
 Open access Journal Article DOI:10.1145/1890028.1890031

Refinement types for secure implementations — Source link

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon ...+1 more authors

Institutions: Uppsala University, Microsoft, Imperial College London

Published on: 23 Jun 2008 - IEEE Computer Security Foundations Symposium

Topics: Cryptographic primitive, Cryptographic protocol, Refinement calculus, Source code and Cryptography

Related papers:

Proceedings of the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, 23-25
June 2008

 Liquid types

 An efficient cryptographic protocol verifier based on prolog rules

 Modular verification of security protocol code by typing

 Secure distributed programming with value-dependent types

Share this paper:

View more about this paper here: https://typeset.io/papers/refinement-types-for-secure-implementations-
4zqkcvgypo

https://typeset.io/
https://www.doi.org/10.1145/1890028.1890031
https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo
https://typeset.io/authors/jesper-bengtson-3l7frrp1hy
https://typeset.io/authors/karthikeyan-bhargavan-5e55k3iqmy
https://typeset.io/authors/cedric-fournet-juozwyikxi
https://typeset.io/authors/andrew-d-gordon-1n55gez1l7
https://typeset.io/institutions/uppsala-university-2k7hnitj
https://typeset.io/institutions/microsoft-2lvqci8u
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/conferences/ieee-computer-security-foundations-symposium-2rae2y33
https://typeset.io/topics/cryptographic-primitive-2qx1pgyy
https://typeset.io/topics/cryptographic-protocol-2ldsbqme
https://typeset.io/topics/refinement-calculus-2m3xz2gq
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/cryptography-i1w0hc3v
https://typeset.io/papers/proceedings-of-the-21st-ieee-computer-security-foundations-4jmiv3za2c
https://typeset.io/papers/liquid-types-2y9kllrtdo
https://typeset.io/papers/an-efficient-cryptographic-protocol-verifier-based-on-prolog-kbcapt7a34
https://typeset.io/papers/modular-verification-of-security-protocol-code-by-typing-xee2uz6x6q
https://typeset.io/papers/secure-distributed-programming-with-value-dependent-types-27tf9i5lan
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo
https://twitter.com/intent/tweet?text=Refinement%20types%20for%20secure%20implementations&url=https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo
https://typeset.io/papers/refinement-types-for-secure-implementations-4zqkcvgypo

Refinement Types for Secure Implementations

Jesper Bengtson

Uppsala University

Karthikeyan Bhargavan

Microsoft Research

Cédric Fournet

Microsoft Research

Andrew D. Gordon

Microsoft Research

Sergio Maffeis

Imperial College London and University of California at Santa Cruz

Abstract

We present the design and implementation of a typechecker for

verifying security properties of the source code of cryptographic

protocols and access control mechanisms. The underlying type

theory is a λ -calculus equipped with refinement types for express-

ing pre- and post-conditions within first-order logic. We derive

formal cryptographic primitives and represent active adversaries

within the type theory. Well-typed programs enjoy assertion-based

security properties, with respect to a realistic threat model includ-

ing key compromise. The implementation amounts to an enhanced

typechecker for the general purpose functional language F#; type-

checking generates verification conditions that are passed to an

SMT solver. We describe a series of checked examples. This is

the first tool to verify authentication properties of cryptographic

protocols by typechecking their source code.

1 Introduction

The goal of this work is to verify the security of imple-

mentation code by typing. Here we are concerned particu-

larly with authentication and authorization properties.

We develop an extended typechecker for code written

in F# (a variant of ML) [Syme et al., 2007] and annotated

with refinement types that embed logical formulas. We use

these dependent types to specify access-control and crypto-

graphic properties, as well as desired security goals. Type-

checking then ensures that the code is secure.

We evaluate our approach on code implementing autho-

rization decisions and on reference implementations of se-

curity protocols. Our typechecker verifies security proper-

ties for a realistic threat model that includes a symbolic at-

tacker, in the style of Dolev and Yao [1983], who is able

to create arbitrarily many principals, create arbitrarily many

instances of each protocol roles, send and receive network

traffic, and compromise arbitrarily many principals.

Verifying Cryptographic Implementations In earlier

work, Bhargavan et al. [2007] advocate the cryptographic

verification of reference implementations of protocols,

rather than their handwritten models, in order to mini-

mize the gap between executable and verified code. They

automatically extract models from F# code and, after

applying various program transformations, pass them to

ProVerif, a cryptographic analyzer [Blanchet, 2001, Abadi

and Blanchet, 2005]. Their approach yields verified secu-

rity for very detailed models, but also demands considerable

care in programming, in order to control the complexity of

global cryptographic analysis for giant protocols. Even if

ProVerif scales up remarkably well in practice, beyond a

few message exchanges, or a few hundred lines of F#, veri-

fication becomes long (up to a few days) and unpredictable

(with trivial code changes leading to divergence).

Cryptographic Verification meets Program Verification

In parallel with specialist tools for cryptography, verifica-

tion tools in general are also making rapid progress, and

can deal with much larger programs [see for example Flana-

gan et al., 2002, Filliâtre, 2003, Barnett et al., 2005, Pot-

tier and Régis-Gianas, 2007]. To verify the security of

programs with some cryptography, we would like to com-

bine both kinds of tools. However, this integration is del-

icate: the underlying assumptions of cryptographic mod-

els to account for active adversaries typically differ from

those made for general-purpose program verification. On

the other hand, modern applications involve a large amount

of (non-cryptographic) code and extensive libraries, some-

times already verified; we’d rather benefit from this effort.

Authorization by Typing Logic is now a well established

tool for expressing and reasoning about authorization poli-

cies. Although many systems rely on dynamic authorization

engines that evaluate logical queries against local stores of

facts and rules, it is sometimes possible to enforce policies

statically. Thus, Fournet et al. [2007a,b] treat policy en-

forcement as a type discipline; they develop their approach

for typed pi calculi, supplemented with cryptographic prim-

itives. Relying on a “says” modality in the logic, they also

account for partial trust (in logic specification) in the face of

partial compromise (in their implementations). The present

work is an attempt to develop, apply, and evaluate this ap-

proach for a general-purpose programming language.

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE

DOI 10.1109/CSF.2008.27

17

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE

DOI 10.1109/CSF.2008.27

17

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE

DOI 10.1109/CSF.2008.27

17

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Outline of the Implementation Our prototype tool takes

as input module interfaces (similar to F# module interfaces

but with extended types) and module implementations (in

plain F#). It typechecks implementations against interfaces,

and also generates plain F# interfaces by erasure. Using the

F# compiler, generated interfaces and verified implementa-

tions can then be compiled as usual.

Our tool performs typechecking and partial type infer-

ence, relying on an external theorem prover for discharging

the logical conditions generated by typing. We currently use

plain first-order logic (rather than an authorization-specific

logic) and delegate its proofs to Z3 [de Moura and Bjørner,

2008], a solver for Satisfiability Modulo Theories (SMT).

Thus, in comparison with previous work, we still rely on an

external prover, but this prover is being developed for gen-

eral program verification, not for cryptography; also, we use

this prover locally, to discharge proof obligations at various

program locations, rather than rely on a global translation

to a cryptographic model.

Reflecting our assumptions on cryptography and other

system libraries, some modules have two implementations:

a symbolic implementation used for extended typing and

symbolic execution, and a concrete implementation used

for plain typing and distributed execution. We have ac-

cess to a collection of F# test programs already analyzed us-

ing dual implementations of cryptography [Bhargavan et al.,

2007], so we can compare our new approach to prior work

on model extraction to ProVerif. Unlike ProVerif, type-

checking requires annotations that include pre- and post-

conditions. On the other hand, these annotations can ex-

press general authorization policies, and their use makes

typechecking more compositional and predictable than the

global analysis performed by ProVerif. Moreover, type-

checking succeeds even on code involving recursion and

complex data structures.

Outline of the Theory We justify our extended type-

checker by developing a formal type theory for a core of F#:

a concurrent call-by-value λ -calculus.

To represent pre- and post-conditions, our calculus has

standard dependent types and pairs, and a form of refine-

ment types [Freeman and Pfenning, 1991, Xi and Pfenning,

1999]. A refinement type takes the form {x : T | C}; a

value M of this type is a value of type T such that the for-

mula C{M/x} holds. (Another name for the construction is

predicate subtyping [Rushby et al., 1998]; {x : T |C} is the

subtype of T characterized by the predicate C.)

To represent security properties, expressions may as-

sume and assert formulas in first-order logic. An expression

is safe when no assertion can ever fail at run time. By anno-

tating programs with suitable formulas, we formalize secu-

rity properties, such as authentication and authorization, as

expression safety.

Our F# code is written in a functional style, so pre- and

post-conditions concern data values and events represented

by logical formulas; our type system does not (and need not

for our purposes) directly support reasoning about mutable

state, such as heap-allocated structures.

Contributions First, we formalize our approach within

a typed concurrent λ -calculus. We develop a type system

with refinement types that carry logical formulas, building

on standard techniques for dependent types, and establish

its soundness.

Second, we adapt our type system to account for active

(untyped) adversaries, by extending subtyping so that all

values manipulated by the adversary can be given a spe-

cial universal type (Un). Our calculus has no built-in cryp-

tographic primitives. Instead, we show how a wide range

of cryptographic primitives can be coded (and typed) in

the calculus, using a seal abstraction, in a generalization of

the symbolic Dolev-Yao model. The corresponding robust

safety properties then follow as a corollary of type safety.

