
Refinements and Multi-Dimensional Separation of Concerns

Don Batory, Jia Liu, Jacob Neal Sarvela
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{batory, jliu, sarvela}@cs.utexas.edu

ABSTRACT1

Step-wise refinement (SWR) asserts that complex programs
can be derived from simple programs by progressively add-
ing features. The length of a program specification is the
number of features that the program has. Critical to the scal-
ability of SWR are multi-dimensional models that separate
orthogonal feature sets. Let n be the dimensionality of a
model and k be the number of features along a dimension.
We show program specifications that could be O(kn) features
long have short and easy-to-understand specifications of
length O(kn) when multi-dimensional models are used. We
present new examples of multidimensional models: a micro
example of a product-line (whose programs are 30 lines of
code) and isomorphic macro examples (whose programs
exceed 30K lines of code). Our work provides strong evi-
dence that SWR scales to synthesis of large systems.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: methodologies,
tools; D.2.10 [Design] methodologies, specification; D.2.11
[Software Architectures]: data abstraction; D.2.13 [Reus-
able Software] domain engineering, reusable libraries; I.2.2
[Automatic Programming]: program synthesis, program
transformation.

General Terms
Design

Keywords
multidimensional separation of concerns, refinements,
AHEAD, feature-oriented programming, Origami, program
synthesis, GenVoca.

1 Introduction

Multi-Dimensional Separation of Concerns (MDSOC) is an
approach to simplify the specification, development, and
design of software [14][20][15]. MDSOC asserts that a pro-
gram can be decomposed or modularized in many different
ways: by classes, by features, by aspects, by functions, etc.
Each partitions the space of primitive software artifacts,
called units, in a different way. Thus, partitioning software
by features “cross-cuts” a partitioning by classes, and vice
versa. The same applies to other modularizations. MDSOC
advocates that modularity can be understood by multi-
dimensional spaces of units, where dimensions represent dif-
ferent modularizations (e.g., classes), and units along a
dimension are particular instances of that dimension’s modu-
larity (e.g., specific classes). Further, no preference is given
to a particular dimension: all are treated equally.

Our research is in software product-lines and the synthesis of
programs that are members of a product-line [2]. The hall-
mark of product-lines is its use of features to describe and
distinguish product-line members [9][11][22]. A feature is a
characteristic that programs of a product-line can share; dis-
tinct programs in a product-line are described by distinct
combinations of features.

Our twist on product-lines explores feature modularity.
When a program is described by features, we synthesize that
program by composing modules that implement those fea-
tures. The basis of our approach is step-wise refinement,
which asserts that a complex program can be synthesized
from a simple program by progressively adding features
[8][6].

It would seem that our view of modularity is the antithesis of
MDSOC, which explicitly advocates multiple modulariza-
tions and criticizes the use of only one. In reality, these
approaches are actually much closer than they appear. An
interesting overlap occurs when software can be modular-
ized by orthogonal sets of features. In a 2-dimensional case,
both dimensions represent feature sets, where a feature of a
column dimension “cross-cuts” the units that comprise fea-
tures of the row dimension, and vice versa.

Our preliminary recognition of this connection with
MDSOC was reported in [3]. Our understanding of this rela-

1. This work was supported in part by the U.S. Army Simulation and Train-
ing Command (STRICOM) contract N61339-99-D-10.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE'03, September 1-9, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009. $5.00.

tionship has evolved substantially since, and in this paper
we present new examples and a more general interpretation
of MDSOC in the context of step-wise refinement. We
demonstrate the generality of the marriage of these
approaches by showing a micro example of a product-line
(whose programs are 30 lines of code) and isomorphic
macro examples (whose programs exceed 30K lines of
code), a difference in three orders of magnitude in program
size.

Our results provide strong evidence that step-wise refine-
ment scales to large systems, and critical to the scaling of
step-wise refinement are multi-dimensional models that
compactly describe and specify target product-line mem-
bers. We begin with a brief description of our prior work.

