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Abstract Many algorithms can be implemented most efficiently with imperative
data structures. This paper presents Sepref, a stepwise refinement based tool
chain for the verification of imperative algorithms in Isabelle/HOL.

As a back end we use Imperative HOL, which allows to generate verified imper-
ative code. On top of Imperative HOL, we develop a separation logic framework
with powerful proof tactics. We use this framework to verify basic imperative data
structures and to define a refinement calculus between imperative and functional
programs. We provide a tool to automatically synthesize a concrete imperative
program and a refinement proof from an abstract functional program, selecting
implementations of abstract data types according to a user-provided configuration.
As a front end to describe the abstract programs, we use the Isabelle Refinement
Framework, for which many algorithms have already been formalized. Our tool
chain is complemented by a large selection of verified imperative data structures.

We have used Sepref for several verification projects, resulting in efficient
verified implementations that are competitive with unverified ones in Java or C++.

1 Introduction

Using the Isabelle Refinement Framework (IRF) [19,26], we have verified several
graph and automata algorithms [26,10,20,24], including a fully verified LTL model
checker [12]. The IRF features a stepwise refinement approach [39], where an
abstract algorithm is refined, in possibly many steps, to a concrete implementa-
tion. Organizing the proof into multiple steps reduces its complexity and makes
larger developments manageable in the first place. However, the IRF only allows
refinement to purely functional code, while the most efficient implementations of
many algorithms require imperative features.

In this paper, we extend the IRF to imperative programs. We build on Imperative
HOL [4], which introduces a heap monad in Isabelle/HOL and supports code

Peter Lammich
TU Munich, Boltzmannstr. 3, D-85748 Garching
Tel.: +49-89-289-17326
E-mail: lammich@in.tum.de



2 Peter Lammich

generation for several target platforms (currently OCaml, SML, Haskell, and Scala).
Unfortunately, Imperative HOL has rarely been used for verification projects so
far, mainly due to its limited proof support. We improve on that by developing a
separation logic framework with powerful proof tools that greatly simplify reasoning
about programs in Imperative HOL. (§2) We use this framework to verify basic
algorithms and data structures,(§3) and as a basis of a refinement calculus [2]
from IRF programs to Imperative HOL. Moreover, we implement the Sepref
tool, which automatically generates an Imperative HOL program and a refinement
proof from an IRF program, selecting appropriate implementations for the abstract
data structures based on a configuration provided by the user.(§4) On top of
Sepref, we implement the Imperative Collections Framework, which provides
a library of reusable imperative data structures and convenience tools for data
structure development. (§5) We have successfully used Sepref for numerous
verification projects. The resulting implementations are considerably faster than
previous functional versions, and, in some cases, competitive to unverified imperative
implementations in Java and C++. (§6)

The Sepref tool and the Imperative Collections Framework are available as an
entry in the Archive of Formal Proofs [21]. This entry also contains a user guide
that describes the development cycle featured by Sepref, a reference manual, and
several larger examples.

2 A Separation Logic for Imperative HOL

Imperative HOL provides a heap monad formalized in Isabelle/HOL, as well as a
code generator extension to generate imperative code in several target languages
(currently OCaml, SML, Haskell, and Scala). However, Imperative HOL itself only
comes with minimalistic support for reasoning about programs. In this section, we
report on our development of a separation logic framework for Imperative HOL. A
preliminary version, which did not support frame inference nor other automation,
was formalized by Meis [28]. The current version is available in the Archive of
Formal Proofs [23].

2.1 Basics

We formalize separation logic [34] along the lines of Calcagno et al. [5]. A partial
heap (type pheap) describes the content of a heap at a specific set of addresses.
An assertion (type assn ⊂ (pheap ⇒ bool)) is a predicate on partial heaps that
satisfies a well-formedness condition1. We write h |= P if the partial heap h satisfies
the assertion P .

The assertion true is satisfied by any heap, false is satisfied by no heap, and
emp by the empty heap. A heap consisting of a single cell at address p :: α ref with
value v :: α is described by p 7→r v. Analogously, an array at address p :: α array
holding the values l :: α list is described by p 7→a l. Moreover, the pure assertion
↑ Φ describes the empty heap if Φ :: bool holds, and no heap otherwise. It is used
to embed propositions from HOL into assertions. We lift the standard Boolean

1 For technical reasons, we formalize a partial heap as a full heap with an address range.
Assertions must not depend on heap content outside this address range.
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connectives to assertions and show that they form a Boolean algebra. We also
provide lifted versions of the universal and existential quantifiers. The separation
conjunction P ∗Q is satisfied by heaps that can be split into two disjoint parts,
such that one part satisfies P and the other part satisfies Q. Finally, we define the
entailment P =⇒A Q as ∀h. h |= P =⇒ h |= Q.

Example 1 Singly linked lists are a standard benchmark for separation logic tools.
We first define a node, which contains a value and a next pointer:

datatype α node = Node val: α next: α node ref option

As Imperative HOL does not support null pointers, we use an option type for the
next pointer, where None models the null pointer.

The assertion lseg l p s describes a linked list starting at the node pointed to by
p, ending at the node pointed to by s (exclusive), and holding the data described
by the HOL list l:

fun lseg :: α list ⇒ α node ref option ⇒ α node ref option ⇒ assn where
lseg [] p s = ↑(p=s)
| lseg (x#l) (Some p) s = (∃q. p 7→r Node x q ∗ lseg l q s)
| lseg ( # ) None = false

Then, the assertion os list l p ≡ lseg l p None describes an open singly linked list,
i. e. one where the last element’s next pointer is null.

2.2 Automation

One of the most important proof tools in Isabelle/HOL is the simplifier, which
normalizes a term according to a configurable set of rewrite rules. It also supports
simplifier procedures, which dynamically generate rewrite rules based on the current
(sub)term to be rewritten. We configure the simplifier for handling assertions:
Instantiating the type classes for Boolean algebras and commutative monoids with
assertions already yields a basic simplifier setup. Additionally, we implemented a
simplifier procedure for lists of assertions separated by ∗: Existential quantifiers
are pulled to the front, pure assertions are summarized, and assertions that would
force the same pointer to point to separate locations are rewritten to false.

Example 2 The simplifier rewrites the assertion P ∗ ↑ Φ ∗ (∃p. p 7→r v ∗ ↑ Ψ) to
∃p. P ∗ p 7→r v ∗ ↑ (Φ ∧ Ψ), and the assertion P ∗ ↑ Φ ∗ (∃p. p 7→r v ∗ ↑ Ψ ∗ p 7→r w)
is rewritten to False (as p cannot point to two separate locations at the same time).