Third, experimentally, we implement our approach as an

extension of F#, and develop a new typechecker (with par-

tial type inference) based on Z3 (a fast, incomplete, first-

order logic prover).

Fourth, we evaluate our approach on a series of program-

ming examples, involving authentication and authorization

properties of protocols and applications; this indicates that

our use of refinement types is an interesting alternative to

global verification tools for cryptography, especially for the

verification of executable reference implementations.

An online technical report provides details, proofs, and

examples omitted from this version of the paper.

2 A Language with Refinement Types

Our calculus is an assembly of standard parts: call-

by-value dependent functions, dependent pairs, sums, iso-

recursive types, message-passing concurrency, refinement

types, subtyping, and a universal type Un to model at-

tacker knowledge. This is essentially the Fixpoint Calculus

(FPC) [Gunter, 1992], augmented with concurrency and re-

finement types. Hence, we adopt the name Refined Concur-

rent FPC, or RCF for short. This section introduces its syn-

tax, semantics, and type system (apart from Un), together

with an example application. Section 3 introduces Un and

applications to cryptographic protocols. (Any ambiguities

in the informal presentation should be clarified by the se-

mantics in Appendix B and the type system in Section 4.)

Expressions, Evaluation, and Safety An expression rep-

resents a concurrent, message-passing computation, which

may return a value. A state of the computation consists of

(1) a multiset of expressions being evaluated in parallel;

181818

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

(2) a multiset of messages sent on channels but not yet re-

ceived; and (3) the log, a multiset of assumed formulas.

The multisets of evaluating expressions and unread mes-

sages model a configuration of a concurrent or distributed

system; the log is a notional central store of logical formu-

las, used only for specifying correctness properties.

We write S |= C to mean that a formula C logically fol-

lows from a set S of formulas. In our implementation, C

is some formula in (untyped) first-order logic with equali-

ties M = N interpreted as syntactic identity between values.

(Appendix A lists the (standard) syntax.)

We assume collections of names, variables, and type

variables. A name is an identifier, generated at run time,

for a channel, while a variable is a placeholder for a value.

If φ is a phrase of syntax, we write φ{M/x} for the out-

come of substituting a value M for each free occurrence of

the variable x in φ . We identify syntax up to the capture-

avoiding renaming of bound names and variables. We write

fnfv(φ) for the set of names and variables occurring free in

a phrase of syntax φ .

Syntax of Values and Expressions:

v ::= a | x name or variable

h ::= inl | inr | fold constructor

M,N ::= value

v name or variable

() unit

fun x → A function (scope of x is A)

(M,N) pair

h M construction

A,B ::= expression

M value

M N application

M = N syntactic equality

let x = A in B let (scope of x is B)

let (x,y) = M in A pair split (scope of x, y is A)

match M with constructor match

h x → A else B (scope of x is A)

(νa)A restriction (scope of a is A)

A � B fork

M!N transmission of N on channel M

M? receive message off channel

assume C assumption of formula C

assert C assertion of formula C

To evaluate M, return M at once. To evaluate M N, if

M = fun x → A, evaluate A{N/x}. To evaluate M = N,

if the two values M and N are the same, return true
△
=

inr(); otherwise, return false
△
= inl(). To evaluate let x =

A in B, first evaluate A; if evaluation returns a value M,

evaluate B{M/x}. To evaluate let (x1,x2) = M in A, if

M = (N1,N2), evaluate A{N1/x1}{N2/x2}. To evaluate

match M with h x → A else B, if M = h N for some N,

evaluate A{N/x}; otherwise, evaluate B.

To evaluate (νa)A, generate a globally fresh channel

name c, and evaluate A{c/a}. To evaluate A � B, start a

parallel thread to evaluate A (whose return value will be dis-

carded), and evaluate B. To evaluate M!N, if M = c for some

name c, emit message N on channel c, and return () at once.

To evaluate M?, if M = c for some name c, block until some

message N is on channel c, remove N from the channel, and

return N.

To evaluate assume C, add C to the log, and return (). To

evaluate assert C, return (). If S |= C, where S is the set of

logged formulas, we say the assertion succeeds; otherwise,

we say the assertion fails. Either way, it always returns ().

Expression Safety:

An expression A is safe if and only if, in all evaluations of A,

all assertions succeed. (see Appendix B for formal details.)

Types and Subtyping We assume a collection of type

variables, for forming recursive types.

Syntax of Types:

H,T,U ::= type

α type variable

unit unit type

Πx : T. U dependent function type (scope of x is U)

Σx : T. U dependent pair type (scope of x is U)

T +U disjoint sum type

µα.T iso-recursive type (scope of α is T)

(T)chan channel type

{x : T |C} refinement type (scope of x is C)

{C}
△
= { : unit |C} ok-type

(The notation denotes an anonymous variable that by con-

vention occurs nowhere else.)

A value of type unit is the unit value (). A value of type

Πx : T.U is a function M such that if N has type T , then M N

has type U{N/x}. A value of type Σx : T. U is a pair (M,N)
such that M has type T and N has type U{M/x}. A value

of type T +U is either inl M where M has type T , or inr N

where N has type U . A value of type µα.T is a construction

fold M, where M has the (unfolded) type T{µα.T/α}. A

value of type (T)chan is a name c such that for any trans-

mission c!M on c, message M has type T . A value of type

{x : T | C} is a value M of type T such that the formula

C{M/x} follows from the log.

As usual, we can define syntax-directed typing rules for

checking that the value of an expression is of type T , written

E ⊢ A : T , where E is a typing environment. The environ-

ment tracks the types of variables and names in scope. We

write ∅ for the empty environment.

The core principle of our system is safety by typing:

Theorem 1 (Safety by Typing) If ∅ ⊢ A : T then A is safe.

191919

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Section 4 has all the typing rules. The majority are stan-

dard. Here, we explain the intuitions for the rules concern-

ing refinement types, assumptions, and assertions.

The judgment E |= C means C is deducible from the for-

mulas mentioned in refinement types in E. For example:

• If E includes y : {x : T |C} then E |= C{y/x}.

Consider the refinement types T1 = {x1 : T | P(x1)} and

T2 = {x2 : unit | ∀z.P(z) ⇒ Q(z)}. If E = (y1 : T1,y2 : T2)
then E |= Q(y1) (via the rule above plus first-order logic).

The introduction rule for refinement types is as follows.

• If E ⊢ M : T and E |=C{M/x} then E ⊢ M : {x : T |C}.

A special case of refinement is an ok-type, written {C},

and short for { : unit | C}: a type of tokens that a for-

mula holds. For example, up to variable renaming, T2 =
{∀z.P(z) ⇒ Q(z)}. The specialized rules for ok-types are:

• If E includes x : {C} then E |= C.

• A value of type {C} is (), a token that C holds.

The type system includes a subtype relation E ⊢ T <: T ′,

and the usual subsumption rule:

• If E ⊢ A : T and E ⊢ T <: T ′ then E ⊢ A : T ′.

Refinement relates to subtyping as follows. (To avoid

confusion, note that True is a logical formula, which always

holds, while true is a Boolean value, defined as inr ()).

• If T <: T ′ and C |= C′ then {x : T |C} <: {x : T ′ |C′}.

• {x : T | True} <:> T .

For example, {x : T |C} <: {x : T | True} <: T .

We typecheck assume and assert as follows.

• E ⊢ assume C : {C}.

• If E |= C then E ⊢ assert C : unit.

By typing the result of assume as {C}, we track that C can

subsequently be assumed to hold. Conversely, for a well-

typed assert to be guaranteed to succeed, we must check

that C holds in E. This is sound because when typecheck-

ing any A in E, the formulas deducible from E are a lower

bound on the formulas in the log whenever A is evaluated.

Formal Interpretation of our Typechecker We interpret

a large class of F# expressions and modules within our cal-

culus. To enable a compact presentation of the semantics of

RCF, there are two significant differences between expres-

sions in these languages. First, the formal syntax of RCF is

in an intermediate, reduced form (reminiscent of A-normal

form [Sabry and Felleisen, 1993]) where let x = A in B is the

only construct to allow sequential evaluation of expressions.

As usual, A;B is short for let = A in B. More notably, if

A and B are proper expressions rather than being values, the

application A B is short for let f = A in (let x = B in f x).
In general, the use in F# of arbitrary expressions in place of

values can be interpreted by inserting suitable lets.

The second main difference is that the RCF syntax for

communication and concurrency ((νa)A and A � B and M?

and M!N) is in the style of a process calculus. In F# we

express communication and concurrency via a small library

of functions, which is interpreted within RCF as follows.

Functions for Communication and Concurrency:

chan
△
= fun x → (νa)a create new channel

send
△
= fun c → fun x → (c!x � ()) send x on c

recv
△
= fun c → let x = c? in x block for x on c

fork
△
= fun f → (f () � ()) run f in parallel

We also assume standard encodings of strings, numeric

types, Booleans, tuples, records, algebraic types (including

lists) and pattern-matching, and recursive functions. RCF

lacks polymorphism, but by duplicating definitions at multi-

ple monomorphic types we can recover the effect of having

polymorphic definitions.

We use the following notations for functions with pre-

conditions, and non-empty tuples (instead of directly using

the core syntax for dependent function and pair types). We

usually omit conditions of the form {True} in examples.

