances of image functions Ii,j in visible regions

and they estimate expected measurement error assuming a Poisson distribution of the

image values. They allow the range of the measuring function to be approximated by

φ ∈ 〈0, 1 + ǫ〉 , ǫ ≪ 1. Our resulting measure is thus a normalized sum of squared

differences (NSSD). As pointed out in [3], we avoid the use of normalized cross corre-

lation (NCC), which introduces additional ambiguities.

The traditional Lambertian assumption allows us to use simple difference of pixel

intensities, unfortunately this model is often violated, for instance, the exposure pa-

rameters are often different in available input images. Since modeling of reflectance

properties is complex, i.e. with radiance tensors [10], we will limit ourselves to inten-

sity offset correction. We will thus attempt to find the ‘true’ offset-corrected images

I∗i = Ii − Ci which minimize the total error (2) by choosing the offset Ci to be the

mean radiance error of the surface visible in camera i:

Ci =
1

Ni

Ni
∑

j | i∈V (Xj)

(

Ii(πi(Xj)) − Ī(Xj)
)

, (3)

where Ī(X) is the mean of the projections of point X to images where it is visible,

being the best estimate of radiance with respect to square error in (2), and Ni is the

number of vertices X visible in camera i. Now we can replace original images Ii with

corrected I∗i in all our image terms derived from (2).

2.2 Contour matching

The analysis of [11] has first brought the observation that projection of contour gener-

ators on a smooth surface should match local maxima of image gradient ∇I (apparent

contours), which has recently been an inspiration for [12, 13]. Similarly to [13] we

avoid explicit detection of contours in images by a more general formulation, but we

additionally take into account the directions of ∇I and surface normals N projected to

the image. It be formalized by maximization of a contour matching function φC(X):

φC(X) =
1

|Ω(X)|

∑

k∈Ω(X)

∣

∣

∣

〈

∇I
(

πk(X)
)

, ̟k

(

N(X)
)

〉∣

∣

∣
, (4)

where ̟k

(

N(X)
)

= πk(N(X))
‖πk(N(X))‖ is a unit normal projected to the image and 〈·, ·〉 is

a scalar product. We denote here Ω(X) as the set of cameras that see X as a contour

point. Inversely, for a given camera k, we can find contours Ωk on the surface S as

curves, where normal N(X) of each of its visible points is perpendicular to the viewing

direction X − Ck:

Ωk =
{

X |
〈

N(X),X − Ck

〉

= 0, k ∈ V (X)
}

, (5)

where Ck is the camera center. In practice for discrete meshes, we identify contour

vertices by change of the sign of the dot product above and change of visibility. Now



we can partition surface points in the following sets for every camera k: Vk – set of

points visible in camera k, V̄k – set of points not visible in camera k and Ωk – points

generating contour in camera k.

To adapt our method for large datasets, we limit the size of Vk by choosing only

a given number of the best views based on the angle between the normal and view

direction, calculated from the dot product in (5).

We can now put together photometric and contour measures in

EΩ(S) =

∫

S

(

φI(X) − αφC(X)
)

dA =

∫

S

φ(X)dA, (6)

where φI(X) is integrated in cameras k ∈ V (X) and φC(X) in k ∈ Ω(X). Parameter

α allows control of the preference between contour and image matching; we used α = 1
in our experiments.

2.3 Gradient-based approach

According to [14, p. 22], we can obtain a surface flow that minimizes the energy (1) by

∂S

∂t
(X) =

(

H(X)φ(X) − 〈∇φ(X),N〉
)

N, (7)

where H(X) is the mean curvature of surface at point X. The solution S∗ is found by

Euler’s time integration of (7), hence deforming the surface by

Xt+dt = Xt + dt
∂S

∂t
(Xt), (8)

where dt is a chosen time step used in iterations.

The first part of the flow (7) performs implicit regularization, for φ(X) → 1 this

flow corresponds to mean curvature flow, which leads to minimization of the surface

area. In our flow this applies to areas with high photometric error, and on the other hand,

for low error φ(X) → 0 has no effect. This kind of balancing between regularization

and data gets around the shrinking effects of pure surface minimization present in many
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Fig. 1. Photo-consistency φ(X̃(a)) sampled in the normal direction with curve φ′ fitted to it.

Value of a = 0 corresponds to the current vertex position.



variational methods. The second part of (7) moves the surface along normal N(X) in

the direction where E(S) will decrease, which can be calculated by taking the negative

projection of the gradient to the normal movement direction. For regions with missing

data (vertices X0 visible in less than two views), the minimal surface should be the

optimal solution, which is accomplished by setting φ(X0) = 1.