2 FOP and AHEAD

Feature Oriented Programming (FOP) is the study of fea-
ture modularity in product-lines [16]. AHEAD (Algebraic
Hierarchical Equations for Application Design) is an
approach to FOP based on step-wise refinement [2]. The
fundamental premise of AHEAD is that programs are con-
stants and refinements are functions that add features to
programs. Consider the following constants that represent
base programs with different features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and
produces a refined or feature-augmented program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is an equation that is a named
expression. Different equations define a family of applica-
tions, such as:

app1 = i(f) // app1 has features i and f
app2 = j(g) // app2 has features j and g
app3 = i(j(f)) // app3 has features i, j, f

Thus, the features of an application can be determined by
inspecting its equation.

An AHEAD model or domain model is a set of constants
and functions. The set of equations that can be composed
from the units (i.e., constants or functions) of a model
defines a product-line, where each equation corresponds to
a member of that product-line.

Since not all features are compatible [7], there are con-
straints on how units of a model can be legally composed.
These constraints, called design rules, are not essential to
this paper; details are presented in [5].

Implementation. Figure 1a-b show features K and R. K
defines a base class C; R defines a class refinement which

adds variable y and method h to class C. In general, a class
refinement can add new data members, methods, construc-
tors to a class, as well as extend existing methods and con-
structors. The composition of R and K, denoted R(K) or R•K,
is shown in Figure 1c; composition merges the changes of R
into K yielding an updated class definition.

An AHEAD constant is a set of base classes. An AHEAD
function is a set of base classes and class refinements. That
is, an AHEAD function refines existing classes but can add
new classes (which can be subsequently refined) as well.
An AHEAD function typically encapsulates a “cross-cut”,
meaning that it encapsulates fragments (refinements) of
multiple classes. Composing AHEAD constants and func-
tions yields packages of fully formed classes [3].

As AHEAD deals with cross-cuts, it is related to Aspect-
Oriented Programming. We explain this relationship in
Section 5. AHEAD refinements have a long history, origi-
nating in collaboration-based designs [17] and their imple-
mentations as mixins [21][16] and mixin-layers [19].

3 Multi-Dimensional Models

In this section, we present three examples of multi-dimen-
sional AHEAD models. The first describes a simple prod-
uct line whose program members are under 30 lines. Our
next examples discuss multi-dimensional models whose
programs range from 14K LOC to 30K LOC.

3.1 A Micro Example
Consider the AHEAD model L, which defines a family of
programs that implement linked lists:

L = { sgl, dbl, sgldel, dbldel }

The lone constant is sgl which contains a pair of classes,
list and node, that implement a bare-bones singly-linked
list with an ins (insert) method (Figure 2a).2

A refinement of sgl is dbl, which converts sgl into a dou-
bly-linked list (Figure 2b). dbl is a “cross-cut” that aug-
ments the node class with a prior pointer, and extends the
list class with a last pointer and refines the ins method
so that the last and prior pointers are correctly set.

2. For simplicity, our list programs do not test for invalid inputs.

class C {
int x;
void g() {..}

}

refines class C {
int y;
void h() {..}

}

class C {
int x;
int y;
void g() {..}
void h() {..}

}

Figure 1. Class Definition, Refinement, and Composition

(a) K (b) R (c) R•K

The composition dbl•sgl yields the doubly-linked list pro-
gram of Figure 3. The code indicated in italics originates
from the dbl refinement.

Now suppose we want to enhance our list programs by add-
ing a del (delete) method. sgldel does exactly this for sin-
gly-linked lists: it adds a del method to the list class
(Figure 3c). So a singly-linked list with both ins and del
methods is defined by the composition sgldel•sgl.

To create a doubly-linked list that has both insert and delete
methods requires a fourth refinement, dbldel (see
Figure 3d). dbldel converts the node deletion algorithm of
sgldel to a doubly-linked list deletion algorithm.

Using model L, we can synthesize the following product-
line, which covers all programs that are expressible by L:

singly_linked_w_ins = sgl (1)

doubly_linked_w_ins = dbl • sgl (2)

singly_linked_w_ins_and_del = sgldel • sgl (3)

doubly_linked_w_ins_and_del
= dbldel • dbl • sgldel • sgl (4)
= dbldel • sgldel • dbl • sgl (5)

Equations (4) and (5) yield identical programs for insert-
ing and deleting elements in a doubly-linked list. The rea-
son is that the refinements dbl and sgldel are independent
of each other, and thus can be composed in any order.