2.3 Hoare Triples

Having defined assertions, we are ready to define a separation logic for programs.
Imperative HOL provides a shallow embedding of heap-manipulating programs
into Isabelle/HOL. A program is encoded in a heap-exception monad, i. e. it has
type α Heap = heap ⇒ (α × heap) option. Intuitively, a program takes a heap and
either produces a result of type α and a new heap, or fails.
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We define the Hoare triple 〈P〉 c 〈Q〉 to hold iff for all heaps that satisfy P ,
the program c returns a result x such that the new heap satisfies Q x.2 When
reasoning about garbage collected languages, one has to frequently specify that
an operation may allocate some heap space for internal use. For this purpose, we
define 〈P〉 c 〈Q〉t as a shortcut for 〈P〉 c 〈λx. Q x ∗ true〉.

For Hoare triples, we prove rules for the basic heap operations and monad
combinators, as well as a consequence and a frame rule. Note that the frame
rule, 〈P〉 c 〈Q〉 =⇒ 〈P ∗ F〉 c 〈λx. Q x ∗ F〉, is crucial for modular reasoning in
separation logic. Intuitively, it states that a program does not depend on the
content of the heap that it does not access.

Example 3 We display the Hoare rules for return, bind, and array lookup:

−
〈P 〉 return x 〈λr. P ∗ ↑(r = x)〉

〈P 〉 m 〈R〉 ∀x. 〈R x〉 f x 〈Q〉
〈P 〉 x← m; f x 〈Q〉

i < |xs|
〈a 7→a xs〉 a!i 〈λr. a 7→a xs ∗ ↑(r = xs!i)〉

Note that these rules work in a forward manner, i. e. given a precondition and a
command, they generate a (the strongest) postcondition. After a return, the heap
is not changed, and, additionally, the result is the returned value. For a bind, we
first generate a postcondition R for the first statement, and then a postcondition
for the second statement, given that the argument satisfies R. Finally, for array
lookup, we require the index to be in bounds.

2.3.1 Recursion

We do not provide explicit rules for recursion combinators, but rely on the standard
Isabelle infrastructure, in particular on the partial function package [16]. However,
in Section 4, we will provide rules to refine the recursion combinators of the IRF
to corresponding recursion combinators of the heap monad.

Example 4 The following function implements in-place list reversal for open singly
linked lists (cf. Example 1):

partial function (heap) os reverse aux
:: α os list ⇒ α os list ⇒ α os list Heap

where
os reverse aux q p = (case p of

None ⇒ return q
| Some r ⇒ do {

v ← !r;
r := Node (val v) q;
os reverse aux p (next v) })

definition os reverse p = os reverse aux None p

2 Again, for technical reasons, we additionally check that the program does not modify
addresses outside the heap’s address range, and that it does not deallocate memory.
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2.4 Verification Condition Generator

Given a Hoare triple 〈P 〉 c 〈Q〉, we can use the Hoare rules to compute a postcon-
dition Q′ with 〈P 〉 c 〈Q′〉, and then try to prove Q′ =⇒A Q.

While the rules for the combinators are set up to work with preconditions of any
form, the rules for operations require the heap to contain the operands. Assume we
have an operation c with the rule 〈P ′〉 c 〈Q〉. In order to compute the postcondition
for a precondition P , we have to find a frame assertion F such that P =⇒A P ′ ∗ F .
With the consequence and frame rules, we then get 〈P 〉 c 〈λx. Q x ∗ F 〉.

The problem of finding an assertion F is called frame inference, and is unde-
cidable in general. However, there are heuristics that work well in practice. For a
detailed discussion on automating frame inference in HOL theorem provers we refer
the reader to [38]. We implement a quite simple but effective heuristics: After some
initial simplifications to handle quantifiers and pure predicates, we split P and P ′

into P = P1 ∗ . . . ∗ Pn and P ′ = P ′1 ∗ . . . ∗ P ′m. Then, for every Pi, we find the first
P ′j that can be unified with Pi. If we succeed to match up all Pis, without using
a P ′j twice, we have found a valid frame (F consists of exactly the unused P ′js),
otherwise the heuristic fails and frame inference has to be performed manually.

2.5 All-in-One Method

We combine the verification condition generator, a heuristics to simplify goals of
the form Q′ =⇒A Q, and Isabelle/HOL’s auto tactic into a single proof tactic
named sep auto. This tactic is able to solve many goals involving separation logic
completely automatically. Moreover, if it cannot solve a goal, it returns the proof
state at which it got stuck. This is a valuable tool for proof exploration, as the
stuck state usually hints to missing lemmas. The sep auto tactic allows for very
straightforward and convenient proofs, which are considerably smaller and simpler
than the corresponding proofs carried out with the default rudimentary proof
methods of Imperative HOL.

Example 5 The original Imperative HOL formalization [4] also contains an example
of in-place list reversal (cf. Example 4). The correctness proof there requires about
100 lines of quite involved proof text. Using separation logic and the sep auto tactic,
the proof reduces to a few lines of straightforward proof text:

lemma aux: 〈os list xs p ∗ os list ys q〉 os reverse aux q p 〈os list (rev xs @ ys)〉
proof (induct xs arbitrary: p q ys)

case Nil thus ?case by sep auto
next

case (Cons x xs) show ?case
by (cases p; sep auto heap: cons pre rule[OF Cons.hyps])

qed

corollary 〈os list xs p〉 os reverse p 〈os list (rev xs)〉
unfolding os reverse def using aux[where ys=[]]
by auto



6 Peter Lammich

3 Simple Refinement to Imperative HOL

In the last section, we have reported on our separation logic framework for Impera-
tive HOL and its powerful tools for proof automation. It can be used to verify simple
algorithms (e. g. in-place list reversal). Also algorithms of medium complexity can
be handled, using a lightweight but somewhat limited stepwise refinement approach.
In this section, we first report on our formalization of a union-find data structure
using this approach, and then discuss its limitations.

3.1 Refinement Based Development of a Union-Find Data Structure

Recall that a union-find data structure is used to model equivalence relations, in our
case on an initial segment {0 . . . <N} of the natural numbers. The union-find data
structure is a forest over the nodes {0 . . . <N}. Each tree in the forest represents
an equivalence class, the root node being the unique representative. The compare
operation checks whether two elements are equivalent by comparing the root nodes
of the elements’ trees. The union operation joins the equivalence classes of two
elements by attaching one tree to the root node of the other tree.

We also implemented path compression and the size-based union heuristics,
which guarantee a quasi-constant amortized complexity of the compare operation.
These are omitted here to keep the presentation simple.

A convenient implementation of the union-find data structure is by an array
[a0 . . . aN−1] of natural numbers, such that ai is the parent node of i. Root nodes
simply point to themselves.

In a first step, we model the array as a functional list. Isabelle/HOL’s list
library provides the function |l| to obtain the length of a list l, the function l!i to
obtain the i th element, and the function l[i := x] to obtain a list equal to l, except
that the i th element is replaced by x. We define:

find1 l i = (if l!i = i then i else find1 l (l!i))
invar1 l = ∀i < |l|. find1 dom (l,i) ∧ l!i < |l|
α1 l = {(x,y). x < |l| ∧ y < |l| ∧ find1 l x = find1 l y}
union1 l x y = l[find1 l x := find1 l y]

Here, the partial3 function find1 follows the parent pointers until a root node is
reached. The predicate find1 dom defines the arguments for which find1 is defined
(i. e. terminates). The invariant predicate states that the find1 function must be
defined on all elements, and that all parent pointers must point to valid elements.
The abstraction function α1 maps a list to the corresponding equivalence relation.
Finally, the union1 operation joins two equivalence classes as described above.