Derived Notation for Functions and Tuples:

[x1 : T1]{C1}→U
△
= Πx1 : {x1 : T1 |C1}. U

(x1 : T1 ∗ · · · ∗ xn : Tn){C}
△
=

{

Σx1 : T1. . . .Σxn−1 : Tn−1. {xn : Tn |C} if n > 0

{C} otherwise

To treat assume and assert as F# library functions, we

follow the convention that constructor applications are in-

terpreted as formulas (as well as values). If h is an algebraic

type constructor of arity n, we treat h as a predicate symbol

of arity n, so that h(M1, . . . ,Mn) is a formula.

All of our example code is extracted from two kinds of

source files: either extended typed interfaces (.fs7) that de-

clare types, values, and policies; or the corresponding F#

implementation modules (.fs) that define them.

We sketch how to interpret interfaces and modules as

tuple types and expressions. In essence, an interface is a

sequence val x1 : T1 . . . val xn : Tn of value declarations,

which we interpret by the tuple type (x1 : T1 ∗ · · · ∗ xn : Tn).
A module is a sequence let x1 = A1 . . . let xn = An of value

definitions, which we interpret by the expression let x1 =
A1 in . . . let xn = An in (x1, . . . ,xn). If A and T are the in-

terpretations of a module and an interface, our tool checks

whether A : T . Any type declarations are simply inter-

preted as abbreviations for types, while a policy statement

assume C is treated as a declaration val x : {C} plus a defi-

nition let x = assume C for some fresh x.

202020

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Example: Access Control in Partially-Trusted Code

This example illustrates static enforcement of file access

control policies in code that is typechecked but not nec-

essarily trusted, such as applets or plug-ins [Pottier et al.,

2001, Abadi and Fournet, 2003, Abadi, 2006].

We first declare a type for the logical facts in our policy.

We interpret each of its constructors as a predicate symbol:

here, we have two basic access rights, for reading and writ-

ing a given file, and a property stating that a file is public.

type facts =

CanRead of string // read access

| CanWrite of string // write access

| PublicFile of string // some file attribute

We use these facts to give restrictive types to sensitive

primitives. For instance, the declarations

val read: file:string{CanRead(file)}→string

val delete: file:string{CanWrite(file)}→unit

demand that the function read be called only in contexts

that have previously established the fact CanRead A for its

string argument A (and similarly for write). These demands

are enforced at compile time, so in F# the function read just

has type string →string and its implementation may be left

unchanged.

Library writers are trusted to include suitable assume

statements. They may declare policies, in the form of log-

ical deduction rules, declaring for instance that every file

that is writable is also readable:

assume ∀x. CanWrite(x) ⇒CanRead(x)

and they may program helper functions that establish new

facts. For instance, they may declare

val publicfile: file : string →unit{ PublicFile(file) }
assume ∀x. PublicFile(x) ⇒CanRead(x)

and implement publicfile as a partial function that dynami-

cally checks its filename argument.

let publicfile f =

if f = "C:/public/README" then assume (PublicFile(f))

else failwith "not a public file"

where let f x = A is short for let f = fun x → A.

The F# library function failwith throws an exception, so

it never returns and can safely be given the polymorphic

type string →α , where α can be instantiated to any RCF

type. (We also coded more realistic dynamic checks, based

on dynamic lookups in mutable, refinement-typed, access-

control lists. We omit their code for brevity.)

To illustrate our code, consider a few sample files, one

of them writable:

let pwd = "C:/etc/password"

let readme = "C:/public/README"

let tmp = "C:/temp/tempfile"

let = assume (CanWrite(tmp))

Typechecking the test code below reports two type errors:

let test =

delete tmp; // ok

delete pwd; // type error

let v1 = read tmp in // ok, using 1st logical rule

let v2 = read readme in // type error

publicfile readme; let v3 = read readme in () // ok

For instance, the second delete yields the error “Cannot es-

tablish formula CanWrite(pwd) at acls.fs(39,9)-(39,12).”

In the last line, the call to publicfile dynamically tests its

argument, ensuring PublicFile(readme) whenever the final

expression read readme is evaluated. This fact is recorded

in the environment for typing the final expression.

From the viewpoint of fully-trusted code, our inter-

face can be seen as a self-inflicted discipline—indeed, one

may simply assume ∀x.CanRead(x). In contrast, partially-

trusted code (such as mobile code) would not contain any

assume. By typing this code against our library interface,

possibly with a policy adapted to the origin of the code, the

host is guaranteed that this code cannot call read or write

without first obtaining the appropriate right.

Although access control for files mostly relies on dy-

namic checks (ACLs, permissions, and so forth), a static

typing discipline has advantages for programming partially-

trusted code: as long as the program typechecks, one can

safely re-arrange code to more efficiently perform costly dy-

namic checks. For example, one may hoist a check outside

a loop, or move it to the point a function is created, rather

than called, or move it to a point where it is convenient to

handle dynamic security exceptions.

In the code below, for instance, the function reader can

be called to access the content of file readme in any context

with no further run time check.

let test higher order =

let reader = (publicfile readme; (fun () → read readme)) in

let v4 = read readme in // type error

let v5 = reader () in () // ok

Similarly, we programmed (and typed) a function that

merges the content of all files included in a list, under the

assumption that all these files are readable, declared as

val merge: (file:string{ CanRead(file) }) list →string

where list is a type constructor for lists, with a standard im-

plementation typed in RCF.

3 Modelling Cryptographic Protocols

Following Bhargavan et al. [2007], we start with plain F#

functions that create instances of each role of the protocol

(such as client or server). The protocols make use of vari-

ous libraries (including cryptographic functions, explained

212121

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

below) to communicate messages on channels that repre-

sent the public network. We model the whole protocol as an

F# module, interpreted as before as an expression that ex-

ports the functions representing the protocol roles, as well

as the network channel [Sumii and Pierce, 2007]. We ex-

press authentication properties (correspondences [Woo and

Lam, 1993]) by embedding suitable assume and assert ex-

pressions within the code of the protocol roles.

The goal is to verify that these properties hold in spite

of an active opponent able to send, receive, and apply cryp-

tography to messages on network channels [Needham and

Schroeder, 1978]. We model the opponent as some arbi-

trary (untyped) expression O which is given access to the

protocol and knows the network channels [Abadi and Gor-

don, 1999]. The idea is that O may use the communication

and concurrency features of RCF to create arbitrary parallel

instances of the protocol roles, and to send and receive mes-

sages on the network channels, in an attempt to force failure

of an assert in protocol code. Hence, our formal goal is ro-

bust safety, that no assert fails, despite the best efforts of an

arbitrary opponent.

Formal Threat Model: Opponents and Robust Safety

An expression O is an opponent iff O contains no occur-

rence of assert and each type annotation within O is Un.

An expression A is robustly safe iff the application O A is

safe for all opponents O.

(An opponent must contain no assert, or less it could vacu-

ously falsify safety. The constraint on type annotations is a

technical convenience; it does not affect the expressiveness

of opponents.)

Typing the Opponent To allow type-based reasoning

about the opponent, we introduce a universal type Un of

data known to the opponent, much as in earlier work [Abadi,

1999, Gordon and Jeffrey, 2003a]. By definition, Un is

type equivalent to (both a subtype and a supertype of) all

of the following types: unit, (Πx : Un. Un), (Σx : Un. Un),
(Un + Un), (µα.Un), and (Un)chan. Hence, we obtain op-

ponent typability, that O : Un for all opponents O.

It is useful to characterize two kinds of type: public types

(of data that may flow to the opponent) and tainted types (of

data that may flow from the opponent).

Public and Tainted Types:

Let a type T be public if and only if T <: Un.

Let a type T be tainted if and only if Un <: T .

We can show that refinement types satisfy the following

kinding rules. (Section 4 has kinding rules for the other

types, following prior work [Gordon and Jeffrey, 2003b].)

• E ⊢ {x : T |C} <: Un iff E ⊢ T <: Un

• E ⊢ Un <: {x : T |C} iff E ⊢ Un <: T and E,x : T |= C

Consider the type {x : string | CanRead(x)}. According

to the rules above, this type is public, because string is pub-

lic, but it is only tainted if CanRead(x) holds for all x. If we

have a value M of this type we can conclude CanRead(M).
The type cannot be tainted, for if it were, we could conclude

CanRead(M) for any M chosen by the opponent. It is the

presence of such non-trivial refinement types that prevents

all types from being equivalent to Un.

Verification of protocols versus an arbitrary opponent is

based on a principle of robust safety by typing.

Theorem 2 (Robust Safety by Typing) If ∅ ⊢ A : Un then

A is robustly safe.

To apply the principle, if expression A and type T are

the RCF interpretations of a protocol module and a protocol

interface, it suffices by subsumption to check that A : T and

T is public. The latter amounts to checking that Ti is public

for each declaration val xi : Ti in the protocol interface.

A Cryptographic Library We provide various libraries

to support distributed programming. They include polymor-

phic functions for producing and parsing network represen-

tations of values, declared as

val pickle: x:α → (p:α pickled)

val unpickle: p:α pickled → (x:α)

and for messaging: addr is the type of TCP duplex connec-

tions, established by calling connect and listen, and used by

calling send and recv. All these functions are public.

The cryptographic library provides a typed interface to

a range of primitives, including hash functions, symmetric

encryption, asymmetric encryption, and digital signatures.