However, two compositions of L are incorrect:

error1 = dbl • sgldel • sgl
error2 = dbldel • sgldel • sgl

Both define programs that are partially implemented.
error1 is a program whose ins method works on a doubly-
linked list, but whose del method works only on a singly-
linked list. error2 is a program whose ins method works
on a singly-linked list, but whose del method works for a
doubly-linked list.

The problem in both cases is that if a data structure is
extended (i.e., a singly-linked list becomes doubly-linked),
then all operations should be updated to maintain the con-
sistency of this extension, and not just some. That is, if a
singly-linked list has both insert and delete operations,
when the structure becomes doubly-linked, both operations
must be updated to work on doubly-linked lists. Equiva-
lently, if a refinement adds a new method to a data struc-
ture, then that method must work on that data structure and
not some other structure.

Although this is an elementary example, it is representative
of a large class of problems in FOP, namely that a model
has refinements (features) that are not truly independent
and that groups of refinements (features) must be applied in
a lock-step — or all or nothing — manner.

3.1.1 Origami Matrices

Multidimensional models capture the constraint that groups
of refinements are applied in a lock-step manner. Model L
can be abstracted into a 2-dimensional matrix, called an
origami matrix, where columns represent operations
(delete, insert), and rows represent structure variants
(singleLink, doubleLink). Matrix entries are the refine-
ments of L (see Table 1). This matrix can be extended to

refines class list {
node last = null;

void ins(node n){
if (last == null)

last = n;
if (first != null)
first.prior = n;

super.ins(n);
 n.prior = null;

}
}

refines class node {
node prior = null;

}

(b) dbl

Figure 2. The Units of the L Model

class list {
node first = null;

void ins(node n){
 n.next = first;
first = n;

 }
}

class node {
node next = null;

}

(a) sgl

refines class list {
void del(node n){

if (n == first) {
first = first.next;
return;

}
node prev = first;
while ((prev != null) &&

 (prev.next != n))
prev = prev.next;

if (prev != null)
prev.next = n.next;

}
}

refines class list {
void del(node n){

if (n == first)
first = first.next;

if (n == last)
last = last.prior;

if (n.prior != null)
 n.prior.next =

n.next;
if (n.next != null)

 n.next.prior =
n.prior;

 }
}

(c) sgldel (d) dbldel

class list {
 node first = null;
 node last = null;

final void ins$$sgl(node n) {
 n.next = first;
 first = n;
 }

void ins(node n){
if (last == null)

last = n;
if (first != null)

first.prior = n;
ins$$sgl(n);
n.prior = null;

}
}

class node {
 node next = null;
 node prior = null;
}

Figure 3. Composition dbl•sgl

handle other operations (sort, find) and structure variants
(ordered-lists, monitors, etc.).

To synthesize a particular program, columns of the matrix
are composed (or folded — hence the name “origami”),
where corresponding entries in each row are composed.
Table 2 shows the result of folding the delete column with
the insert column.

Consider the entry in the singleLink row of Table 2:
sgldel•sgl defines a singly-linked program S that has both
an ins and del method. The entry in the doubleLink row,
dbldel•dbl, defines a refinement of S that converts its ins
and del methods to work on a doubly-linked list. Thus by
composing the delete column with the insert column of
Table 1, we synthesize a data structure that has multiple
methods, and a refinement of that structure that consistently
updates these methods. This interpretation holds if more
columns (operations) or more rows (structure options) are
added.

The rows of Table 2 can be composed to yield a 1×1 matrix
whose entry is an expression that defines a doubly-linked
list with insert and delete methods (Table 3). This expres-
sion is identical to equation (4).

By symmetry, instead of folding columns of Table 1, rows
can be folded, where corresponding entries in each column
are composed (see Table 4).

The entry in the insert column, dbl•sgl, defines program
D that implements a doubly-linked list with an ins method.
The entry in the delete column, dbldel•sgldel, is a
refinement of D that adds a del method. By composing the

rows of Table 1, we have synthesized a data structure with a
single (ins) method, and a refinement that adds a del
method to this structure. Again, this interpretation holds if
we add more rows (structure options) or more columns
(operations) to Table 1. Folding the columns of Table 4
yields a 1×1 matrix whose entry is equation (5).