Using standard Isabelle reasoning, we show correctness of the union operation:

[[ invar1 l; x < |l|; y < |l| ]]
=⇒ α1 (union1 l x y) = union (α1 l) x y ∧ invar1 (union1 l x y)

where union is the union operation on equivalence relations, and [[P1;. . . ;Pn]] =⇒ Q
is syntactic sugar to summarize multiple premises of an implication.

In a second step, we implement the list by an array and define corresponding
find and union functions in the Imperative HOL monad:

3 The Isabelle/HOL function package [15] allows for convenient definition of such functions.
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partial function (heap) find2 :: nat array ⇒ nat ⇒ nat Heap where
find2 p i = do {

n ← Array.nth p i;
if n=i then return i else find2 p n }

definition union2 a i j = do {
i ← find2 a i; j ← find2 a j;
Array.upd i j a }

The following theorems state the correspondence of these functions to their list-
based counterparts:

[[ invar1 l; i < |l| ]] =⇒ 〈p 7→a l〉 find2 p i 〈λr. p 7→a l ∗ ↑(r = find1 l i)〉
[[ invar1 l; i < |l|; j < |l| ]] =⇒ 〈a 7→a l〉 union2 a i j 〈λr. r 7→a union1 l i j〉

Using the sep auto tactic, they are easily proved with a few lines of proof text.
Finally, we combine the two refinement steps. We define an assertion is uf R a

that states that an array a represents an equivalence relation R:

is uf R a ≡ ∃l. a 7→al ∗ ↑(invar1 l ∧ R = α1 l)

Combining the correctness theorems for union1 and union2 yields a correctness
theorem for the union operation on arrays wrt. equivalence relations:

[[ i ∈ Domain R; j ∈ Domain R ]]
=⇒ 〈is uf R a〉 union2 a i j 〈is uf (union R i j)〉

Again, this theorem is easily shown with the sep auto-tactic.

3.2 Limitations of the Simple Approach

Above, we have presented a refinement technique where an algorithm is first defined
as a plain HOL function on standard HOL data types, and then refined to a
monadic function on heap-based data types. This technique works well for simple
algorithms and data structures. It even allows modularity: a data structure that has
already been proved may be used as building block for more complex algorithms
and data structures. However, in practice, one quickly encounters various problems
for more complex algorithms:

– An implementation often requires some knowledge of the algorithm, in particular
that it implies certain restrictions on the types to be implemented. These
restrictions are usually obvious when proving the abstract algorithm correct.
However, there is no simple way to transport them to the refinement proof where
they are required. Instances of this problem already occur in the union-find
data structure: In order to prove union2 correct, one has to show that the
index of the array update is within bounds. However, this index is the result
of a call to find2. In this particular case, the problem is easily discharged by
showing that find1 only returns valid elements, and using this fact after the
result of find2 has been related to the result of find1. However, in more complex
algorithms, substantial parts of the correctness proof may have to be repeated
to get the properties required for the refinement. This blurs the separation
between abstract and concrete levels, annihilating the positive effects of the
stepwise refinement approach.
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– The abstract formulation of an algorithm is often inherently nondeterministic.
For example, when picking some element from a set, the element which is
actually picked depends on the set’s implementation, and cannot be determined
on the abstract level. This is a common problem when developing algorithms
in HOL, and there exists several workarounds, e. g. imposing a total ordering
on the elements and returning the smallest one. However, it’s not hard to run
into cases where these simple tricks fail, e. g. when computing a path between
two nodes in a graph.

– Many algorithms are naturally presented in an “imperative” style, using loops
instead of recursive functions. An encoding of loops into recursive functions is
possible, but tends to obfuscate the algorithms, and also the proofs, which have
to be converted from invariant proofs to induction proofs.

4 Using the Isabelle Refinement Framework

The Isabelle Refinement Framework (IRF) provides a possible solution to the
limitations sketched in the last section. Programs are described in a nondeterminism
monad, shallowly embedded into Isabelle/HOL. This is a flexible but still lightweight
way to describe nondeterministic algorithms in Isabelle/HOL. Moreover, assertions
can be used to easily transport facts from the correctness proof to the refinement
proof. Finally, the monad comes with loop combinators, which allow a more natural
presentation of some algorithms.

In this section, we describe our approach to refinement from IRF programs to
Imperative HOL programs. We start with a brief review of the IRF. For a more
detailed description, we refer the reader to [26,18]. Programs are described via a
nondeterminism monad over the type α nres, which is defined as follows:

datatype α nres = res (α set) | fail
fun ≤ :: α nres ⇒ α nres ⇒ bool
where ≤ fail | fail 6≤ res | res X ≤ res Y iff X ⊆ Y

fun return :: α ⇒ α nres where return x ≡ res {x}
fun bind :: α nres ⇒ (α ⇒ β nres) ⇒ β nres
where bind fail f ≡ fail | bind (res X) f ≡ SUP x ∈ X. f x

The type α nres describes nondeterministic results, where res X describes the
nondeterministic choice of an element from X, and fail describes a failed assertion.
On nondeterministic results, we define the refinement ordering ≤ by lifting the
subset ordering, setting fail as top element. The intuitive meaning of a ≤ b is that
a refines b, i. e. results of a are also results of b. Note that the refinement ordering
is a complete lattice with top element fail and bottom element res {}.

Intuitively, return x denotes the unique result x, and bind m f denotes sequen-
tial composition: Select a result from m, and apply f to it.

Non-recursive programs can be expressed by these monad operations and
Isabelle/HOL’s if and case-combinators. Recursion is encoded by a fixed point
combinator rec :: ((α ⇒ β nres) ⇒ α ⇒ β nres) ⇒ α ⇒ β nres, such that rec F
is the greatest fixed point of the monotonic functor F , wrt. the flat ordering of
result sets with fail as the top element. For non-monotonic F , rec F is set to fail:

rec F x ≡ if (mono′ F) then (flatf gfp F x) else fail
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definition dfs :: (α × α) set ⇒ α ⇒ α ⇒ bool nres where
dfs E s t ≡ do {

( ,r) ← rec (λdfs (V,v).
if v ∈ V then return (V,False)
else do {

let V = insert v V;
if v = t then return (V,True)
else foreach ({v′. (v,v′) ∈ E}) (λ( ,brk). ¬brk)

(λv′ (V, ). dfs (V,v′)) (V,False)
}

) ({},s);
return r
}

Listing 1: Simple DFS algorithm formalized in the IRF

Here, mono′ denotes monotonicity wrt. both the flat ordering and the refinement
ordering. The reason is that for functors that are monotonic wrt. both orderings,
the respective greatest fixed points coincide, which is useful to show proof rules for
refinement. Note that functors which only use the monad combinators described
above are monotonic by construction [16].

