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Abstract

In this paper, we give some sharper refinements and generalizations of inequalities

related to Shafer-Fink’s inequality for the inverse sine function stated in Theorems 1, 2,

and 3 of Bercu (Math. Probl. Eng. 2017: Article ID 9237932, 2017).
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1 Introduction

Inverse trigonometric functions, particularly the inverse sine function, have many appli-

cations in computer science and engineering. They are widely used in many fields, such as

telecommunications, especially optical fiber telecommunications, signal processing, ma-

chine learning, and so on.

The main objective of the research presented in this paper is a refinement of Shafer-

Fink’s inequality

x

 +
√
 – x

≤ arcsinx≤
πx

 +
√
 – x

()

for x ∈ [, ]; see [, ].

Various improvements of Shafer-Fink’s inequality have been considered so far in [] and

[–]. Also, let us mention that one refinement of Shafer-Fink’s inequality was given in

[], and it had applications in [, ] (see also []).

In this paper, we focus on the results of Bercu [] related to Shafer-Fink’s inequality and

give generalizations and refinements of the inequalities stated in Theorems , , and  in

that paper. For e convenience of the reader, we further cite them.

Statement  ([, Theorem ]) For every real number  ≤ x ≤ , the following two-sided

inequality holds:
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Statement  ([, Theorem ]) For every x ∈ [, ] on the left-hand side and every x ∈
[, .] on the right-hand side, the following inequalities hold:

(

 –
π



)

x +

(




–

π



)

x ≤ arcsinx –
πx

 +
√
 – x

≤
(

 –
π



)

x. ()

Statement  ([, Theorem ]) For every  ≤ x≤ , we have:

arcsinx –
x

 +
√
 – x

≥
a(x)

 +
√
 – x

, ()

where a(x) = (/)x + (/)x.

2 Main results

The main results of this paper are generalizations and improvements of the inequalities

related to Shafer-Fink’s inequalities given in Theorems , , and  by Bercu [], here State-

ments , , and .

First, let us recall some well-known power series expansions.

For |x| ≤ ,

arcsinx =

∞
∑

m=

A(m)xm+, ()

where

A(m) =
(m)!

(m!)(m + )m
()

form ∈N.

Also, for |x| ≤ ,

√
 – x =

∞
∑

m=

B(m)xm+, ()

where

B(m) =

m
∑

k=

k!

k!(k + )!k+
()

form ∈N.

2.1 Refinements of the inequalities in Statements 1 and 2

Let us consider the function

ϕk(x) =
kx

 +
√
 – x

()

for x ∈ [, ] and k =  or k = π .
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Then, for x ∈ [, ], we have:

ϕk(x) = kx
(

 –
√
 – x

)

·


 + x

= kx

(

 –

∞
∑

i=

B(i)xi+

)

·
∞

∑

j=

(–)j

j+
xj

=

∞
∑

m=

Ck(m)xm+, ()

where

Ck(m) =
(–)mk

m+
+

m–
∑

i=

k(–)m––i(i)!

m–ii!(i + )!i+
()

for m ∈ N and Ck() =
k

. Equality () is obtained by applying Cauchy’s product to the

corresponding series.

It is easy to verify that the following recurrence relations hold:

A(m + ) =
(m + )

(m + )(m + )
A(m), ()

Ck(m + ) =
k



(m)!

m!(m + )!m+
–



Ck(m), Ck() =

k


, ()

and

Ck(m + ) =
k


·
m + 

m + 
A(m) –




Ck(m) ()

form ∈N and k =  or k = π .

Next, let us consider the function

fk(x) = arcsinx – ϕk(x) ()

for x ∈ [, ] and k =  or k = π . Then, for x ∈ [, ], we have:

fk(x) =

∞
∑

m=

Dk(m)xm+, ()

where

Dk(m) = A(m) –Ck(m) ()

form ∈N.

Let us prove that Dk(n) >  for all n ∈N , n≥ .

First, we note that for k =  or k = π , we have:

Dk() = A() –Ck() =



–

k


> ,

Dk() = A() –Ck() =



–

k

,
> .
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Now, let us assume that the statement holds for n =m, that is, Dk(m) > .