Thus, the constants that can be derived from Table 1, which
already exist (e.g., sgl) or can be computed by foldings,
comprise the product-line of L. The inconsistent equations
that we encountered earlier, error1 and error2, cannot be
derived by folding Table 1.

3.1.2 Perspective

An Origami matrix is a multi-dimensional abstraction of a
single-dimensional AHEAD model. In our example, model
L is abstracted by a pair of orthogonal AHEAD models,
each with two units:

column = { insert, delete } (6)

row = { singleLink, doubleLink } (7)

The column model (6) has a lone constant (insert) which
represents a list program with an ins operation. The lone
refinement (delete) grafts a del operation onto the insert
program. Note: the column model does not capture the
details of whether the list program is singly-linked, doubly-
linked, key-ordered, etc.; it only reveals operations the list
program supports.

Similarly, the row model (7) has a lone constant (sin-
gleLink) which represents a singly-linked list program.
The lone refinement (doubleLink) transforms the sin-
gleLink program into a doubly-linked list program. Note:
the row model does not capture the details of what opera-
tions the list-program has; it only reveals structure varia-
tions in lists.

The folding of a matrix is specified by a set of equations,
one per dimension. We call these dimensional equations.
Each dimensional equation tells us how to fold (or collapse)
a dimension to a single unit.3 For example, a singly-linked
list with both an insert and deletion operation is defined by
a pair of dimensional equations:

col_eqn = delete • insert (8)

row_eqn = singleLink (9)

The col_eqn folds the delete column with the insert col-
umn; the row_eqn discards all but the singleLink row. The
result of this folding is equation (3). In effect, each dimen-
sional equation specifies a different “projection” of the tar-
get program. The intersection of all these “projections”

delete insert

singleLink sgldel sgl

doubleLink dbldel dbl

Table 1. Origami Matrix for L

delete • insert

singleLink sgldel • sgl

doubleLink dbldel • dbl

Table 2. Column-Composed Origami Matrix

delete • insert

doubleLink •
singleLink

dbldel • dbl • sgldel • sgl

Table 3. A Completely Folded Matrix

delete insert

doubleLink •
singleLink

dbldel • sgldel dbl • sgl

Table 4. Row-Composed Matrix

3. The rules by which units are composed along each dimension are spec-
ified by design rules [5].

uniquely identifies the target program that is to be synthe-
sized.

Origami or multi-dimensional models provides a funda-
mental form of scalability to AHEAD and FOP. Given an n-
dimensional matrix where each dimension has k units, a
program is specified by n dimensional equations, each ref-
erencing up to k units. Thus a program specification in
Origami has up to O(kn) terms. However, the number of
units that are folded together to produce an equation for the
target program, as expressed in a 1-dimensional model, is
O(kn). In short, multi-dimensional models provide compact
specifications for potentially very complex systems.

3.2 The Bali Matrix
The AHEAD model of Section 2 is supported by a sophisti-
cated set of tools. The AHEAD tool suite (ATS) includes a
set of compiler-compiler tools for synthesizing families of
language dialects [2]. ATS tools have been bootstrapped,
and are written in an extended dialect of Java called Jak
(short for Jakarta). ATS provides three tools to extend Jak
(or any language for that matter): balicomposer,
bali2javacc, and bali2jak. Base grammars and their
refinements are expressed as annotated BNF grammars
called Bali grammars. balicomposer composes Bali gram-
mars, bali2javacc translates a Bali grammar to a javacc
grammar, and bali2jak generates a customized set of Jak
classes for defining semantic actions for parsers.