We compute the directional derivative 〈∇φ(X),N〉 by sampling points X̃(a), a ∈
〈−τ, τ〉 along the normal in images I∗ for k ∈ V (X) or in the image gradient ∇I∗ for

k ∈ Ω(X) and computing φ(X̃(a)), like in Figure 1. At this point we discretize the

problem by counting the energy integral (6) only in the vertices Xi of the mesh, so the

photo consistency is evaluated in individual mesh vertices and no image neighborhood

is used. We use this simplification efficiently with mesh resampled so that the mean of

edge projection to images is around 2-3 pixels.

In order to avoid falling to a local minimum, the derivative is computed from a

quadratic polynomial φ′(X̃(a)) = p1a
2+p2a+p3 fit to the samples. In order to perform

with a limited number of samples, the window specified by τ is gradually decreased in

iterations: τt = τ0γ
t−1 where t is iteration, γ = 0.95 is the decrease rate and τ0 is

initial window size determined from average edge sizes around vertex X. This means

that in the first iterations the decision is based on wider support and allows us to find a

global minimum in the initial window. In later iterations the region near this minimum

is sampled more densely, producing a more precise estimate.

This can also be thought of as regularizing data with a scale determined by the win-

dow size. When computing a gradient from the initial large window, the curve cannot

fit the data exactly and is rather flat, resulting in a smaller gradient and more smooth-

ing. The data weight is increased as the window size decreases, when the fitted curve

gets steeper and the gradient size is higher. Window size control is more natural than

explicitly adjusting the second term in (7) with a constant increasing over iterations: if

there is no strong minimum (i.e. in noisy conditions), the gradient will not increase and

the model will not over fit here.

3 Experiments

We have evaluated our method first on four high accuracy datasets from a publicly

available benchmark [6], which allows comparison of the results with a number of

other state-of-the-art methods both in quantitative and qualitative ways, by analyzing

occupancy histograms and diffuse renderings. The original results of the depth map fu-

sion [1] were taken as the input for the mesh refinement procedure. In all cases, the

algorithm was run for 30 iterations, when the window size τ drops to 20% of the initial

size.

The quantitative evaluation in [6] was performed with ground truth acquired with

time-of-flight laser measurement. Evaluated scene is projected to the input cameras and

obtained depths are compared with the ground truth depths in the scale of their accuracy

σ, which is shown in Figure 2 for fountain-P11 dataset. More results are available on the

benchmarking website1. The results of refinement show relative increase of accuracy

1 http://cvlab.epfl.ch/ strecha/multiview/denseMVS.html
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Fig. 2. Histogram from [6], each bin represents percentage of pixels with an error equal to nσ.

Accuracy manifests by higher value in bins n = 1, 2.

from initial depth map fusion output by 7.2% at σ ≤ 2. Use of this score for direct

comparison of accuracy with other methods is difficult, since we are here evaluating

our surface very close to the accuracy limit of the ground truth (σ is the measurement

variance). Also the result depends substantially on the completeness of the surface,

i.e. the currently best scoring method [5], which combines the best of several previous

methods, succeeds in reconstructing the ground plane of fountain-P11, what adds to all

bins of the histogram in Figure 2. Still, they miss the camera calibration adjustment in

their pipeline, and thanks to this feature our method is able to achieve higher accuracy

in certain areas, like in Figure 4 g), h) and i), while the error is distributed evenly over

the surface in Figure 3 c).

However, this quantitative evaluation does not take into account the quality of the

surface. Although estimated surface may be close to the ground truth, the human ob-

server is influenced by regularity or smoothness of the surface, i.e. when resulting 3D

models are used for visualization. For this purpose, comparison of surface normals

would be appropriate, but while it is not included in [6], we will use the renderings

in its place. Figure 4 presents results in this way and shows how the initial result of

depth map fusion in c) was improved by the refinement in d) with flat surfaces are

smoothed and edges emphasized. Here similar results of the best performing state-of-

the-art methods [9, 5] in e) and f) still show notable roughness.

In order to evaluate the effect of individual contributions to the accuracy of the pro-

posed method, we have run it with different modifications on the fountain-P11 dataset.