Building on the basic combinators, the IRF also defines while and foreach
loops to conveniently express tail recursion and folding over the elements of a finite
set. Moreover, we define assertions by:

assert Φ ≡ if Φ then return () else fail

For assertions, we have the following rules:

[[ Φ; m ≤ m′ ]] =⇒ do { assert Φ; m } ≤ m′

[[ Φ =⇒ m ≤ m′ ]] =⇒ m ≤ do { assert Φ; m′ }

Here, we use a Haskell-like do notation as convenient syntax for bind operations.
The first rule is used to show that a program m with assertion Φ refines the program
m′. It requires to prove Φ, in addition to the refinement m ≤ m′. The second rule
is used to show that a program m refines a program m′ with an assertion. It allows
one to assume Φ when proving the refinement m ≤ m′. This way, facts that are
proved on the abstract level are made available for proving refinement.

Example 6 Listing 1 displays the IRF formalization of a simple depth-first search
algorithm that checks whether a directed graph, described by a (finite) set of edges
E, has a path from source node s to target node t. With the tool support provided
by the IRF, it is straightforward to prove this algorithm correct and refine it to
efficient functional code (cf. [26,19]).

4.1 Connection to Imperative HOL

With the Isabelle Refinement Framework we have developed various algorithms and
refined them to efficient purely functional. In this section, we describe how to refine
a program specified in the nondeterminism monad of the IRF to a program specified
in the heap monad of Imperative HOL. The main challenge is to refine abstract
data to concrete data that may be stored on the heap and updated destructively.
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At this point, we have a design choice: One option is to refine the abstract
functional program first to an abstract imperative program, and then to a concrete
program. The second option is to skip the intermediate step, and directly refine
abstract functional programs to concrete imperative ones.

Due to limitations of the logic underlying Isabelle/HOL, we need a single HOL
type that can encode all types we want to store on the heap. In Imperative HOL,
this type is chosen to be N, and thus only countable types can be stored on the
heap. As long as we store concrete data structures, this is no real problem. However,
abstract data types are in general not countable, nor does there exist a type in
Isabelle/HOL that could encode all other types. Thus, storing abstract types on
the heap would lead to unnatural and clumsy restrictions, contradicting the goal
of focusing the abstract proofs on algorithmic ideas rather than implementation
details. Thus, we opted for not formalizing abstract imperative programs, and
directly refine the abstract functional program to a concrete imperative one.

In our approach, the heap will always be described by assertions of the form
R1 a1 c1 ∗ . . . ∗ Rn an cn, where the Ri are refinement assertions, relating an
abstract value ai to its implementation ci. Examples for refinement assertions are
the primitive 7→a that relates lists to arrays (cf. Section 2.1), the os list assertion
for singly linked lists (cf. Example 1), and the is uf assertion for union-find data
structures. (cf. Section 3.1)

Note that a refinement assertion needs not necessarily relate heap content to
an abstract value. It can also relate a concrete non-heap value to an abstract value.
For a relation R :: (γ × α) set we define:

pure R ≡ (λa c. ↑((c,a) ∈ R))

This allows us to mix imperative data structures with functional ones. For exam-
ple, the refinement assertion pure nat rel describes the implementation of natural
numbers by themselves, where nat rel ≡ Id::(nat×nat) set.

To relate Imperative HOL programs to IRF programs, we define the predicate
hnr (short for heap-nres refinement) as follows:

hnr Γ c Γ ′ R m ≡
m 6= fail −→ 〈Γ 〉 c 〈λr. Γ ′ ∗ (∃x. R x r ∗ ↑(return x ≤ m))〉t

Intuitively, hnr Γ c Γ ′ R m states that on a heap described by assertion Γ , the
Imperative HOL program c returns a value that refines the nondeterministic result
m wrt. the refinement assertion R. Additionally, the new heap contains Γ ′.

Example 7 The following refinement assertion refines lists of abstract elements to
lists of concrete elements:

fun list assn :: (′a ⇒ ′c ⇒ assn) ⇒ ′a list ⇒ ′c list ⇒ assn where
list assn P [] [] = emp
| list assn P (a#as) (c#cs) = P a c ∗ list assn P as cs
| list assn = false

Note that lists are implemented by (functional) lists, but the elements of the
concrete list may be stored on the heap. The refinement theorem for the Cons
operation (written as infix # in Isabelle) is:

hnr (list assn A l li ∗ A a ai)
(return (ai#li))
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(inv (list assn A) l li ∗ inv A a ai)
(list assn A)
(return (a#l))

The precondition states that the abstract list l and the abstract element a to be
prepended are refined by the concrete list li and the concrete element ai, respectively.
The concrete operation ai#li prepends the concrete element to the concrete list,
the abstract operation a#l prepends the abstract element to the abstract list.
Afterwards, both the original list and the element are invalid (ownership has been
transferred to the result list), and the result of the abstract operation is refined by
the result of the concrete operation.

The inv assertion is defined as inv R a c ≡ ↑ (∃h. h |= R x y) ∗ true. We have
pure R =⇒ inv R a c =⇒A R a c, such that data not stored on the heap can be
recovered. For example, a list of natural numbers is not stored on the heap. Thus,
the original list remains valid even after prepending a new element to it. (Formally,
we have list assn (pure nat rel) = pure Id)

In order to prove refinements, we derive a set of proof rules for the hnr predicate,
including a frame rule, consequence rule, and rules relating the combinators of the
heap monad with the combinators of the nondeterminism monad. For example, the
consequence rule allows us to strengthen the precondition, weaken the postcondition,
and refine the nondeterministic result:

[[Γ1 =⇒A Γ ′1; hnr Γ ′1 c Γ2 R m; Γ2 =⇒A Γ ′2; m ≤ m′]] =⇒ hnr Γ1 c Γ ′2 R m′

For recursion, we get the following rule:

assumes
∧
fc fa xa xc. [[∧

xa xc. hnr (Rx xa xc ∗ Γ ) (fc xc) (Γ ′ xa xc) Ry (fa xa)]]
=⇒ hnr (Rx xa xc ∗ Γ ) (Fc fc xc) (Γ ′ xa xc) Ry (Fa fa xa)

assumes
∧

x. mono Heap (λf. Fc f x)
shows hnr (Rx xa xc ∗ Γ ) (heap.fixp fun Fc xc) (Γ ′ xa xc) Ry (rec Fa xa)

The rule is specified in Isabelle’s long goal format, which is more readable for
large propositions. Moreover,

∧
x1. . . xn is an Isabelle specific syntax for universal

quantification. Intuitively, we have to show that the concrete functor Fc refines the
abstract functor Fa, assuming that the concrete recursive function invocation fc
refines the abstract one fa. The argument of the call is refined wrt. the refinement
assertion Rx and the result is refined wrt. Ry. The additional heap before the call
is described by Γ , and the additional heap after the call is described by Γ ′ xa xc.
Here, the xa and xc that are attached to Γ ′ denote that the new heap may also
depend on the argument to the recursive function. The second assumption requires
the concrete function to be monotonic. This is always the case for functions using
only monad combinators, and is discharged automatically by our tool.