Originally, each tool was defined by a hand-crafted equa-
tion using the units of an AHEAD model B. We now use a
2-dimensional Origami matrix to synthesize these equa-
tions. The dimensional models are listed below:

row = { core, codegen, require, tool }
column = { base, b2jak, b2jcc, bc }

The row model defines a layered design shared by all Bali
tools. core defines a common infrastructure, codegen grafts
on code-generation capabilities, requires adds optional
import statements to Bali grammars, and tool adds tool-
specific processing. There are only two legal equations that
can be synthesized from the row model currently — one
with require, the other without:

wRequire = tool • require • codegen • core (10)

woRequire = tool • codegen • core (11)

To understand the column model, observe that all Bali tools
take a Bali grammar file as input and produce different out-
puts. All tools share a common parser and lexical analyzer,
but differ in the semantic actions performed on parse trees.
These relationships are captured by the column model. The
base unit encapsulates the common parser and lexical ana-
lyzer; the remaining units encapsulate the semantic actions
for each tool (b2jak encapsulates the actions of the

bali2jak tool, b2jcc encapsulates the actions of the
bali2javacc tool, etc.). Thus, there are three legal equa-
tions for the column model, one equation for each tool:

balicomposer = bc • base (12)

bali2javacc = b2jcc • base (13)

bali2jak = b2jak • base (14)

The Origami matrix that relates these models is Table 5.

Each Bali tool is specified by a pair of dimensional equa-
tions: either wRequire or woRequire and the equation that
defines the tool itself ((12), (13), (14)). The equation that
is synthesized by folding Table 5 for balicomposer with
requires is:

balicomposer =
composr • reqComp • reqGram • parser

Although the ideas of matrix folding are identical to that of
our micro example of Section 3.1, the size of the programs
that are synthesized are very different. Each list program is
barely 30 lines long; each Bali tool is about 14K LOC. The
product-line we discuss in the next section has tools that
commonly exceed 30K LOC.

3.3 The Jak Matrix
Our first use of Origami was in the synthesis of Jak tools
[3]. ATS has tools to compose Jak files, to decompose pre-
viously composed Jak files, to translate Jak files to Java
files, to pretty-print Jak files, and to document Jak files (ala
javadoc). A 3-dimensional (8×6×8) matrix is used to cap-
ture their common design. The shape of this matrix is dis-
played in Figure 4a; for the most part, it is empty except for
the Frontal matrix and the Horizontal matrix. The Fron-
tal matrix is just like the Bali matrix: columns are tool fea-
tures (e.g., common parser and semantic action packages
for each tool) and rows correspond to language features.
That is, the lone constant represents the Java language and
the refinements are extensions to Java (e.g., state machines,
refinement declarations). The Horizontal matrix captures
tool feature-language feature interactions, and has exactly
the same dimensions as the Frontal matrix.

To build a particular tool, three dimensional equations are
needed: there is a row equation (which specifies the variant
of Java to produce) and a column equation (to pair a parser

base b2jak b2jcc bc

core parser

codegen cgen cgen

require reqGram reqb2jak reqb2jcc reqComp

tool b2jktool b2jcctool composr

Table 5. Bali Matrix

shared by all tools with the package that defines tool-spe-
cific semantic actions). The third equation folds the Hori-
zontal matrix into a single row of the Frontal matrix.

A Jak tool is synthesized as shown in Figure 4b-e. The Hor-
izontal matrix is folded into a single row of the Frontal
matrix (Figure 4c); the Frontal matrix rows are folded
(Figure 4d), and the columns are folded (Figure 4e), to
yield a 1×1 matrix which contains the tool equation [3]. We
sketch its salient characteristics as we will show an alterna-
tive encoding/interpretation for it in Section 4.4.

3.4 Future Directions
We are using Origami to build suites of Jak and Bali tools
and envision additional matrices to synthesize tools for
other AHEAD program representations. An example is
design rule files. A design rule file specifies the precondi-
tions and postconditions for unit usage; it is written in a
special predicate language [5]. We now have a tool, called
drc, which composes design rule files and reports composi-
tion errors. We expect that additional tools for design rule
files, such as a pretty-printer and a javadoc-like utility, will
be created. To ensure that the designs of these tools are con-
sistent, we would synthesize them from an Origami matrix.

4 Reinterpreting Origami

Given the examples and directions of the previous section,
it is clear that Origami and MDSOC should be a fundamen-
tal part of the AHEAD model. But an AHEAD model is
simply a set, not a matrix, of units. So how should matrices
be integrated into AHEAD?

We wrestled with these and related questions for some time,
because introducing an ad hoc concept into AHEAD would
unnecessarily complicate its construction and maintenance
for years to come. It dawned on us that Origami is part of a
much bigger picture governed by AHEAD, and requires no

fundamentally new concepts, except a new representation
of object models.

