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Abstract 
Two canonical transformations are implemented to 

find approximate invariant surfaces for a nonlinear, 
time-periodic Hamiltonian. The first transformation is 
found from the non-perturbative, iterative solution of the 
Hamilton-Jacobi equation. The residual angle depen- 
dence remaining after performing the transformation is 
mostly eliminated by a second, perturbative transforma- 
tion. This refinement can improve the accuracy, or the 
speed, of the invariant surface calculation. The motion of 
a single part.icle in one transverse dimension is studied in 
a storage ring example where strong sextupole magnets 
are the source of the nonlinearity. The refined transfor- 
mation to action-angle variables, and the corresponding 
invariant surface, can attain accuracy similar. to that of 
a good non-perturbative transformation in half the com- 
putation time. 

I. The First, Non-Perturbative 
Canonical Transformation 
We assume that we have solved the Hamilton-Jacobi 

equation iteratively to find an approximate invariant 
torus and the canonical transformation to an approxi- 
mate set of action-angle variables for the full, nonlinear 
Hamiltonian[l] . In this paper, we discuss a refinement 
of this solution. 

We start with the time-periodic Hamiltonian that 
describes the transverse motion of a single charged par- 
ticle in a storage ring with sextupoles, 

where S(s) gives the strength in mm3 and distribution of 
the sextupoles around the ring. We have used the action- 
angle variables of the linear part of the Hamiltonian. The 
arclength around the storage ring s E [0, C] serves as the 
‘time’ variable in the problem. In principle, the method 
for finding the non-perturbative solution is applicable to 
an arbitrary nonlinearity, as long as it is’ time-periodic. 
For single particle motion in storage rings, the dominant 
nonlinearity often comes from sextupole magnets. 

The canonical transformation from the variables 
(Qo,~o)to(%,~) g 1 is enerated by F~(@o, 11, s) = a011 + 
G’(@o, 11, s)~. The three different sets of action-angle 
variables will be discriminated by subscripts. For the 
two different generators G  we use superscripts. The non- 
perturbative, numerical solution of the Hamilton-Jacobi 
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equation described in Reference [l] yields the Fourier co- 
efficients of G’ on a finite mode set. The Fourier series 
is 

G1(Qo, II, S) = c gl(m, 4, s) eimQo . (2) 

The summation is over a finite set of modes indicated by 
MO. 

The numerical solution for G1 serves as a perfectly 
good canonical transformation even if it does not yield 
the action-angle variables for the problem. It is a well- 
defined function of the variables (a~, 11, s), and it is very 
accurately periodic in s. We can implement the canonical 
transformation, allowing for a possible residual angle de- 
pendence, finding the Hamiltonian in the new variables: 

Hl(%,b,S) = - I1 +A(Il,s)+I/1(@1,Il,s) . (3) 
P(s) 

The VI is defined such that its average over the new angle 
is zero. If G’ were a perfect solution of the Hamilton- 
Jacobi equation then the residual angle dependence, VI, 
would be zero. 

The two terms are most easily calculated as inte- 
grals over the original angle variable QO using the trans- 
formation @1 = QO + G~(@o, 11, s) and its Jacobian. We 
group all terms in the Hamiltonian transformation equa- 
tion that might have angular dependence into 

F(Qo, II, s) = G:(Qo, II, s) + 4 
-+v(Qo,Il,s) . (4) 
D(s) 

Then A is the average of F over the new angles; this can 
be written in the original angles, by using the Jacobian, 
as 

411, s) = J 2n d@,o 

0 
-2;;9(~o,Il,s)F(~o,Il,s) . (5) 

whereJ(@o,Tl,s) = l+G~~(@0,1l,s). Inasimilarfash- 
ion, the Fourier coefficients of VI with respect to the new 
angles @1 are calculated as 

vl(w 11, s) = J 2* da0 

0 
yg J(@o, 111 s) x 

e-im(‘o+c:) F(Qo, II, s) . (6) 

The al dependence can be found using the Fourier series 
Vl(ail, 11, s) = CmEMl Vl(m, II, s) eirnal, where Ml is a 
mode set bigger than the original MO. For the second 
perturbative transformation it is the Fourier coefficients 
themselves that are interesting. 
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TABLE 1. The results for refined solutions and their comparison with non-perturbative 
.- 

solutions. 

action I2 with refinement cpu non-perturbative only cpu 
(lo-’ m) MO NRK Ml 6 (sets) MO NRK 6 (sets) 

2.2 31 6--+28 127 1.79.10-2 244 63 14-28 4.10.10-2 468 
2.0 31 6-+20 127 2.09.10-3 177 63 lo-20 3.67.10-3 314 
1.0 31 6-+20 127 5.52.10-4 156 63 10-+20 5.41.10-4 436 
0.1 7 2-12 31 4.98.1o-5 5.3 31 6412 5.o5.1o-5 40.5 

0.01 3 l--+4 31 9.45.10-6 2.0 7 2 1.78.10-4 0.4 

II. The Second, Perturbative ofIi=1z+G;(Q ,I, ) 1 2 s around the ‘best’ constant ac- 

Canonical Transformation tion 12, we find the compact form 

Using the new Hamiltonian (3) with the residual an- 
gle dependence, we can write the Hamilton-Jacobi equa- 
tion that gives the transformation to a new set of vari- 
ables (@z, 12). If the G1 canonical transformation was 

lo(Qo, 12, s> =I2 + G;(@o, 12, s>+ 

det (g) G~(@o + G:, 12, s) . (10) 
1 

an approximate solution to the original Hamilton-Jacobi 
equation then the residual perturbation will be much This is the refined invariant torus. It gives the distortions 

smaller than the original perturbation. It then makes to the linear Courant-Snyder actions under the effects of 

sense to solve the new Hamilton-Jacobi equation with the nonlinearity. 

perturbative techniques. 
The Hamilton-Jacobi equation for the generator 

G2(@1, 4, s) is 

132(12, s) 2~ G:+ 
I2 + G$(%, 12,s) 

as> + 

A(Iz, s)+&A(Iz, s)G; + &(%,I29 s) . (7) 

In Equation (7) we have expanded to first order in the 
presumed small parameters VI and G2. The above equa- 
tion can be solved by using a Fourier series for G2 of 
the same form as Equation (2) with Fourier coefficients 
g2(m, 12, s) and summing over m E Ml. 