4.2 Automation

Using the rules for hnr, it would be possible to manually prove refinement between
an Imperative HOL program and a program in the Isabelle Refinement Framework,
provided they are structurally similar enough.4 However, this would be a tedious

4 The control structures must be the same, and the abstract operations must match the
corresponding concrete operations.
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and quite canonical task, consisting of manually rewriting the program from one
monad to the other, thereby unfolding expressions into monad operations if they
depend on the heap. For this reason, we focused our work on automating this
process: Given some hints which imperative data structures to use, we automatically
synthesize an Imperative HOL program and its refinement proof. The Autoref
tool [19] solves the analogous problem for purely functional programs, and we could
reuse its ideas and even parts of its design for the imperative case.

In the rest of this section we describe our Sepref tool, which automatically
synthesizes imperative programs from programs phrased in the Isabelle Refinement
Framework. The synthesis consists of several consecutive phases: Identification of
operations, monadifying, translation, and cleanup. Note that the implementation
of the Sepref tool is not critical to the correctness of the generated theorems. As
common for LCF style provers, all theorems are generated by the logical inference
kernel. Thus, an error in a tool may lead to useless theorems, or theorems not being
generated at all, but never to invalid theorems, provided the kernel is correct.

4.2.1 Identification of Operations

Given an abstract program in Isabelle/HOL, it is not always clear which abstract
data types it uses. For example, maps are encoded as functions α ⇒ β option, and
so are priority queues or actual functions. However, maps and priority queues are,
also abstractly, quite different concepts. The purpose of this phase is to identify the
abstract data types (e. g. maps and priority queues), and the operations on them.
Technically, the identification is done by rewriting the operations to constants that
are specific to the abstract data type. For example, (f :: nat ⇒ nat option) x may
be rewritten to op map lookup f x, provided that a heuristics identifies f as a map.
If f is identified as a priority queue, the same expression would be rewritten to
op get prio f x. The operation identification heuristic is already contained in the
Autoref tool, and we slightly adapted it for our needs.

4.2.2 Monadifying

Once we have identified the operations, we flatten all expressions, such that each
operation gets visible as a top-level computation in the monad. This transformation
essentially fixes an evaluation order (which we choose to be left to right), and later
allows us to translate the operations to heap-modifying operations in Imperative
HOL’s heap monad.

Example 8 Consider the program do { let x = 1; return {x,x+1} }. Note that
{x,y} is syntactic sugar for (insert x (insert y {})). A corresponding Imperative
HOL program might be:

do { let x = 1; s ← bv new; s ← bv ins x s; bv ins (x+1) s }

Note that the bv new and bv ins operations modify the heap. Thus, they have to be
applied as monad operations and cannot be nested into other expressions. For this
reason, the monadify phase flattens all expressions, and thus exposes all operations
as monad operations. It transforms the original program to5:

5 We applied α-conversion to give the newly created variables convenient names.
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do { x ← return 1; y ← return 1; z ← return x+y;
s ← return {}; s ← return (insert x s); return (insert z s) }

Note that operations that are not translated to heap-modifying operations will be
folded again in the cleanup phase.

4.2.3 Translation

Let a be the monadified program. We now synthesize a corresponding Imperative
HOL program. Assume the program a depends on the abstract parameters a1 . . . an,
which are refined to concrete parameters c1 . . . cn by refinement assertions R1 . . . Rn.
We start with a proof obligation of the form:

hnr (R1 a1 c1 ∗ . . . ∗ Rn an cn) ?c ?Γ ′ ?R a

Note that ? indicates schematic variables, which may be instantiated during
resolution. We will maintain the invariant that the precondition contains an
assertion Ri ai ci for every variable ai that is in scope. If the corresponding
concrete value ci has been destroyed, we set Ri = inv R′i, where R′i is the original
assertion for the variable.

We now repeatedly resolve with a set of syntax directed rules for the hnr
predicate (cf. Section 4.1). Apart from hnr-predicates, which trigger recursive
resolution, the premises of a rule may contain other side conditions: Frame inference,
merge goals, constraints on the refinement assertions, monotonicity goals, and
semantic side conditions.

Frame Inference A goal of the form

Γ =⇒A ?F ∗ R1 a1 c1 ∗ . . . ∗ Rn an cn

triggers frame inference: Sepref tries to instantiate ?F such that the implication
holds. Moreover, it will try to recover invalidated assertions as necessary. While
frame inferences have to be explicit premises of combinator rules, Sepref generates
them automatically for operator rules.

Merge Goals After translating an if or case combinator, we have to merge the
descriptions of the heaps after the different branches. We use a goal of the form:

R1 a1 c1 ∗ . . . ∗ Rn an cn ∨ R′1 a1 c1 ∗ . . . ∗ R′n an cn =⇒A ?Γ

The merging is done element-wise by the following rules:

R a c ∨ R a c =⇒A R a c
inv R a c ∨ R a c =⇒A inv R a c
R a c ∨ inv R a c =⇒A inv R a c

Note that the first rule also covers the case inv R a c ∨ inv R a c.

Example 9 The rule for the if combinator is:

assumes P: Γ =⇒A Γ1 ∗ pure bool rel a a′

assumes RT: a =⇒ hnr (Γ1 ∗ pure bool rel a a′) b′ Γ2b R b
assumes RE: ¬a =⇒ hnr (Γ1 ∗ pure bool rel a a′) c′ Γ2c R c
assumes MERGE: Γ2b ∨A Γ2c =⇒A Γ ′

shows hnr Γ (if a′ then b′ else c′) Γ ′ R (if a then b else c)
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Intuitively, it works as follows: We start with a heap described by the assertion Γ .
First, the refinement for the condition a is extracted from Γ using frame inference.
(Premise P ) Then, the then and else branches are translated, (Premises RT and
RE) producing new heaps described by the assertions Γ2b and Γ2c, respectively.
Finally, these assertions are merged to form the assertion Γ ′ for the resulting heap
after the if statement. (Premise MERGE)

Constraints Another type of side conditions are constraints on the refinement
assertions. For example, some data structures require the refinement relation for
their elements to be pure. Also, recovery of an invalidated operand is only possible
for a pure refinement assertion. However, when the corresponding rules are applied,
the refinement assertion may not be completely known, but (parts of) it may
be schematic and only instantiated later. We defer constraints over schematic
assertions and solve them after the assertions have been instantiated.

Monotonicity Goals Monotonicity goals occur when synthesizing recursion com-
binators (cf. Section 4.1). They are solved by an automatic procedure which is
provided by the Partial Function Package [16].

Semantic Side Conditions Rules may have semantic side conditions, e. g. that an
array index is in bounds. The resulting goals are solved by applying Isabelle’s auto
tactic. If solving a side condition fails, the synthesis procedure backtracks over the
application of the rule that produced the side condition.