We will prove that the statement holds for n =m + , that is, Dk(m + ) > .

Using the recurrence relations (), (), and (), we get:

Dk(m + )

= A(m + ) –Ck(m + )

=
(m + )

(m + )(m + )
A(m + ) –

k



m + 

m + 
A(m + ) +




Ck(m + )

=

(

(m + )

(m + )(m + )
–
k



m + 

m + 

)

A(m + ) +




(

k



m + 

m + 
A(m) –




Ck(m)

)

=

((

(m + )

(m + )(m + )
–
k



m + 

m + 

)

(m + )

(m + )(m + )
+
k



m + 

m + 
–




)

A(m)

+



Dk(m)

=
– + k + ( – k)m + ( – k)m + ( – k)m

(m + )(m + )(m + )
A(m) +




Dk(m)

=
km(m – ) + k –  + ( – k)m + ( – k)m + ( – k)m

(m + )(m + )(m + )
A(m)

+



Dk(m).

Observing the above expression and using the induction hypothesis (Dk(m) > ), we con-

clude thatDk(m+) > . Hence, by the principle of mathematical induction it follows that

Dk(n) >  for all n ∈N , n ≥ , that is,

Dk(m) =
(m)!

(m!)(m + )m
–

(

(–)mk

m+
+

m–
∑

i=

k(–)m––i(i)!

m–ii!(i + )!i+

)

> . ()

Thus, we have proved the following theorem.

Theorem  For x ∈ [, ], n ∈N , and k =  or k = π , we have the inequality

n
∑

m=

Dk(m)xm+ ≤ arcsinx –
kx

 +
√
 – x

. ()

Remark  For n =  and n = , we get the left-hand sides of the inequalities stated in

Statements  and , respectively (Theorems  and  from Bercu []).

Example  For k = , the following statements are true for every x ∈ [, ].

• If n = , then




x +




x +



,
x ≤ arcsinx –

x

 +
√
 – x

≤
π – 


.

• If n = , then




x +




x +



,
x +



,
x ≤ arcsinx –

x

 +
√
 – x

≤
π – 
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• If n = , then




x +




x +



,
x +



,
x +

,

,,
x ≤ arcsinx –

x

 +
√
 – x

≤
π – 


,

etc.

Also, for k = π , the following statements are true for every x ∈ [, ].

• If n = , then
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)
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)
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)
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• If n = , then
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)
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• If n = , then

(

 –
π



)

x +

(




–
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)

x +

(




–

π



)

x +

(




–

π

,

)

x

+

(



,
–

π

,

)

x ≤ arcsinx –
πx

 +
√
 – x

≤
(

 –
π



)

x,

etc.

2.2 Refinements of the inequality in Statement 3

In [, Theorem ], Bercu proved the following inequalities for every x ∈ [, ]:

arcsinx –


 +
√
 – x

≥
a(x)

 +
√
 – x

, ()

where a(x) = (/)x + (/)x.

We propose the following improvement and generalization of ().

Theorem  If n ∈N and n≥ , then

arcsinx –
x

 +
√
 – x

≥
∑n

m= E(m)xm+

 +
√
 – x

()

for every x ∈ [, ], where

E(m) =
m(m – )!

(m + )m–m!
–
mm–(m – )!

(m + )!
, m ∈N ,m≥ . ()

Remark  Note that inequality () is a particular case of () for n = .
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Example  For n > , inequality () refines inequality (), and we have the following

new results.

• Taking n =  in () gives

arcsinx –
x

 +
√
 – x

≥


x + 


x + 

,
x

 +
√
 – x

for all x ∈ [, ].

• Taking n =  in () gives

arcsinx –
x

 +
√
 – x

≥


x + 


x + 

,
x + ,

,
x

 +
√
 – x

for all x ∈ [, ].

• Taking n =  in () gives

arcsinx –
x

 +
√
 – x

≥


x + 


x + 

,
x + ,

,
x + ,

,,
x

 +
√
 – x

for all x ∈ [, ],

etc.