We detail the interface for HMACSHA1, a keyed hash func-

tion, used in our examples to build messages authentication

codes (MACs). This interface declares

type α hkey = HK of α pickled Seal

type hmac = HMAC of Un

val mkHKey: unit →α hkey

val hmacsha1: α hkey →α pickled →hmac

val hmacsha1Verify: α hkey →Un →hmac →α pickled

where hmac is the type of hashes and α hkey is the type of

keys used to compute hashes for values of type α .

The function mkHKey generate a fresh key (informally

fresh random bytes). The function hmacsha1 computes the

joint hash of a key and a value with matching types α . The

function hmacsha1Verify verifies whether the joint hash of

a key and a value (a priori the pickled representation of any

type β) match some given hash. If verification succeeds,

this value is returned, now with the type α indicated in the

key. Otherwise, an exception is raised.

Although keyed-hash verification is concretely imple-

mented by recomputing the hash and comparing it to the

given hash, this would not meet its typed interface: assume

222222

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

α is the refinement type 〈x:string〉{CanRead(x)}. In order

to hash a string x, one needs to prove CanRead(x) as a pre-

condition for calling hmacsha1. Conversely, when receiv-

ing a keyed hash of x, one would like to obtain CanRead(x)

as a postcondition of the verification—indeed, the result

type of hmacsha1Verify guarantees it. At the end of this

section, we describe a well-typed symbolic implementation

of this interface.

Example: A Protocol based on MACs Our first crypto-

graphic example implements a basic one-message protocol

with a message authentication code (MAC) computed as a

shared-keyed hash; it is a variant of a protocol described

and verified in earlier work [Bhargavan et al., 2007].

We present snippets of the protocol code to illustrate our

typechecking method; Appendix C lists the full source code

for a similar, but more general protocol. We begin with a

typed interface, declaring three types: event for specifying

our authentication property; content for authentic payloads;

and message for messages exchanged on a public network.

type event = Send of string // a type of logical predicate

type content = x:string{Send(x)} // a string refinement

type message = (string ∗ hmac) pickled // a wire format

The interface also declares functions, client and server, for

invoking the two roles of the protocol.

val addr : (string ∗ hmac, unit) addr // a public server address

private val hk: content hkey // a shared secret

private val make: content hkey →content →message

val client: string →unit // start a client

private val check: content hkey →message →content

val server: unit →unit // start a server

The client and server functions share two values: a pub-

lic network address addr where the server listens, and a

shared secret key hk. Given a string argument s, client calls

the make function to build a protocol message by calling

hmacsha1 hk (pickled s). Conversely, on receiving a mes-

sage at addr, server calls the check function to check the

message by calling hmacsha1Verify.

In the interface, values marked as priv may occur only in

typechecked implementations. Conversely, the other values

(addr, client, server) are available to the opponent, as well

as Un-typed values declared in libraries.

Authentication is expressed using a single event Send(s)

recording that the string s has genuinely been sent by the

client—formally, that client(s) has been called. This event is

embedded in a refinement type, content, the type of strings s

such that Send(s). Thus, following the type declarations for

make and check, this event is a pre-condition for building

the message, and a post-condition after successfully check-

ing the message.

Consider the following code for client and server:

let client text =

assume (Send(text)); // privileged, carefully review

let c = connect addr in

send c (make hk text)

let server () =

let c = listen addr in

let text = check hk (recv c) in

assert(Send text) // guaranteed by typing

The calls to assume before building the message and to

assert after checking the message have no effect at run time

(the implementations of these functions simply return ())
but they are used to specify our security policy. In the termi-

nology of cryptographic protocols, assume marks a “begin”

event, while assert marks an “end” event.

Here, the server code expects that the call to check only

returns text values previously passed as arguments to client.

This guarantee follows from typing, by relying on the types

of the shared key and cryptographic functions. On the other

hand, this guarantee does not presume any particular cryp-

tographic implementation—indeed, simple variants of our

protocol may achieve the same authentication guarantee, for

example, by authenticated encryption or digital signature.

Conversely, some implementation mistakes would result

in a compile-time type error indicating a possible attack.

For instance, removing priv from the declaration of the au-

thentication key hk, or attempting to leak hk within client

would not be type-correct; indeed, this would introduce an

attack on our desired authentication property.

Example: Principals and Compromise We now extend

our example with multiple principals, with a shared key be-

tween each pair of principals. Hence, the keyed hash au-

thenticates not only the message content, but also the sender

and the intended receiver. The full implementation is in Ap-

pendix C; here we give only the types.

We represent principal names as strings; Send events are

now parameterized by the sending and receiving principals.

type prin = string

type event = Send of (prin ∗ prin ∗ string) | Leak of prin

type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }

The second event Leak is used in our handling of princi-

pal compromise, as described below. The type definition

of content has two value parameters, a and b; they bind

expression variables in the type being defined, much like

type parameters bind type variables. (Value parameters ap-

pear after type parameters, separated by a semicolon; here,

content has no type parameters before the semicolon.)

We store the keys in a (typed, list-based) private database

containing entries of the form (a,b,k) where k is a symmetric

key of type (;a,b)content shared between a and b.

val genKey: prin →prin →unit

private val getKey: a:

string →b:string → ((;a,b) content) hkey

232323

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Trusted code can call getKey a b to retrieve a key shared

between a and b. Both trusted and opponent code can also

call genKey a b to trigger the insertion of a fresh key into

the database.

To model the possibility of key leakage, we allow oppo-

nent code to obtain a key by calling the function leak:

assume ∀a,b,x. (Leak(a)) ⇒Send(a,b,x)

val leak:

a:prin →b:prin → (unit{ Leak(a) }) ∗ ((;a,b) content) hkey

This function first assumes Leak(a), as recorded in its result

type, then calls getKey a b and returns the key. Since the

opponent gets a key shared between a and b, it can generate

seemingly authentic messages on a’s behalf; accordingly,

we declare the policy that Send(a,b,x) holds for any x af-

ter the compromise of a, so that leak can be given a public

type—without this policy, a subtyping check fails during

typing.

Implementing Formal Cryptography Morris [1973] de-

scribes sealing, a programming language mechanism to

provide “authentication and limited access.” Sumii and

Pierce [2007] provide a primitive semantics for sealing

within a λ -calculus, and observe the close correspondence

between sealing and various formal characterizations of

symmetric-key cryptography.

In our notation, a seal k for a type T is a pair of func-

tions: the seal function for k, of type T → Un, and the un-

seal function for k, of type Un→ T . The seal function, when

applied to M, wraps up its argument as a sealed value, infor-

mally written {M}k in this discussion. This is the only way

to construct {M}k. The unseal function, when applied to

{M}k, unwraps its argument and returns M. This is the only

way to retrieve M from {M}k. Sealed values are opaque; in

particular, the seal k cannot be retrieved from {M}k.

We declare a type of seals, and a function mkSeal to cre-

ate a fresh seal, as follows.

type α Seal = (α →Un) ∗ (Un →α)

val mkSeal: unit →α Seal

To implement a seal k, we maintain a list of pairs

[(M1,a1); . . . ;(Mn,an)]. The list records all the values Mi

that have so far been sealed with k. Each ai is a fresh name

representing the sealed value {Mi}k. The list grows as more

values are sealed; we associate a channel s with the seal k,

and store the current list as the one and only message on s.

We maintain the invariant that both the Mi and the ai are

pairwise distinct: the list is a one-to-one correspondence.

The function mkSeal below creates a fresh seal, by gen-

erating a fresh channel s; the seal itself is the pair of func-

tions (seal s,unseal s). The code uses the channel-based

abbreviations chan, send, and recv displayed in Section 2.

The code also relies on library functions for list lookups:

the function first, of type (α→β option)→α list →β option,

takes as parameters a function and a list; it applies the func-

tion to the elements of the list, and returns its first non-None

result, if any; otherwise it returns None. This function is

applied to a pair-filtering function left, defined as let left z (

x,y)= if z = x then Some y else None, to retrieve the first ai

associated with the value being sealed, if any, and is used

symmetrically with a function right to retrieve the first Mi

associated with the value being unsealed, if any.

type α SealChan = ((α ∗ Un) list) Pi.chan

let seal: α SealChan →α →Un = fun s M →
let state = recv s in match first (left M) state with

| Some(a) →send s state; a

| None →
let a: Un = Pi.name "a" in

send s ((M,a)::state); a

let unseal: α SealChan →Un →α = fun s a →
let state = recv s in match first (right a) state with

| Some(M) →send s state; M

| None → failwith "not a sealed value"

let mkSeal () : α Seal =

let s:α SealChan = chan "seal" in

send s []; (seal s, unseal s)

Within RCF, we derive formal versions of cryptographic

operations, in the spirit of Dolev and Yao [1983], but based

on sealing rather than algebra. Our technique depends

on being within a calculus with functional values. Thus,

in contrast with previous work in cryptographic pi calculi

[Gordon and Jeffrey, 2003b, Fournet et al., 2007b] where

all cryptographic functions were defined and typed as prim-

itives, we can now implement these functions and retrieve

their typing rules by typechecking their implementations.

As an example, we derive a formal model of the func-

tions we use for HMACSHA1 in terms of seals as follows.

let mkHKey ():α hkey = HK (mkSeal ())

let hmacsha1 (HK key) text = HMAC (fst key text)

let hmacsha1Verify (HK key) text (HMAC h) =

let x:α pickled = snd key h in

if x = text then x else failwith "hmac verify failed"

Similarly, we derive functions for symmetric encryption

(AES), asymmetric encryption (RSA), and digital signa-

tures (RSASHA1).