The results can be compared visually in detail in Figure 5. The importance of the con-

tour matching term is demonstrated on the difference between a) and d), where the

edges become bumpy. It can be also seen from this comparison that the majority of the

edges are recognized as contour generators (φC), including the sunken ornaments, after

they are first ‘discovered’ by image matching (φI ). On the other hand, we can encounter



a) ground truth

b) our result

c) resulting error

d) error of VU [5]

Fig. 3. Fountain-P11 dataset [6] overview diffuse rendering and error maps. Accurate regions are

white, missing reconstruction is red and green area was not evaluated.

a) input image

b) ground truth

c) initial depth map fusion

d) final mesh refinement

e) result of FUR [9]

f) result of VU [5]

g) mesh refinement error

h) error of FUR [9]

i) error of VU [5]

Fig. 4. Fountain-P11 dataset [6] detailed rendering and error maps (white=accurate,

black=inaccurate,red=missing).



a) refinement result

b) no offset correction

c) no window scaling

d) no contour term

Fig. 5. Demonstration of effect of individual contributions on Fountain-P11 dataset [6].

false contour generators detected on noisy initial surface, which can cause the surface to

create phantom edges. This has particularly effect on textured surfaces, and it has to be

avoided by more robust detection of contour generators. Next, without image offset cor-

rection in b), surface in flat regions becomes sinuous while the edges are correct thanks

to the contour information as it is invariant to image offset errors. Finally, when we omit

the iterative scale space approach in c), the surface becomes globally oversmoothed or

eventually overfitted to data depending on the fixed window size.

To demonstrate the possibilities of the method on large scale data, we have used it

to reconstruct the statue Asia, which is a part of the Albert Memorial in London. We

captured a suite of 238 photographs (Figure 6), which consists of several semi-rings,

three monocular from about 2m, 4m and 40m distance and one stereo with non-uniform

(free-hand) vertical baseline from about 8m distance plus some additional images. All

photos have been shot by Canon PowerShot G7 (10 Mpix) with variable focal length and

with image stabilization on, and carefully corrected for radial distortion. The variable

lighting conditions (moving clouds) were compensated by our offset correction (up to

25% of the intensity range). The model reconstructed with depth map fusion [1] shown

in Figure 7 includes intricate features like elephant’s tusks, but some parts of the surface

are only approximated due to missing data (tops and some back parts of the statue). We

performed subsequent refinement in the same way as previous datasets. Since we have

no ground truth data available, the effect of refinement can be demonstrated visually by

introduction of details, like the rug on the elephant’s head in Figure 8 c).



Fig. 6. Asia dataset scene (Albert Memorial, London) with sparse points and some of 238 input

images.

Fig. 7. Results on the Asia dataset. Left: initial model produced with depth map fusion [1]. Right:

replica produced with rapid prototyping from the final model refined by our method.

a) input image b) initial surface c) refined surface

Fig. 8. Demonstration of mesh refinement on the Asia dataset, elephant’s head in detail.



4 Conclusion

We have proposed a method towards increasing accuracy in MVS. Variable 3D surface

representation allows us to achieve efficient camera pose refinement together with sur-

face geometry refinement. Surface contour modeling helps utilize independent sources

of 3D shape information present in the images, while image offset correction compen-

sates for the effect of their exposure and scale-space approach is employed to find the

correct surface within noisy data. In our future work we plan tying the processes of

calibration and refinement more closely together.
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1. Tyleček, R., Šára, R.: Depth Map Fusion with Camera Position Refinement. In: Proc Com-

puter Vision Winter Workshop, Eibiswald, Austria (February 2009) 59–66

2. Furukawa, Y., Ponce, J., Team, W.: Accurate Camera Calibration from Multi-View Stereo

and Bundle Adjustment. In: Proc CVPR. (2008) 8

3. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.: Multi-view stereo for community

photo collections. In: Proc ICCV. (2007)

4. Strecha, C., Fransens, R., Van Gool, L.: Combined Depth and Outlier Estimation in Multi-

View Stereo. In: Proc CVPR. (2006) 2394–2401

5. Vu, H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale multi-view

stereo. In: Proc CVPR. (June 2009)

6. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On Benchmarking

Camera Calibration and Multi-View Stereo for High Resolution Imagery. In: Proc CVPR.

(2008)

7. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A Comparison and Evaluation

of Multi-View Stereo Reconstruction Algorithms. In: Proc CVPR. (2006) 519–528

8. Martinec, D., Pajdla, T.: Robust rotation and translation estimation. In: Proc CVPR. (June

2007)

9. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: Proc CVPR.

(2007)

10. Soatto, S., Yezzi, A.J., Jin, H.: Tales of shape and radiance in multi-view stereo. In: Proc

ICCV. (2003) 974–981

11. Koenderink, J.: What does the occluding contour tell us about solid shape. Perception 13(3)

(1984) 321–30

12. Delaunoy, A., Prados, E., Gargallo, P., Pons, J., Sturm, P.: Minimizing the Multi-view Stereo

Reprojection Error for Triangular Surface Meshes. In: Proc BMVC. (2008)

13. Keriven, R.: A variational framework for shape from contours. Technical report, Ecole

Nationale des Ponts et Chaussees, CERMICS, France (2002)

14. Jin, H.: Variational methods for shape reconstruction in computer vision. PhD thesis, Wash-

ington University, St. Louis, MO, USA (2003)