Choosing between Implementations The resolution is directed by the syntax of
the abstract program: For each combinator, i. e. a function with arguments that
describe a monadic computation, there is exactly one rule. However, there may
be multiple rules for operators, i. e. functions without monadic arguments. They
correspond to the implementations of the operator for different data structures. If
an operator does not construct a new data structure, the corresponding rule can
be uniquely determined by the refinement assertions for the operands. However, if
an operator constructs a data structure, multiple rules may apply. In this case, we
rely on disambiguation by the user: We define specific constants for each possible
implementation as synonyms for the abstract operator, and force the user to rewrite
the operator to the constant corresponding to the desired implementation.

Example 10 Lists can be implemented by open singly linked lists (cf. Example 1)
or by HOL lists (cf. Example 7). Consider the prepend operation. The hnr rules
for HOL lists and open singly linked lists are:

hnr (list assn A l li ∗ A a ai)
(return (ai#li))
(inv (list assn A) l li ∗ inv A a ai)
(list assn A)
(return (a#l))

hnr (osll.assn A l li ∗ A a ai)
(os prepend ai li)
(inv (osll.assn A) l li ∗ inv A a ai)
(osll.assn A)
(return (a#l))

For a proof obligation of the form

hnr Γ ?c ?Γ ′ ?R (a#l)
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dfs impl Ei si ti ≡ do {
V ← bv new;
( ,r) ← heap rec (λdfs (V,v). do {
visited ← bv memb v V;
if visited then return (V,False)
else do {
V ← bv ins v V;
if v = ti then return (V,True)
else do {
succ list ← succi Ei v;
imp nfoldli succ list (λ( , brk). return (¬ brk))

(λv (V, ). dfs (V,v)) (V,False)
}
}
}) (V,si);
return r
}

Listing 2: Imperative DFS algorithm generated by Sepref.

only one of the rules will match, depending on the refinement assertion for l in Γ ,
Now consider the empty list operation. The rules are:

hnr emp (return []) emp (list assn A) (return [])
hnr emp os empty emp (osll.assn A) (return [])

For a proof obligation of the form

hnr Γ ?c ?Γ ′ ?R []

both rules do match, and there is no obvious way to choose a rule. To resolve this
ambiguity, we define

op HOL list empty ≡ [] op os empty ≡ []

and use the rules

hnr emp (return []) emp (list assn A) (return op HOL list empty)
hnr emp os empty emp (osll.assn A) (return op os empty)

To choose the implementation, the user has to rewrite the [] to op HOL list empty
or op os empty in the hnr goal, right before invoking the repeated resolution.

4.2.4 Cleanup

After we have generated the imperative version of the program, we apply some
rewriting rules to make it more readable. They undo the flattening of expressions
performed in the monadify phase at those places where it was unnecessary, i. e.
the heap was not accessed. Technically, this is achieved by using Isabelle/HOL’s
simplifier with an adequate setup.

Example 11 Recall the DFS algorithm from Example 6. With less than ten lines
of straightforward Isabelle text, Sepref generates6 the imperative algorithm

6 Again, we applied α-conversion, to make the generated variable names more readable.
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displayed in Listing 2. From this, Imperative HOL generates verified code in its
target languages (currently OCaml, SML, Haskell, and Scala). Moreover, Sepref
proves the following refinement theorem:

hnr (is graph nat rel E Ei ∗ pure nat rel s si ∗ pure nat rel t ti)
(dfs impl Ei si ti)
(is graph nat rel E Ei ∗ pure nat rel s si ∗ pure nat rel t ti)
(pure bool rel)
(dfs E s t)

If we combine this with the correctness theorem of the abstract DFS algorithm
dfs, we immediately get the following theorem, stating total correctness of our
imperative algorithm:

corollary dfs impl correct:
finite (reachable E s) =⇒
〈is graph nat rel E Ei〉

dfs impl Ei s t
〈λr. is graph nat rel E Ei ∗ ↑(r ←→ (s,t) ∈ E∗)〉t

4.3 Limitations of the Automation

The Autoref [19] tool uses elaborate heuristics to choose implementation data
structures that support all the required operations. However, these heuristics are
difficult to debug and may silently yield undesired (inefficient) results. Thus, for
Sepref, the user has to unambiguously fix all the implementations (cf. Example 10),
and is responsible for choosing implementations that support all the required
operations. In practice, choosing the implementations is easily done using the
rewrite tool [37], and debugging of errors due to missing operations is simple.

A previous version of the Sepref tool contained a linearity analysis to au-
tomatically synthesize a copy operation when invalidating an operand that is
still required. For data not stored on the heap, the copy operation is simply the
identity function. For data stored on the heap, the user has to define a custom
copy operation. However, setup of the linearity analysis was quite complicated, and
the analysis itself was incomplete. Moreover, our experiments indicated that copy
operations for impure operands are rarely necessary in practice. Thus, we decided
to drop the linearity analysis, and replaced it by automatic recovery of invalidated
pure operands. In the rare cases where an impure operand needs to be copied, the
user has to manually insert the copy operation.

The most severe limitations of Sepref are due to its simplistic handling of
structured data. For example, the operation hd :: α list ⇒ α returns the first
element of a non-empty list. However, the assertion for the resulting element
describes a part of the heap that is also described by the assertion for the list itself.
Thus, we cannot combine these assertions with a separation conjunction. The only
simple solution is to invalidate the original list, preventing further access to all
its elements7. For this reason, most of our collection data structures require their

7 A workaround for this particular example is to simultaneously return the head and tail of
the list. However, for more complex operations, e. g. returning the first element that satisfies a
predicate P , this technique gets unwieldy.
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elements to be refined by pure assertions. A somewhat related problem occurs for
binary decision diagrams (BDDs), which store functions from vectors of Booleans
to Booleans. The representations of the different functions use shared data, such
that we cannot define refinement assertions for the single functions stored in the
BDD, as would be required for automatic refinement.

We conclude that, despite these limitations, the Sepref tool is powerful enough
to verify efficient implementations of substantial algorithms. (cf. Section 6)

5 Imperative Collections Framework

In the last section, we have reported on the translation from programs phrased
in the Isabelle Refinement Framework to Imperative HOL programs. We have
described the Sepref tool, which performs this translation automatically, refining
abstract data types (e. g. sets) to efficient imperative implementations (e. g. hash
tables). In order to use this tool in practice, a library of efficient imperative data
structures is required. In this section, we briefly report on this library, which we
call the Imperative Collections Framework. For further reference, including recipes
for modular design of more complex data structures, we refer the reader to [22].

5.1 Notation for Refinement

For two n ary functions f and g, we write (f, g) ∈ R1 × . . .×Rn → R, if f refines
g for argument relations Ri and result relation R, i. e.