4 A Type System for Robust Safety

We describe the full type system.

Judgments, and Syntax of Environments:

E ⊢ ⋄ E is syntactically well-formed

E ⊢ T in E, type T is syntactically well-formed

E |= C formula C is derivable from E

E ⊢ T :: ν in E, type T has kind ν ∈ {pub, tnt}
E ⊢ T <: U in E, type T is a subtype of type U

E ⊢ A : T in E, expression A has type T

242424

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Syntax of Typing Environments:

µ ::= environment entry

α type variable

α :: {pub, tnt} kinding

a : (T)chan name (of channel type)

x : T variable (of any type)

E ::= µ1, . . . ,µn environment

A name can only have a channel type. If E = µ1, . . . ,µn

we write µ ∈ E to mean that µ = µi for some i ∈ 1..n. We

write T <:> T ′ for T <: T ′ and T ′ <: T . Let dom(E) be the

set of type variables, names, and variables defined in E. Let

fnfv(E) =
⋃

{fnfv(T) | (u : T) ∈ E}.

Rules of Well-Formedness and Deduction:

∅ ⊢ ⋄

E ⊢ ⋄
fnfv(µ) ⊆ dom(E)
dom(µ)∩dom(E) = ∅

E,µ ⊢ ⋄

E ⊢ ⋄
fnfv(T) ⊆ dom(E)

E ⊢ T

E ⊢ ⋄ fnfv(C) ⊆ dom(E) forms(E) |= C

E |= C

forms(E)
△
=

{C{y/x}}∪ forms(y : T) if E = (y : {x : T |C})
forms(E1)∪ forms(E2) if E = (E1,E2)
∅ otherwise

The next set of rules axiomatizes the sets of public and

tainted types, of data that can flow to or from the opponent.

Kinding Rules: E ⊢ T :: ν for ν ∈ {pub, tnt}

E ⊢ ⋄ (α :: {pub, tnt}) ∈ E

E ⊢ α :: ν

E ⊢ ⋄

E ⊢ unit :: ν

E ⊢ T :: tnt

E,x : T ⊢U :: pub

E ⊢ (Πx : T. U) :: pub

E ⊢ T :: pub

E,x : T ⊢U :: tnt

E ⊢ (Πx : T. U) :: tnt

E ⊢ T :: ν E,x : T ⊢U :: ν

E ⊢ (Σx : T. U) :: ν

E ⊢ T :: ν E ⊢U :: ν

E ⊢ (T +U) :: ν

E,α :: {pub, tnt} ⊢ T :: pub

E,α :: {pub, tnt} ⊢ T :: tnt

E ⊢ (µα.T) :: ν

E ⊢ T :: pub

E ⊢ T :: tnt

E ⊢ (T)chan :: ν

E ⊢ {x : T |C} E ⊢ T :: pub

E ⊢ {x : T |C} :: pub

E ⊢ T :: tnt E,x : T |= C

E ⊢ {x : T |C} :: tnt

The following rules of subtyping are standard [Cardelli,

1986, Pierce and Sangiorgi, 1996, Aspinall and Com-

pagnoni, 2001]. The two rules for subtyping refinement

types are the same as in Sage [Gronski et al., 2006].

Subtype: E ⊢ T <: U

E ⊢ T :: pub E ⊢U :: tnt

E ⊢ T <: U

E ⊢ ⋄ α ∈ dom(E)

E ⊢ α <: α

E ⊢ ⋄

E ⊢ unit <: unit

E ⊢ T ′ <: T E,x : T ′ ⊢U <: U ′

E ⊢ (Πx : T. U) <: (Πx : T ′. U ′)

E ⊢ T <: T ′ E,x : T ⊢U <: U ′

E ⊢ (Σx : T. U) <: (Σx : T ′. U ′)

E ⊢ T <: T ′ E ⊢U <: U ′

E ⊢ (T +T ′) <: (U +U ′)

E,α ⊢ T <:> T ′

E ⊢ (µα.T) <: (µα.T ′)

E ⊢ T <: T ′ E ⊢ T ′ <: T

E ⊢ (T)chan <: (T ′)chan

E ⊢ {x : T |C} E ⊢ T <: T ′

E ⊢ {x : T |C} <: T ′

E ⊢ T <: T ′ E,x : T |= C

E ⊢ T <: {x : T ′ |C}

The universal type Un is to be type equivalent to all types

that are both public and tainted; we (arbitrarily) define Un
△
=

(unit)chan. We can show that this definition satisfies the

intended meaning: E ⊢ T :: pub iff E ⊢ T <: Un, and E ⊢
T :: tnt iff E ⊢ Un <: T .

The following congruence rule for refinement types is

derivable from the two primitive rules for refinement types.

We also list the special case for ok-types.

E ⊢ T <: T ′ E,x : {x : T |C} |= C′

E ⊢ {x : T |C} <: {x : T ′ |C′}

E, : {C} |= C′

E ⊢ {C} <: {C′}

Next, we present the rules for typing values. The rule for

constructions h M depends on an auxiliary relation h : (T,U)
that delimits the possible argument T and result U of each

constructor h.

Rules for Values: E ⊢ A : T

E ⊢ ⋄ (v : T) ∈ E

E ⊢ v : T

E ⊢ ⋄

E ⊢ () : unit

E,x : T ⊢ A : U

E ⊢ fun x → A : (Πx : T. U)

E ⊢ M : T E ⊢ N : U{M/x}

E ⊢ (M,N) : (Σx : T. U)

h : (T,U) E ⊢ M : T E ⊢U

E ⊢ h M : U

E ⊢ M : T E |= C{M/x}

E ⊢ M : {x : T |C}

inl:(T,T+U) inr:(U,T+U) fold:(T{µα.T/α},µα.T)

Our final set of rules is for typing arbitrary expressions.

In the rules for pattern-matching pairs and constructions, we

use equations within refinement types to track information

about the matched variables.

Rules for Expressions: E ⊢ A : T

E ⊢ A : T E ⊢ T <: T ′

E ⊢ A : T ′

E ⊢ M : (Πx : T. U) E ⊢ N : T

E ⊢ M N : U{N/x}

252525

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

E ⊢ M : (Σx : T. U)
E,x : T,y : U, : {(x,y) = M} ⊢ A : V

{x,y}∩ fv(V) = ∅

E ⊢ let (x,y) = M in A : V

E ⊢ M : T h : (H,T)
E,x : H, : {h x = M} ⊢ A : U x /∈ fv(U)
E, : {∀x.h x 6= M} ⊢ B : U

E ⊢ match M with h x → A else B : U

E ⊢ M : T E ⊢ N : U

E ⊢ M = N : {b : bool | b = true ⇔ M = N}

E ⊢ ⋄ fnfv(C) ⊆ dom(E)

E ⊢ assume C : {C}

E |= C

E ⊢ assert C : unit

E ⊢ A : T E,x : T ⊢ B : U x /∈ fv(U)

E ⊢ let x = A in B : U

E,a : (T)chan ⊢ A : U a /∈ fn(U)

E ⊢ (νa)A : U

E ⊢ M : (T)chan E ⊢ N : T

E ⊢ M!N : unit

E ⊢ M : (T)chan

E ⊢ M? : T

E, : {A2} ⊢ A1 : T1 E, : {A1} ⊢ A2 : T2

E ⊢ (A1 � A2) : T2

The final rule, for A1 � A2, relies on an auxiliary function

to extract the top-level formulas from A2 for use while type-

checking A1, and to extract the top-level formulas from A1

for use while typechecking A2. The function A returns a

formula representing the conjunction of each C occurring

in a top-level assume C in an expression A, with restricted

names existentially quantified.

Formula Extraction: A

(νa)A = (∃a.A) A1 � A2 = (A1 ∧A2)
let x = A1 in A2 = A1 assume C = C

A = True if A matches no other rule

5 Implementing Refinement Types for F#

We implement a typechecker that takes as input a series

of extended RCF interface files and F# implementation files

and, for every implementation file, perform the following

tasks: (1) typecheck the implementation against its RCF in-

terface, and any other RCF interfaces it may use; (2) kind-

check its RCF interface, ensuring that every public value

declaration has a public type; and then (3) generate a plain

F# interface by erasure from its RCF interface. The pro-

gramming of these tasks almost directly follows from our

type theory. In the rest of this section, we only highlight

some design choices and implementation decisions.

Handling F# Language Features Our typechecker pro-

cesses F# programs with many more features than the cal-

culus of Section 2. Thus, type definitions also feature

mutual recursion, algebraic datatypes, type abbreviations,

and record types; value definitions also feature mutual re-

cursion, polymorphism, nested patterns in let- and match-

expression, records, exceptions, and mutable references. As

described in Section 2, these constructs can be expanded out

to simpler types and expressions within RCF.