4.1 The Principle Of Uniformity
Software architects routinely use many different representa-
tions, including code, to specify a program. Non-code arti-
facts such as UML documents, performance models (e.g.,
Mathematica equations), makefiles, etc. are common.

In general, a program P will have a set of distinct, but inter-
related representations {P1 … Pn}. When a new feature F is
added to a program (e.g., F•P), multiple representations are
affected. Not only is the code representation of the program
changed (because F must be implemented), so too will
changes occur in its UML representation (to document F’s
changes), its performance model (to account for F’s perfor-
mance impact), its makefiles (to build F), and so on. Thus, a
refinement F will have a set of distinct but interrelated
“sub” refinements {F1 … Fn}, where Fi defines how the ith
representation of a program is refined. It follows that the
composition F•P = {F1•P1 … Fn•Pn} defines the set of all rep-
resentations of the F-refined program P [2].

We know how code artifacts can be refined — we have
shown examples in previous sections. But how are non-
code artifacts refined? AHEAD is based on a general prin-
ciple that governs how all artifacts, both code and non-
code, can be refined. This is the Principle of Uniformity [2].

The Principle of Uniformity states (1) that all artifacts —
code and non-code — can be given a class structure and (2)
that this structure can be refined. Thus, the refinement of
code artifacts is essentially no different than the refinement
of non-code artifacts; although obviously differing in
implementation details, the ideas are fundamentally the
same.

This principle was used to great effect in LISP and Small-
talk, which were both programming languages and environ-
ments. Namely, just as objects are instances of classes, files
are instances of file types. Methods on files correspond to
tools. For example, methods that can be invoked on Java
files are javac (compile), javadoc (document), emacs
(edit), and so on. Methods that can be invoked on HTML
files are browser (view), AcrobatTM (to convert to PDF
files), FrontPageTM (edit), etc. Even directories, which
define sets of file instances, have methods: open, explore,
search, rename, etc.

Operating systems such as WindowsTM provide an object-
based view of their file systems to users. This view is not
object-oriented as there is no inheritance hierarchy that
relates different file types and their instances. But there
could be.

Figure 4. Jak Matrix and its Foldings

Lang
Features

Tool Features

LangFeatures

Frontal

Horizontal

(a)

(b) (c) (d) (e)

Lang
Features

Tool Features

LangFeatures

Frontal

Horizontal

Lang
Features

Tool Features

LangFeatures

Frontal

Horizontal

(a)

(b) (c) (d) (e)

Consider a class diagram that captures the relationships
among AHEAD file types and tools. A file method (i.e.,
operation on a file) either modifies that file (e.g., reform —
which transforms an unformatted Jak file into a nicely for-
matted Jak file) or transforms it from one type to another
(e.g., javac maps Java files to class files).

Thus, part (1) of the Principle of Uniformity tells us that
ATS implements an object model shown in Figure 5. Part
(2) of the Principle tells us that we can create variations in
this tool suite by refinements. A refinement of an object
model is simple: it can add new methods/tools to existing
classes, it can refine existing methods/tools, and can add
new types. Thus, we can (and have!) built variants of ATS
with and without design rule file types; we can (and have!)
built variants of ATS with and without reform methods/
tools, and so on.

In a bootstrapping maneuver, the AHEAD Tool Suite and
its variations can be expressed as an AHEAD model/prod-
uct-line. That is, base ATS file types are defined by an
AHEAD constant, and refinements of this base are AHEAD
functions. We will see Section 4.3 how Origami matrices
are related to this model.