The Hamiltonian (3) defines a betatron phase ad- 
vance that is slightly different from the linear phase ad- 
vance. We define the new phase as 

Then the Fourier coefficients of G2(@r, I,, s) can be writ- 
ten as 

g2(m,12, s) = -e-i”p(s){ eimP& _ 1 X 

J CeimP(u)Vl(m, Iz,a)d~ + 
0 

J S,imP(a)Vl(m,12,a)d~} , (9) 
0 

recalling that m E Ml and that I2 is a constant param- 
eter. 

The original action Is can be specified as a func- 
tion of the original angle Qc by chaining through the two 
canonical transformations. After expanding all functions 

III. Numerical Results 
The accuracy of the invariant torus can be estimated 

by finding its deviation from numerically computed tra- 
jectories. The trajectories are computed by a fourth or- 
der symplectic integrator[2] . The deviations of the ac- 
tions as each trajectory crosses the s = 0 point (the point 
at which we are studying the torus) from the correspond- 
ing actions of the torus are found. The normalized devi- 
ation is calculated as 

where superscript T indicates points on the trajectory, 
and where the summation is over the turn number. The 
maximum is over 16 trajectories with different initial con- 
ditions starting on the torus. The 6 parameter measures 
the worst agreement between a trajectory and the torus. 
Notice it is normalized by the distortion of the torus and 
not by the action value itself. 

In Table 1 we compare the refined solution to a good 
non-perturbative solution. We give the mode sets and 
the number of integration steps, NRK, for the fourth or- 
der Runge-Kutta integration used. The final number of 
integration steps plus one is the number of knots used 
for the cubic spline interpolation of the s dependence of 
the Fourier coefficients g1 and g2 in a sextupole. The 
s dependence outside the nonlinear elements is trivial. 
The cubic spline is found using the ‘not-a-knot’ condi- 
tion, and it is used to evaluate the integrals in Equa- 
tion (9). The ‘CPU’ is the computation time to calcu- 
late the solution on the SLAC IBM 3090. The time un- 
der ‘with refinement’ gives the time for finding the poor 
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non-Rqrturbative canonical transformation, for estimat- 
ing ars’, and for completing the perturbative calcula- 
tion. The time under ‘non-perturbative only’ is that for 
calculating just the good non-perturbative solution. 

The numerical results are for the ideal single cell 
of the Berkeley Advanced Light Source (ALS)[3] . The 
largest amplitude in Table 1 corresponds to an approxi- 
mate z offset of 22 mm, and the smallest to 1.5 mm. The 
z tune is Y = 1.18973. There are four 0.20 m long sex- 
tupoles symmetrically placed in the cell with strengths 
of -88.09, 115.615, 115.615, and -88.09 m-‘. 

In Figure 1, we display three representative invariant 
curves. The top curve corresponds to I2 = 2. 10m5 m and 
the bottom to 12 = 10e6 m. On this plot, the difference 
between the original and the refinement to an invariant 
torus is not discernible. If there were no nonlinearity, the 
curves would be flat lines at their respective values of 12. 

10-6 - 
I>,1 ,,I, I aIrI I ISIb - 

0 0.2 0.4 0.6 0.8 1 

Figure 1. Invariant curves shown at s = 0 for the con- 
stant actions 12 = 2. lo-’ m, lo-’ m, and low6 m. The 
refinement is not noticeable on this plot. 

From the first non-perturbative transformation, we 
calculate the function A which defines the nonlinear 
phase advance, P(s) -Q(s), where q(s) = $ du/P(u) is 
the linear phase advance. Notice that it varies only in the 
nonlinear elements. In Figure 2, we show the nonlinear 
part of the phase advance in each of the four sextupoles. 
On the horizontal axis in the plot, 1 to 2 corresponds to 
the first sextupole, 2 to 3 the second, and so on. The 
offset from zero at the end of ‘the last sextupole is 2a 
times the nonlinear tune shift. 

In Figure 2, notice that the shape of the function 
P(s)-@(s), is very similar for the three cases shown even 
though the magnitudes are different. This is typical for 
this accelerator example. The three cases have constant 
actions 12 = ?lO-‘j m to 2 . lob5 m and correspond to the 
invariant curves shown in Figure 1. 
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Figure 2. Nonlinear phase advance in the sextupoles for 
12 = 10m6 m, lo-’ m, and 2.10m5 m. The horizontal axis 
is 1 to 2 for the first sextupole, 2 to 3 for the second and 
so on. The small offset at the end of the last sextupole 
is 27r times the nonlinear tune shift. The linear phase 
advance is q(s) = &’ da/P(s). 

IV. Conclusions 
We found that the second canonical transformation 

used to refine a poor non-perturbative solution gave more 
accurate tori than the poor solution. However the refine- 
ment of very good non-perturbative solutions did not in- 
crease the accuracy of the solutions. From Table 1 we see 
that in most cases the refinement gives tori with similar 
accuracy in about half the computation time. From the 
implementation of the non-perturbative transformation, 
we were able to calculate the nonlinear phase advance in 
the sextupole magnets. The form that these functions 
take seems to depend on only a relatively small number 
of parameters as the constant action I2 is changed. 
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