Annotating Standard Libraries Any F# program may

use the set of pervasive types and functions in the standard

library; this library includes operations on built-in types

such as strings, Booleans, lists, options, and references, and

also provides system functions such as reading and writing

files and pretty-printing. Hence, to check a program, we

must provide the typechecker with declarations for all the

standard library functions and types it uses. When the types

for these functions are F# types, we can simply use the F#

interfaces provided with the library and trust their imple-

mentation. However, if the program relies on extended RCF

types for some library functions, we must provide our own

RCF interface. For example, the following code declare two

functions on lists:

assume

(∀x, u. Mem(x,x::u)) ∧
(∀x, y, u. Mem(x,u) ⇒Mem(x,y::u)) ∧
(∀x, u. Mem(x,u) ⇒ (∃y, v. u = y::v ∧ (x = y ∨Mem(x,v))))

val mem: x:α →u:α list → r:bool{r=true ⇒Mem(x,u)}
val find: (α →bool) → (u:α list → r:α { Mem(r,u) })

We declare an inductive predicate Mem for list member-

ship and use it to annotate the two library functions for list

membership (mem) and list lookup (find). Having defined

these extended RCF types, we have a choice: we may either

trust that the library implementation satisfies these types,

or reimplement these functions and typecheck them. For

lists, we reimplement (and re-typecheck) these functions;

for other library modules such as String and Printf, we trust

the F# implementation.

Implementing Trusted Libraries In addition to the stan-

dard library, our F# programs rely on libraries for cryptog-

raphy and networking. We write their concrete implemen-

tations on top of .NET Framework classes. For instance, we

define keyed hash functions as:

open System.Security.Cryptography

type α hkey = bytes

type hmac = bytes

let mkHKey () = mkNonce()

let hmacsha1 (k:α hkey) (x:bytes) =

(new HMACSHA1 (k)).ComputeHash x

let hmacsha1Verify (k:α hkey) (x:bytes) (h:bytes) =

let hh = (new HMACSHA1 (k)).ComputeHash x in

if h = hh then x else failwith "hmac verify failed"

262626

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

F# Definitions F# Declarations RCF Declarations Analysis Time Z3 Obligations

Typed Libraries 440 lines 125 lines 146 lines 12.1s 12

Access Control (Section 2) 104 lines 16 lines 34 lines 8.3s 16

MAC Protocol (Section 3) 40 lines 9 lines 12 lines 2.5s 3

Logs and Queries 37 lines 10 lines 16 lines 2.8s 6

Principals & Compromise (Section 3) 48 lines 13 lines 26 lines 3.1s 12

Flexible Signatures (Section 6) 167 lines 25 lines 52 lines 14.6s 28

Table 1. Typechecking Example Programs

Similarly, the network send and recv are implemented using

TCP sockets (and not typechecked in RCF).

We also write symbolic implementations for cryptogra-

phy and networking, coded using seals and channels, and

typechecked against their RCF interfaces. These implemen-

tations can also be used to compile and execute programs

symbolically, sending messages on local channels (instead

of TCP sockets) and computing sealed values (instead of

bytes); this is convenient for testing and debugging, as one

can inspect the symbolic structure of all messages.

Type Annotations and Partial Type Inference Type in-

ference for dependently-typed calculi, such as RCF, is un-

decidable in general. For top-level value definitions, we re-

quire that all types be explicitly declared. For subexpres-

sions, our typechecker performs type inference using stan-

dard unification-based techniques for plain F# types (poly-

morphic functions, algebraic datatypes) but it may require

annotations for types carrying formulas.

Generating Proof Obligations for Z3 Following our

typing rules, our typechecker must often establish that

a condition follows from the current typing environment

(such as when typing function applications and kinding

value declarations). If the formula trivially holds, the type-

checker discharges it; for more involved first-order-logic

formulas, it generates a proof obligation in the Simplify for-

mat [Detlefs et al., 2005] and invokes the Z3 prover. Since

Z3 is incomplete, it sometimes fails to prove a valid for-

mula.

The translation from RCF typing environments to Sim-

plify involves logical re-codings. Thus, constructors are

coded as injective, uninterpreted, disjoint functions. Hence,

for instance, a type definition for lists

type (α) list = Cons of α ∗ α list | Nil

generates logical declarations for a constant Nil and a binary

function Cons, and the two assumptions

assume ∀x,y. Cons(x,y) 6= Nil.

assume ∀x,y,x’,y’.

(x = x’ ∧y = y’) ↔ Cons(x,y) = Cons(x’,y’).

Each constructor also defines a predicate symbol that

may be used in formulas. Not all formulas can be trans-

lated to first-order-logic; for example, equalities between

functional values cannot be translated and are rejected.

Evaluation We have typechecked all the examples of this

paper and a few large programs. Table 1 summarizes our re-

sults; for each example, it gives the number of lines of typed

F# code, of generated F# interfaces, and of declarations in

RCF interfaces, plus typechecking time, and the number of

proof obligations passed to Z3. Since F# programmers are

expected to write interfaces anyway, the line difference be-

tween RCF and F# declarations roughly indicates the addi-

tional annotation burden of our approach.

The first row is for typechecking our symbolic imple-

mentations of lists, cryptography, and networking libraries.

The second row is an extension of the access control ex-

ample of Section 2; the next three rows are variants of the

MAC protocol of Section 3. The final row implements the

protocol described next in Section 6.

The examples in this paper are small programs designed

to exercise the features of our type system; our results in-

dicate that typechecking is fast and that annotations are not

too demanding. In comparison with an earlier tool FS2PV

that compiles F# code to ProVerif [Bhargavan et al., 2007],

our typechecker succeeds on examples with recursive func-

tions, such as the last row in Table 1, where ProVerif fails

to terminate. We expect our method to scale better to larger

examples, since we can typecheck one module at a time,

rather than construct a large ProVerif model. On the other

hand, FS2PV requires no type annotations, and ProVerif can

also prove injective correspondences and equivalence-based

properties [Blanchet et al., 2008].

6 Application: Flexible Signatures

We illustrate the controlled usage of cryptographic sig-

natures with the same key for different intents, or different

protocols. Such reuse is commonplace in practice (at least

for long-term keys) but it is also a common source of er-

rors (see Abadi and Needham [1996]), and it complicates

protocol verification.

The main risk is to issue ambiguous signatures. As an in-

formal design principle, one should ensure that, whenever

a signature is issued, (1) its content follows from the cur-

rent protocol step; and (2) its content cannot be interpreted

otherwise, by any other protocol that may rely on the same

key. To this end, one may for instance sign nonces, iden-

tities, session identifiers, and tags as well as the message

payloads to make the signature more specific.

272727

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

Our example is adapted from protocol code for XML

digital signatures, as prescribed in web services security

standards [Eastlake et al., 2002, Nadalin et al., 2004].

These signatures consist of an XML ”signature informa-

tion”, which represents a list of (hashed) elements covered

by the signature, together with a binary ”signature value”,

a signed cryptographic hash of the signature information.

Web services normally treat received signed-information

lists as sets, and only check that these sets cover selected el-

ements of the message—possibly fewer than those signed,

to enable partial erasure as part of intermediate message

processing. This flexibility induces protocol weaknesses in

some configurations of services. For instance, by providing

carefully-crafted inputs, an adversary may cause a naive ser-

vice to sign more than intended, and then use this signature

(in another XML context) to gain access to another service.

For simplicity, we only consider a single key and two in-

terpretations of messages. We first declare types for these

interpretations (either requests or responses) and their net-

work representation (a list of elements plus their joint sig-

nature).

type id = int // representing message GUIDs

type events =

Request of id ∗ string // id and payload

| Response of id ∗ id ∗ string // id, request id, and payload

type element =

IdHdr of id // Unique message identifier

| InReplyTo of id // Identifier for some related messsage

| RequestBody of string // Payload for a request message

| ResponseBody of string // Payload for a response message

| Whatever of string // Any other elements

type siginfo = element list

type msg = siginfo ∗ dsig

Depending on their constructor, signed elements can

be interpreted for requests (RequestBody), responses,

(InReplyTo, ResponseBody), both (IdHdr), or none

(Whatever). We formally capture this intent in the type dec-

laration of the information that is signed:

type verified = x:siginfo{
(∀id, b.(Mem(IdHdr(id),x) ∧Mem(RequestBody(b),x))

⇒Request(id,b))

∧ (∀id, req, b.(Mem(IdHdr(id),x) ∧Mem(ResponseBody(b),x)

∧Mem(InReplyTo(req),x)) ⇒Response(id,req,b)) }

Thus, the logical meaning of a signature is a conjunction of

message interpretations, each guarded by a series of condi-

tions on the elements included in the signature information.

We only present code for requests. We use the following

declarations for the key pair and for message processing.

private val sk: verified privkey

val vk: verified pubkey

private val mkMessage: verified →msg

private val isMessage: msg →verified

type request = (id:id ∗ b:string){ Request(id,b) }
val isRequest: msg → request

private val mkPlainRequest: request →msg

private val mkRequest: request →siginfo →msg

To accept messages as a genuine requests, we just verify

its signature and find two relevant elements in the list:

let isMessage (msg,dsig) =

unpickle (rsasha1Verify vk (pickle msg) dsig)

let isRequest msg =

let si = isMessage msg in (find id si, find request si)

For producing messages, we may define (and type):

let mkMessage siginfo = (siginfo, rsasha1 sk (pickle siginfo))

let mkPlainRequest (id,payload) =

mkMessage (IdHdr(id)::RequestBody(payload)::[])

let mkRequest (id,payload) extra : msg =

check harmless extra;

mkMessage (IdHdr(id)::RequestBody(payload)::extra)

While mkPlainRequest uses a fixed list of signed elements,

mkRequest takes further elements to sign as an extra pa-

rameter. In both cases, typing the list with the refinement

type verified ensures (1) Request(id,b), from its input refine-

ment type; and (2) that the list does not otherwise match the

two clauses within verified. For mkRequest, this requires

some dynamic input validation check harmless extra where

check harmless is declared as

val check harmless: x: siginfo → r: unit {
(∀s. not(Mem(IdHdr(s),x)))

∧ (∀s. not(Mem(InReplyTo(s),x)))

∧ (∀s. not(Mem(RequestBody(s),x)))

∧ (∀s. not(Mem(ResponseBody(s),x))) }

and recursively defined as

let rec check harmless m = match m with

| IdHdr():: → failwith "bad"

| InReplyTo():: → failwith "bad"

| RequestBody():: → failwith "bad"

| ResponseBody():: → failwith "bad"

| ::xs →check harmless xs

| [] → ()

On the other hand, the omission of this check, or an error in

its implementation, would be caught as a type error.