4.2 Representation of File Types
Let us define a notation to represent a file type and its meth-
ods in AHEAD. The notation we use is illustrated below: a
file type is given a name (fname) and each method/tool is
specified by an equation which defines the set of units that
are composed to synthesize that method/tool. tool1, for
example, is implemented by the composition of units (a—
f). The specification below defines a file type called fname
and three tools that can be invoked on fname instances.

type fname {
tool1 = a • b • c • d • e • f
tool2 = x • y • z • d • e • f
tool3 = q • r • s • d • e • f

} (15)

Tool equations have common subexpressions that can be
factored out as helper methods (which would correspond to
shared packages that are referenced/imported by tools), as
shown below. Note that (15) and (16) are semantically
equivalent.

type fname {
common = d • e • f
tool1 = a • b • c • common
tool2 = x • y • z • common
tool3 = q • r • s • common

} (16)

Given this class-like representation, we can define a refine-
ment of this specification in a straightforward manner. The
specification below refines fname by extending the common,
tool1, and tool2 methods, and introducing a fourth tool,
tool4.

refines type fname {
common = super.common • g
tool1 = m • super.tool1
tool2 = super.tool2 • n
tool4 = p • q • common

} (17)

Method/tool refinement is specified via the super.t con-
struct; it means substitute the previous equational definition
of tool t. Thus, if tool t is defined by:

t = x • y • z

and a refinement of t is:

t = super.t • q • r • s

Their composition yields:

t = x • y • z • q • r • s

The composition of (16) and (17) yields the specification:

type fname {
common = d • e • f • g
tool1 = m • a • b • c • common
tool2 = x • y • z • common • n
tool3 = q • r • s • common
tool4 = p • q • common

} (18)

The identity function is denoted by id. Any unit x com-
posed with id is x:

x = x • id (19)

Given the above, we can represent a base object model — a
set of core types and core methods/tools — as an AHEAD
constant. This constant would consist of one or more speci-
fications of the form illustrated by (16). A refinement of an
object model would be an AHEAD function. It would con-
sist of zero or more specifications of the form (16) and
(17), that is, existing types could be refined and new ones
added. An AHEAD model of ATS would consist of a set of
these constants and functions.

4.3 Origami Matrices
An Origami matrix defines multidimensional relationships
among refinements that are used to synthesize a suite of
tools for a particular file type. All of the matrices that we

Figure 5. An Object Model of ATS File Types and Tools

jak

html

java

mixin

jak2java

reform

jedi

edit

edit/view

class

javac

javadoc file type

A BT tool T that
maps file of
type A to B

Legend

jak

html

java

mixin

jak2java

reform

jedi

edit

edit/view

class

javac

javadoc file type

A BT tool T that
maps file of
type A to B

Legend

file type

A BT tool T that
maps file of
type A to B

file type

A BBT tool T that
maps file of
type A to B

Legend

have seen to date have the following general structure: rows
represent “structural” features and columns represent
optional tools (e.g., methods and helper methods). Thus, a
straightforward mapping of an Origami matrix to an
AHEAD model is to represent each row of a matrix as a
unit (constant or function) in the model. For example, a
model that underlines the Bali matrix is:

Bali =
{ core, codegen, require, tool, toolset }(20)

where code, codegen, etc. are rows of the matrix. (We will
explain the toolset unit of Bali shortly). The file type rep-
resentations of the core and codegen rows, for example, are
shown in Figure 6. The listed methods are helpers or refine-
ments of helpers.

We need one additional file type specification that defines
an equation — a column folding — for every tool. The
name of this specification is toolset:

refines BaliFile {
bali2jak = b2jak • base
bali2javacc = b2jcc • base
baliComposer = bc • base

}

That is, toolset encodes equations (12)-(14). When a
new Bali tool is added, the toolset file is updated with a
new method (the tool’s equation).

Given model (20), we can synthesize the two variants of
the Bali tool suite by:

noRequires = toolset • tool • codegen • core
wRequires = toolset • tool • requires

 • codegen • core

The resulting file type specification, noRequires or wRe-
quires, has an equation for each helper method and tool
method. When a tool equation is evaluated, the referenced
units are composed and a tool is synthesized. This is how
we are synthesizing Bali tools.

4.4 Additional Dimensions
The Jak matrix is more complicated because feature-feature
interactions require a third dimension. We can still use file

type representations, but with a bit more sophistication. To
understand our solution, consider a common situation that
arises when multiple classes are simultaneously refined.

Figure 7a shows types/classes F and H, each with one
method. Figure 7b shows these classes after they have been
refined. Note that method m of class F calls method n of
class H. Figure 7c shows the result of one more refinement.
When method m of class F of Figure 7c is evaluated, it exe-
cutes statement a; dispatches to method n of H where state-
ments x, y, z are executed; and returns to execute statement
c.