Proof of Theorem  Based on Cauchy’s product of power series () and (), the real ana-

lytical function

g(x) =
(

 +
√
 – x

)

· arcsinx – x ()

has the power series

g(x) =

∞
∑

m=

E(m)xm+ for x ∈ [, ], ()

where

E(m) =
(m)!

m!(m + )m

–

m–
∑

k=

(k)!

k!(k + )!k+
·

((m – k – ))!

((m – k – )!)(m – k – )(m–k–)
()

form = , , . . . .

First, we prove relation (). Consider the sequence (S(m))m∈N ,m≥ where

S(m) =

m–
∑

k=

F(m,k) ()

and

F(m,k) =
(k)!((m – k – ))!

k!(k + )!k+((m – k – )!)(m – k – )(m–k–)
.
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Consider the functiona

G(m,k) =
(m – k)(k – (m + )k –m)(k)!(m – k – )!

(m – k + )((m – k)!)m(k!)

for m ∈ N and k ∈ {, , . . . ,m – }. It is not hard to verify that the functions F(m,k) and

G(m,k) satisfy the following relation:

–(m + )mF(m,k) +m(m + )(m + )F(m + ,k) = G(m,k + ) – G(m,k). ()

If we sum both sides of () from k =  to k =m – , then we get the relation

– (m + )mS(m) +m(m + )(m + )S(m + )

= G(m,m – ) – G(m, ) – (m + )mF(m,m – )

+m(m + )(m + )F(m + ,m – ) +m(m + )(m + )F(m + ,m).

Finally, as

G(m,m – ) = –




(m + m – )(m – )!

m((m – )!)
, G(m, ) = –

m(m – )!

(m + )mm!
,

F(m + ,m – ) =




(m – )!

(m – )!m!m–
, F(m + ,m) =

(m)!

m!(m + )!m+
,

and

F(m,m – ) =
(m – )!

(m – )!m!m–
,

we have the following recurrence for S(m):

–(m + )mS(m) +m(m + )(m + )S(m + ) =
(m – )!

(m + )m((m – ))!
. ()

An algorithm for finding solutions of linear recurrence equations with polynomial coeffi-

cients can be found, for example, in [] and [].

It is easy to verify that the function

S(m) =




mm!

(m)!(m + )m
+

(m)!

mm!(m + )
, m ∈ N , ()

satisfies the recurrence relation (). Hence, based on (), (), and (), we have:

E(m) =
(m)!

m!(m + )m
– S(m)

=
m(m – )!

(m + )m–m!
–
mm–(m – )!

(m + )!

= 
(m – )! –mm–(m – )!

m–(m – )!(m + )!
()

form ∈N ,m≥ .
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Now we prove that E(m) >  for everym = , , . . . . It suffices to show that

(m – )! –mm–(m – )! >  form ∈N ,m≥ , ()

that is,

T(m) =
(m – )!

mm–(m – )!
>  form ∈N ,m≥ . ()

Statement () is true form = , that is, T() =  > . Observing that

T(k + ) = T(k)
(k + )

k(k + )
()

and using the induction hypothesis (i.e., T(k) = (k–)!

kk–(k–)!
>  for some positive integer

k ≥ ), we conclude, by the principle of mathematical induction, that T(k + ) > . There-

fore, inequalities () and () are true, and consequently E(m) >  form ∈N ,m ≥ . �

3 Conclusion

In this paper, we proposed and proved new inequalities, which present refinements and

generalizations of inequalities stated in [], related to Shafer-Fink’s inequality for the in-

verse sine function.

Also, our approach provides inequalities that allow new approximations of the functions

arcsinx –
x

 +
√
 – x

and arcsinx –
πx

 +
√
 – x

for all x ∈ [, ].

Finally, let us note that proofs of inequalities () and () for any fixed n ∈ N and k ∈
{,π} can be obtained by substituting x = sin t for t ∈ [,π/] and using the methods and

algorithms developed in [] and [].
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Endnote
a

A method for determining function G(m, k) for a given function F(m, k) can be found in [17]. Note that the pair of

discrete functions (F(m, k), G(m, k)) is the so-called Wilf-Zeilberger pair [21].
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