7 Related Work

Type systems for information flow have been developed

for code written in many languages, including Java [My-

ers, 1999] and ML [Pottier and Simonet, 2003]. Further

works extend them with support for cryptographic mech-

anisms [for example, Askarov et al., 2006, Vaughan and

Zdancewic, 2007, Fournet and Rezk, 2008]. These sys-

tems seek to guarantee non-interference properties for pro-

grams annotated with confidentiality and integrity levels. In

282828

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

contrast, our system seeks to guarantee assertion-based se-

curity properties, commonly used in authorization policies

and cryptographic protocol specifications, and disregards

implicit flows of information.

Type systems with logical effects, such as ours, have also

been used to reason about the security of models of dis-

tributed systems. For instance, type systems for variants of

the π-calculus [Fournet et al., 2007b, Cirillo et al., 2007]

and the λ -calculus [Cirillo et al., 2007] can guarantee that

expressions follow their access control policies. Type sys-

tems for variants of the π-calculus, such as Cryptyc [Gor-

don and Jeffrey, 2002], have been used to verify secrecy, au-

thentication, and authorization properties of protocol mod-

els. Unlike our tool, none of these typecheckers operates on

source code.

The tool CSur has been used to check cryptographic

properties of C code using an external first-order-logic

theorem-prover [Goubault-Larrecq and Parrennes, 2005]; it

does not rely on typing.

Our approach of annotating programs with pre- and post-

conditions has similarities with extended static checkers

used for program verification, such as ESC/Java [Flana-

gan et al., 2002], Spec# [Barnett et al., 2005], and ES-

C/Haskell [Xu, 2006]. Such checkers cannot verify security

properties of cryptographic code, but they can find many

other kinds of errors. For instance, Poll and Schubert [2007]

use ESC/Java2 [Cok and Kiniry, 2004] to verify that an SSH

implementation in Java conforms to a state machine specifi-

cation. Combining approaches can be even more effective,

for instance, Hubbers et al. [2003] generate implementation

code from a verified protocol model and check conformance

using an extended static checker.

In comparison with these approaches, we propose sub-

typing rules that capture notions of public and tainted

data, and we provide functional encodings of cryptography.

Hence, we achieve typability for opponents representing ac-

tive attackers. Also, we use only stable formulas: in any

given run, a formula that holds at some point also holds

for the rest of the run; this enables a simple treatment of

programs with concurrency and side-effects. (This would

not be the case, say, with predicates on the current state of

shared mutable memory.)

One direction for further research is to avoid the need

for refinement type annotations, by inference. A potential

starting point is a recent paper [Rondon et al., 2008], which

presents a polymorphic system of refinement types for ML,

quite related to RCF, together with a type inference algo-

rithm based on predicate abstraction.

Acknowledgments Discussions with Bob Harper and

Dan Licata were useful. Aleks Nanevski commented on

a draft of this paper. Kenneth Knowles suggested a proof

technique. Nikolaj Bjørner and Leonardo de Moura pro-

vided help with Z3. Sergio Maffeis was supported by EP-

SRC grant EP/E044956/1.

A Logic

Formally, our typed calculus is parameterized by the

choice of an authorization logic, in the sense that it relies

only on a series of abstract properties of the logic, rather

than on a particular syntax or semantics for logic formulas.

Experimentally, our prototype implementation uses ordi-

nary first order logic with equality, with terms that include

all the values M, N of Section 2 (including functional val-

ues). During typechecking, this logic is partially mapped

to the SIMPLIFY input of Z3, with the implementation re-

striction that no term should include any functional value.

(This restriction prevents discrepancies on term equalities

between the calculus and the logic.)

We use the following abstract syntax.

First-Order Logic with Equality:

p predicate symbol

C ::= formula

C∧C′ conjunction

C∨C′ disjunction

¬C negation

∀x.C universal quantification

∃x.C existential quantification

p(M1, . . . ,Mn) atomic predicate

M = M′ equation

True
△
= ∀x.x = x

False
△
= ¬True

M 6= M′ △
= ¬(M = M′)

(C ⇒C′)
△
= (¬C∨C′)

(C ⇔C′)
△
= (C ⇒C′)∧ (C′ ⇒C)

As usual with first order logic, the logical terms may include

both variables and function symbols (coded as datatype con-

structors). In addition, they may include function abstrac-

tions fun x → A, considered up to consistent renaming of

bound variables. (These functions are inert in the logic; they

can be compared but not applied.)

Other interesting logics for our verification purposes in-

clude logics with “says” modalities [Abadi et al., 1993],

which may be used to give a logical account of principals

and partial trust by typing [Fournet et al., 2007b].

B Semantics and Safety of Expressions

This appendix formally defines the operational seman-

tics of expressions, and the notion of expression safety, as

introduced in Section 2.

292929

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

An expression can be thought of as denoting a structure,

given as follows. We define the meaning of assume C and

assert C in terms of a structure being statically safe.

Let an elementary expression, e, be any expression apart

from a let, restriction, fork, message send, or an assumption.

Structures and Static Safety:

∏i∈1..n Ai
△
= () � A1 � . . . � An

L ::= {} | (let x = L in B)

S ::= (νa1) . . .(νaℓ)
((∏

i∈1..m

assume Ci) � (∏
j∈1..n

M j!N j) � (∏
k∈1..o

Lk{ek}))

Let structure S be statically safe if and only if, for all p ∈
1..o and C, if ep = assert C then {C1, . . . ,Cm} ⊢C.

Heating: A ⇛ A′

Axioms A ≡ A′ are read as both A ⇛ A′ and A′ ⇛ A.

A ⇛ A

A ⇛ A′′ if A ⇛ A′ and A′ ⇛ A′′

A ⇛ A′ ⇒ let x = A in B ⇛ let x = A′ in B

A ⇛ A′ ⇒ (νa)A ⇛ (νa)A′

A ⇛ A′ ⇒ (A � B) ⇛ (A′ � B)
A ⇛ A′ ⇒ (B � A) ⇛ (B � A′)

() � A ≡ A

M!N ⇛ M!N � ()
assume C ⇛ assume C � ()

a /∈ fn(A′) ⇒ A′ � ((νa)A) ⇛ (νa)(A′ � A)
a /∈ fn(A′) ⇒ ((νa)A) � A′ ⇛ (νa)(A � A′)
a /∈ fn(B) ⇒ let x = (νa)A in B ⇛ (νa)let x = A in B

(A � A′) � A′′ ≡ A � (A′ � A′′)
(A � A′) � A′′ ⇛ (A′ � A) � A′′

let x = (A � A′) in B ≡ A � (let x = A′ in B)

Reduction: A → A′

(fun x → A) N → A{N/x}
(let (x1,x2) = (N1,N2) in A) → A{N1/x1}{N2/x2}
(match M with h x → A else B) →

{

A{N/x} if M = h N for some N

B otherwise

M = N →

{

true if M = N

false otherwise

c!M � c? → M

assert C → ()
let x = M in A → A{M/x}

A → A′ ⇒ let x = A in B → let x = A′ in B

A → A′ ⇒ (νa)A → (νa)A′

A → A′ ⇒ (A � B) → (A′ � B)
A → A′ ⇒ (B � A) → (B � A′)

A → A′ if A ⇛ B,B → B′,B′ ⇛ A′

Expression Safety:

An expression A is safe if and only if, for all A′ and S, if

A →∗ A′ and A′ ⇛ S, then S is statically safe.

C Example Code

We provide the complete interface and implementation

code for the final MAC-based authentication protocol of

Section 3.