∀a1 c1 . . . an cn.
(c1, a1) ∈ R1 ∧ . . . ∧ (cn, an) ∈ Rn =⇒ (f c1 . . . cn, g a1 . . . an) ∈ R

For an Imperative HOL function f and an IRF function g, we write (f, g) ∈
Ax1

1 × . . .×A
xn
n → A. Here, the Ai are the refinement assertions for the arguments,

and A is the refinement assertion for the result. The xi indicate whether f destroys
the argument (xi = d) or not (xi = k), i. e. the above notation is defined as:

∀a1 c1 . . . an cn.
hnr (A1 c1 a1 ∗ . . . ∗An cn an) (f c1 . . . cn)

(A′1 c1 a1 ∗ . . . ∗A′n cn an) A (g a1 . . . an)

such that A′i = Ai if xi = k and A′i = inv Ai if xi = d.

Example 12 Correctness of the append operation on singly linked lists (cf. Exam-
ple 1) is specified as follows:

(os append,append) ∈ os listd × os listk → os list

where append :: α list ⇒ α list ⇒ α list is the append operation on HOL lists.
That is, the append operation destroys the first list, but the second list remains
valid.
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5.2 Formalizing Imperative Data Structures

We use two complementary approaches to design data structures for Imperative
HOL. The first, direct approach is described in Section 3.1: The operations are
manually implemented in Imperative HOL, and proved correct using our separation
logic tools. Stepwise refinement is possible up to a limited degree, as neither
nondeterminism nor assertions are supported. This approach is well-suited to
develop simple data structures, and necessary to reason about pointer manipulations,
which have no convenient abstract functional model.

The second approach uses the Isabelle Refinement Framework: The data struc-
ture and its operations are first described in the nondeterminism monad of the
IRF, and then refined to Imperative HOL using the Sepref tool. This approach is
well suited to develop complex data structures, which can be described in terms of
simpler data structures.

Example 13 For the implementation of priority queues by heapmaps [22] we require
a data structure for distinct lists, which supports efficient index query, i. e. to return
the position of an element in the list. We may assume that the elements to be
stored in the list are natural numbers less than N . Such a data structure can be
implemented by a list l of elements, and a list p = [p0 . . . pN−1], such that pi is the
position of element i in l, or a special value if i is not in l.

In a first step, we phrase the operations in a purely functional fashion, using
standard HOL lists for both lists. We define an invariant that asserts well-formedness
of the data structure:

locale invar = fixes
N :: nat

and l :: nat list
and p :: nat list
assumes l set: set l ⊆ {0..<N}
assumes l distinct: distinct l
assumes p len: |p| = N
assumes p map: ∀x < N. p!x = (if x ∈ set l then List Index.index l x else N)

The assumptions l set and l distinct state that l contains only elements less than
N , and no duplicates. The assumptions p len and p map state that p is a list of
fixed size N that actually maps elements of l to their indexes. Elements not in l
are mapped to the value N (which cannot be a valid index in l, as the invariant
implies |l| ≤ N). Using the invariant, we define the relation R, which relates our
abstract data structure to lists:

R N ≡ { ((l,p),l′). l′ = l ∧ invar N l p }

Then, we define the operations on the abstract data structure, using the Isabelle
Refinement Framework. We let each operation assert its precondition, such that
the preconditions are available for later refinement.

For example, the operation to retrieve the index of an element which is contained
in the list is defined as follows:

index ≡ λ(l,p) x. do {
assert (x ∈ set l);
i ← lst op get p x;
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return i }

We first assert the precondition x∈set l, and then return the x th element of p,
which stores the index of x. Note that lst op get l i returns the i th element of a
list l, asserting that the index i is in bounds:

lst op get l i ≡ do { assert (i < length l); return (l!i) }

With the verification condition generator of the Isabelle Refinement Framework, it
is straightforward to show correctness of the above operation:

(index, lst op index) ∈ R N × nat rel → nat rel

where lst op index is defined as:

lst op index l x ≡ do { assert (x ∈ set l); spec i. i < |l| ∧ l!i = x }

In a next step, we use the Sepref tool to refine the operations to Imperative
HOL. The list l of elements is implemented by an array list of maximum capacity
N , i. e. an array of size N and a counter to indicate the actual length of the list.
The list p is implemented by an array of length N . The Sepref tool generates a
new constant index impl, and the theorem:

(index impl,index) ∈ (is arl N × ( 7→a))k × (pure nat rel)k → pure nat rel

Here, the assertion is arl N denotes implementation of lists by array lists of maxi-
mum capacity N , and 7→a relates an array to the list of its elements.

Finally, combination of the refinement theorems for index impl and index yields:

(index impl, lst op index) ∈ (is ial N)k × (pure nat rel)k → pure nat rel

where is ial is the refinement assertion for our indexed array list data structure:

is ial N (l,p) l′ ≡ ∃l̂ p̂. is arl N l̂ l ∗ p 7→a p̂ ∗ ↑( ((l̂, p̂), l′) ∈ R N)

Note that the Sepref tool provides some automation for the steps sketched
above, in particular for combination of refinement theorems. A more detailed
description can be found in [22], and in the Sepref user guide [21].

We conclude with an overview of the current data structures in the Imperative
Collections Framework, which are listed in Table 1. Note that the amount of
supported operations varies from implementation to implementation, and some
implementations have been done in an ad hoc manner to exactly fit the needs of a
particular algorithm.

6 Case Studies

In this section, we present two case studies: We apply Sepref to a nested depth-first
search algorithm and Dijkstra’s shortest paths algorithm. Both algorithms have
already been formalized within the Isabelle Refinement Framework [32,31,12], and
we were able to reuse the existing abstract algorithms and correctness proofs. The
resulting Imperative HOL algorithms are considerably faster than the original
functional versions. We also briefly report on current projects that use Sepref.
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Data Structure Abstract Type Remark

Circular Linked List α list
Open Linked List α list cf. Example 1
Array List α list dynamic resize
Maximum Capacity Array List α list
Fixed Size Array α list
Indexed Array List nat list cf. Example 13
Array Map nat→ α option dynamic resize
Hash Map α→ β option with rehashing
Array Set nat set dynamic resize
Hash Set α set with rehashing
Union-Find (nat× nat) set cf. Section 3.1
Heap α multiset cf. [22]
Heap Map α→ β option cf. [22]
Square Matrix nat× nat→ α by array, row major
Graphs (nat× nat) set by adjacency list
Edge Weighted Graph α set× (α× β × α) set by adjacency list
Binary Decision Diagram bool list→ bool limited automation

Table 1: Data Structures Formalized with our Approach

6.1 Nested Depth-First Search

For the CAVA model checker [12], we have verified various nested depth-first search
algorithms [35]. Here, we pick a version from the examples that come with the
Isabelle Collections Framework [17]. It contains an improvement by Holzmann et
al. [13], where the search already stops if the inner DFS finds a path back to a
node on the stack of the outer DFS.

From the existing abstract formalization, it takes about 160 lines of mostly
straightforward Isabelle text to arrive at the generated SML code and the corre-
sponding correctness theorem, relating the imperative algorithm to its specification.