Refinement-Typed Interface

module M

open Pi

open Crypto

open Net

type prin = string

type event = Send of (prin ∗ prin ∗ string) | Leak of prin

type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }
type message = (prin ∗ prin ∗ string ∗ hmac) pickled

private val mkContentKey:

a:prin →b:prin → ((;a,b)content) hkey

private val hkDb:

(prin∗prin, a:prin ∗ b:prin ∗ k:(;a,b) content hkey) Db.t

val genKey: prin →prin →unit

private val getKey: a:

string →b:string → ((;a,b) content) hkey

assume ∀a,b,x. (Leak(a)) ⇒Send(a,b,x)

val leak:

a:prin →b:prin → (unit{ Leak(a) }) ∗ ((;a,b) content) hkey

val addr : (prin ∗ prin ∗ string ∗ hmac, unit) addr

private val check:

b:prin →message → (a:prin ∗ (;a,b) content)

val server: string →unit

private val make:

a:prin →b:prin → (;a,b) content →message

val client: prin →prin →string →unit

F# Implementation Code

module M

open Pi

open Crypto // Crypto Library

open Net // Networking Library

// Simple F# types for principals, events, payloads, and messages:

type prin = string

type event = Send of (prin ∗ prin ∗ string) | Leak of prin

303030

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

type content = string

type message = (prin ∗ prin ∗ string ∗ hmac) pickled

// Key database:

let hkDb : ((prin∗prin),(prin∗prin∗(content hkey))) Db.t =

Db.create ()

let mkContentKey (a:prin) (b:prin) : content hkey =

mkHKey()

let genKey a b =

let k = mkContentKey a b in

Db.insert hkDb (a,b) (a,b,k)

let getKey a b =

let a’,b’,sk = Db.select hkDb (a,b) in

if (a’,b’) = (a,b) then sk else failwith "select failed"

// Key compromise:

let leak a b =

assume (Leak(a)); ((),getKey a b)

// removed: assume (Leak(b));

// Server code:

let addr : (prin ∗ prin ∗ string ∗ hmac, unit) addr =

http "http://localhost:7000/pwdmac"

let check b m =

let a,b’,text,h = unpickle m in

if b = b’ then

let k = getKey a b in

(a,

unpickle(hmacsha1Verify k (pickle (text:string)) h))

else failwith "Not the intended recipient"

let server b =

let c = listen addr in

let (a,text) = check b (recv c) in

assert(Send(a,b,text))

// Client code:

let make a b s =

pickle (a,b,s,hmacsha1 (getKey a b) (pickle s))

let client a b text =

assume (Send(a,b,text));

let c = connect addr in

send c (make a b text)

// Execute one instance of the protocol:

let = genKey "A" "B"

let = fork (fun (u:unit) →client "A" "B" "Hello")

let = server "B"

References

M. Abadi. Access control in a core calculus of depen-

dency. In International Conference on Functional Program-

ming (ICFP’06), 2006.

M. Abadi. Secrecy by typing in security protocols. JACM, 46(5):

749–786, Sept. 1999.

M. Abadi and B. Blanchet. Analyzing security protocols with se-

crecy types and logic programs. JACM, 52(1):102–146, 2005.

M. Abadi and C. Fournet. Access control based on execution his-

tory. In 10th Annual Network and Distributed System Sympo-

sium (NDSS’03). Internet Society, February 2003.

M. Abadi and A. D. Gordon. A calculus for cryptographic pro-

tocols: The spi calculus. Information and Computation, 148:

1–70, 1999.

M. Abadi and R. Needham. Prudent engineering practice for cryp-

tographic protocols. IEEE Transactions on Software Engineer-

ing, 22(1):6–15, 1996.

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus

for access control in distributed systems. ACM TOPLAS, 15(4):

706–734, 1993.

A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-

masked flows. In Static Analysis Symposium, volume 4134 of

LNCS, pages 353–369. Springer, 2006.

D. Aspinall and A. Compagnoni. Subtyping dependent types.

TCS, 266(1–2):273–309, 2001.

M. Barnett, M. Leino, and W. Schulte. The Spec# programming

system: An overview. In CASSIS’05, volume 3362 of LNCS,

pages 49–69. Springer, January 2005.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified

interoperable implementations of security protocols. Technical

Report MSR–TR–2006–46, Microsoft Research, 2007. See also

CSFW’06 and WS-FM’06.

B. Blanchet. An efficient cryptographic protocol verifier based on

Prolog rules. In IEEE Computer Security Foundations Work-

shop (CSFW’01), pages 82–96, 2001.

B. Blanchet, M. Abadi, and C. Fournet. Automated verification of

selected equivalences for security protocols. Journal of Logic

and Algebraic Programming, 75(1):3–51, 2008.

L. Cardelli. Typechecking dependent types and subtypes. In Foun-

dations of Logic and Functional Programming, volume 306 of

LNCS, pages 45–57. Springer, 1986.

A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Do As I SaY!

Programmatic access control with explicit identities. In IEEE

Computer Security Foundations Symposium (CSF’07), pages

16–30, 2007.

D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML.

In CASSIS’05, volume 3362 of LNCS, pages 108–128. Springer,

2004.

L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools

and Algorithms for the Construction and Analysis of Systems

(TACAC’08), volume 4963 of LNCS, pages 337–340. Springer,

2008.

D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover

for program checking. JACM, 52(3):365–473, 2005.

313131

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

D. Dolev and A. Yao. On the security of public key protocols.

IEEE Transactions on Information Theory, IT–29(2):198–208,

1983.

D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox,

B. LaMacchia, and E. Simon. XML-Signature Syntax and Pro-

cessing, 2002. W3C Recommendation, at http://www.w3.

org/TR/2002/REC-xmldsig-core-20020212/.

J.-C. Filliâtre. Why: a multi-language multi-prover verification

condition generator. http://why.lri.fr/, 2003.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,

and R. Stata. Extended static checking for Java. SIGPLAN Not.,

37(5):234–245, 2002.

C. Fournet and T. Rezk. Cryptographically sound implementa-

tions for typed information-flow security. In 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’08), pages 323–335, Jan. 2008.

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for

authorization policies. ACM TOPLAS, 29(5), 2007a. In press.

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for au-

thorization policies in distributed systems. In 20th IEEE Com-

puter Security Foundations Symposium (CSF’07), pages 31–45,

2007b.

T. Freeman and F. Pfenning. Refinement types for ML. In Pro-

gramming Language Design and Implementation (PLDI’91),

pages 268–277. ACM, 1991.

A. D. Gordon and A. S. A. Jeffrey. Cryptyc: Cryptographic pro-

tocol type checker. At http://cryptyc.cs.depaul.

edu/, 2002.

A. D. Gordon and A. S. A. Jeffrey. Authenticity by typing for

security protocols. Journal of Computer Security, 11(4):451–

521, 2003a.

A. D. Gordon and A. S. A. Jeffrey. Types and effects for asym-

metric cryptographic protocols. Journal of Computer Security,

12(3/4):435–484, 2003b.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol

analysis on real C code. In VMCAI’05, pages 363–379, 2005.

J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan.

Sage: Hybrid checking for flexible specifications. In R. Findler,

editor, Scheme and Functional Programming Workshop, pages

93–104, 2006.

C. Gunter. Semantics of programming language. MIT Press, 1992.

E. Hubbers, M. Oostdijk, and E. Poll. Implementing a formally

verifiable security protocol in Java Card. In Security in Perva-

sive Computing, pages 213–226, 2003.

J. H. Morris, Jr. Protection in programming languages. Commun.

ACM, 16(1):15–21, 1973.

A. C. Myers. JFlow: Practical mostly-static information flow con-

trol. In ACM Symposium on Principles of Programming Lan-

guages (POPL’99), pages 228–241, 1999.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. OASIS

Web Services Security: SOAP Message Security 1.0 (WS-

Security 2004), Mar. 2004. At http://www.oasis-open.

org/committees/download.php/5941/

oasis-200401-wss-soap-message-security-1.

0.pdf.

R. Needham and M. Schroeder. Using encryption for authentica-

tion in large networks of computers. Commun. ACM, 21(12):

993–999, 1978.

B. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-

cesses. Mathematical Structures in Computer Science, 6(5):

409–454, 1996.

E. Poll and A. Schubert. Verifying an implementation of SSH. In

WITS’07, pages 164–177, 2007.

F. Pottier and Y. Régis-Gianas. Extended static check-

ing of call-by-value functional programs. Draft, July

2007. URL http://cristal.inria.fr/˜fpottier/

publis/pottier-regis-gianas-escfp.ps.gz.

F. Pottier and V. Simonet. Information flow inference for ML.

ACM TOPLAS, 25(1):117–158, 2003.

F. Pottier, C. Skalka, and S. Smith. A systematic approach to ac-

cess control. In Programming Languages and Systems (ESOP

2001), volume 2028 of LNCS, pages 30–45. Springer, 2001.

P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Pro-

gramming Language Design and Implementation (PLDI’08).

ACM, 2008. To appear.

J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications:

Predicate subtyping in PVS. IEEE Transactions on Software

Engineering, 24(9):709–720, 1998.

A. Sabry and M. Felleisen. Reasoning about programs in

continuation-passing style. LISP and Symbolic Computation,

6(3–4):289–360, 1993.

E. Sumii and B. Pierce. A bisimulation for dynamic sealing. TCS,

375(1–3):169–192, 2007. Extended abstract at POPL’04.

D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

J. A. Vaughan and S. Zdancewic. A cryptographic decentralized

label model. In IEEE Symposium on Security and Privacy,

pages 192–206, Washington, DC, USA, 2007.

T. Woo and S. Lam. A semantic model for authentication pro-

tocols. In IEEE Symposium on Security and Privacy, pages

178–194, 1993.

H. Xi and F. Pfenning. Dependent types in practical programming.

In ACM Symposium on Principles of Programming Languages

(POPL’99), pages 214–227. ACM, 1999.

D. N. Xu. Extended static checking for Haskell. In ACM SIGPLAN

workshop on Haskell (Haskell’06), pages 48–59. ACM, 2006.

323232

Authorized licensed use limited to: Imperial College London. Downloaded on June 24,2010 at 15:13:10 UTC from IEEE Xplore. Restrictions apply.