We compile the generated code with MLton [29] and benchmark it against
the original functional refinement and an unverified implementation of the same
algorithm in C++, taken from material accompanying [35]. The algorithm is run on
state spaces extracted from the BEEM benchmark suite [33]: dining philosophers
and Peterson’s mutual exclusion algorithm. We have checked for valid properties
only, such that the search has to explore the whole state space. The results are
displayed in the table below:

Model Property #States Fun Fun* Imp Imp* CO3 CO0

phils.4
φ1

353668 975 75 70 63 48 66
phils.5 517789 1606 120 113 108 83 112
phils.4

G(true)
287578 740 59 53 46 40 54

phils.5 394010 1156 83 77 71 64 85
peterson.3

φ2
58960 119 9 7 5 5 7

peterson.4 1120253 2476 184 142 110 111 158
peterson.3

G(true)
29289 55 4 3 2 3 4

peterson.4 576156 1314 88 70 55 54 78

where φ1 = G(one0 =⇒ one0 W eat0) and φ2 = G(wait0 =⇒ F (wait0) ∨G(¬ncs0))

The first column displays the name of the model, the second column the
checked property, and the third column displays the number of states. The re-
maining columns show the time in ms required by the different implementations,
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on a 2.2GHz i7 quadcore processor with 8GiB of RAM. Fun denotes a purely
functional implementation with red-black trees. Fun* denotes a purely functional
implementation, relying on an unverified array implementation similar to Haskell’s
Array.Diff. Imp denotes the verified implementation generated by Sepref, which
uses array lists. Imp* denotes a verified implementation generated after hinting
Sepref to preinitialize the array lists to the correct size, such that no array reallo-
cation occurs during the search. Finally, the C columns denote the unverified C++
implementation, which uses arrays of fixed size. It was compiled using gcc 4.8.2
with (CO3) and without (CO0) optimizations.

The results are quite encouraging: Our Sepref tool generates code that is more
than one order of magnitude faster than the purely functional code. We are also
faster than the Fun*-implementation, which depends on an unverified component,
and faster than the unoptimized C++ implementation. For the philosopher models,
we come close to the optimized C++ implementation, and for the Peterson models,
we even catch up.

6.2 Dijkstra’s Shortest Paths Algorithm

We have performed a second case study, based on an existing formalization of
Dijkstra’s shortest paths algorithm [32]. The crucial data types in the existing
formalization are a priority queue, a map from nodes to current paths and weights,
and the adjacency map of the graph. It took us about 130 lines of straightfor-
ward Isabelle text to set up Sepref to produce an imperative version of Dijk-
stra’s algorithm, using arrays for the maps and heap maps for the priority queue.

Test Fun Imp Java

cl1300 240 127 23
cl1500 325 171 29

medium 1 � 1 2
large 38746 4068 1218

Fig. 1: Dijkstra benchmark

We benchmark our implementation
(Imp) against the original functional
version (Fun), and a reference im-
plementation in Java (Java), taken
from Sedgewick et al. [36]. The inputs
are complete graphs with random
weights and 1300 and 1500 nodes
(cl1300, cl1500), as well as two ex-
amples from [36] (medium, large). The required times in ms are displayed in
Table 1. The results show a significant speedup wrt. the purely functional version,
and our implementation is only a factor 4 to 6 slower than the Java reference
implementation.

6.3 Other Applications

More recently, we have used the IRF and Sepref to develop a verified implementa-
tion [25] of the Edmonds-Karp algorithm for finding maximum flows in networks [11],
which is competitive with a Java reference implementation by Sedgewick et al. [36].
We also extended this formalization to push-relabel algorithms.8 In another project,

8 Paper under review at the time of writing, the formalization is available at https://www21.
in.tum.de/~lammich/max_flow/.

https://www21.in.tum.de/~lammich/max_flow/
https://www21.in.tum.de/~lammich/max_flow/
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we have developed a verified SAT solver certification tool, which is as efficient as
the current (unverified) state of the art tool.9

7 Conclusion

We have presented an Isabelle/HOL based approach to automatically refine func-
tional programs specified over abstract data types to imperative ones using heap-
based data structures. Not only the program, but also the refinement proof is
generated, such that we get imperative programs verified in Isabelle/HOL.

The main components of our approach are:

– A separation logic based verification framework for Imperative HOL.
– A refinement calculus from the Isabelle Refinement Framework (IRF) to Imper-

ative HOL, along with the Sepref tool to automatically synthesize Imperative
HOL programs from IRF programs.

– The Imperative Collections Framework, which provides a large and extensible
library of efficient imperative data structures.

In several case studies we could obtain verified algorithms that were competitive
with unverified reference implementations.

7.1 Current and Future Work

Currently we are using Sepref to verify a model checker for timed automata [1].
Another current project is to retarget the Sepref tool to a fragment of the C
programming language. Apart from being able to create more efficient implementa-
tions and excluding Isabelle’s code generator from the trusted code base, we hope
to be able to formally reason about the time complexity and resource usage of the
generated programs.

An interesting topic for future research is to allow more general impera-
tive container data structures. Currently, the element types of most container
data structures must be refined to purely functional data types. (cf. Section 4.3)
Charguéraud [7] presents a technique to elegantly encode refinement assertions
where the elements are also represented on the heap, owned by their container.
His technique could probably be adapted to our formalization. We also hope to
be able to support references to elements of data structures at some point, which
is required for automatic refinement of Boolean functions using BDDs. (cf. Sec-
tion 4.3) One step further would be to allow more elaborate ownership models, e. g.
elements shared between containers, which are required to model (limited forms
of) concurrency. Fractional permissions [3] might be the right tool to achieve this.

7.2 Related Work

We are not aware of interactive theorem prover based tools to automatically refine
functional to imperative programs.

9 Paper under review at the time of writing, the tool and further information is available
at https://www21.in.tum.de/~lammich/grat/.

https://www21.in.tum.de/~lammich/grat/
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Separation logic has been implemented for various interactive theorem provers,
e. g. [30,14,38,27]. The work closest to ours is probably the Ynot project [30], which
provides a heap monad, a separation logic, and imperative data structures in Coq.
Their code generator targets Haskell. However, we are not aware of any performance
benchmarks. For Isabelle/HOL, another separation logic framework [14] has been
developed independently. In contrast to our framework, it can be instantiated to
various heap models. However, it provides less powerful automation. The HOLFoot
tool [38] implements a separation logic framework in HOL4. While it provides more
powerful automation than our framework, its simplistic imperative language is less
convenient for formalizing complex algorithms. In Coq, various imperative OCaml
programs and data structures, including Dijkstra’s shortest paths algorithm and
a union find data structure, have been verified with characteristic formulas [6,8].
Apart from the genuine characteristic formula technique, the main difference to our
work is that we use a top-down approach, refining an abstract algorithm down to
executable code, while they use a bottom-up approach, starting with a translation
of the OCaml code to characteristic formulas. Moreover, they support reasoning
about time complexity.

Delaware et al. [9] present the Fiat tool for Coq, which supports synthesis of
executable code from abstract specifications. Currently, their approach is limited
to specialized abstract specifications (SQL like queries) and purely functional code,
but they are planning to extend it to support imperative code.
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