This is how we encode and evaluate file type specifications
for the Jak matrix. F and its refinements correspond to rows
of the Frontal matrix. H and its refinements correspond to
rows of the Horizontal matrix. By refining F and H simul-
taneously, in effect we are simultaneously folding both the
Frontal and Horizontal matrices in lock-step. The result-
ing equations are exactly the same had we refined H sepa-
rately from F (that is, by folded the Horizontal matrix first
and then the Frontal matrix next).

This example suggests that additional dimensionality in
Origami matrices does not require anything extra in
AHEAD. We can map extra dimensionality to extra feature
sets, and the refinement of these sets, all within the
AHEAD framework. Doing so, we have conceptually sim-
plified the generation of Jak tools and have also simplified
the matrix folding algorithms and their implementations.

4.5 Reinterpreting MDSOC
So where does MDSOC fit into AHEAD? The above dis-
cussions suggests that it simply disappears into AHEAD
formalisms. In reality, it does not.

An Origami matrix D (or MDSOC model) is a multi-dimen-
sional abstraction or view of a 1-dimensional AHEAD
model M. Using the constants and functions of M, huge num-
bers of equations — many of them nonsensical — can be
created, each representing different tools or variants of a
particular tool. From our experience, it is more difficult to
interpret equations from M, more difficult to write design
rules for M, more difficult to explain the units of M, and so
on, simply because M is so close to an implementation.

type BaliFile {
 base = parser

b2jak = id
b2jcc = id
bc = id

}

refines type BaliFile {
b2jak = cgen • super.b2jak
b2jcc = cgen • super.b2jcc

}

(a)
core

(b)
codegen

Figure 6. Representation of Matrix Rows

type F {
m = a

}

type H {
n = x

}

type F {
m = a • H.n

}

type H {
n = x • y

}

type F {
m = a • H.n • c

}

type H {
n = x • y • z

}

(a) (b) (c)

Figure 7. Refinement of a Pair of File Type Specs

On the other hand, a multi-dimensional model D is easier to
understand. Because it is an abstraction of M, there are many
fewer units in D. Each is easier to explain, compositions of
units are easier to interpret, and writing design rules is sim-
plified.

The set of all correct equations that can be derived from
model D is a subset of all correct equations that can be
derived from model M. If the abstraction of M to D is con-
ceived properly, all interesting equations that are synthesiz-
able by M are synthesizable by D; correct equations that are
not synthesizable by D are either uninteresting — we don’t
care about these compositions — or can be inferred (via
algebraic rewrites) from equations that can be derived.

Thus our interpretation of MDSOC is a design and abstrac-
tion process by which a low-level model M is abstracted into
a higher-dimensional model D. Both D and M are AHEAD
models, but D is a much simpler model that is used to syn-
thesize equations for M.

5 Related Work

As mentioned earlier, AHEAD refinements encapsulate
cross-cuts, that is, fragments of classes. The idea of cross-
cuts was popularized by Aspect-Oriented Programming
[13][12], so it is interesting to see how aspects of AspectJ
relate to AHEAD refinements. There are two basic differ-
ences. First, the concept of refinement in AHEAD (and its
predecessor GenVoca) is virtually identical to that of
extending object-oriented frameworks. Adding a feature to
an OO framework requires certain methods and classes to
be extended. AHEAD takes this idea to its logical conclu-
sion: instead of having two different levels of abstraction
(e.g., the abstract classes and their concrete class exten-
sions), AHEAD allows arbitrary numbers of levels, where
each level implements a particular feature or refinement
[4].

Second, the starting points for AHEAD and AOP/AspectJ
are different: product-lines are the consequence of pre-
planned designs (so refinements are designed to be compos-
able); this is not a part of the standard AOP/AspectJ para-

digm. Stated another way, the novelty and power of AspectJ
is in quantification [1]. Quantification is the specification of
where advice is to be inserted (or the locations at which
refinements are applied). The use of quantification in
AHEAD is no different than that used in traditional OO
designs.

An important consequence of the use of pre-planned
designs is simpler tools. Consider the following assignment
statement, where a, b, c denote method calls and • denotes
method/function composition:

X = a • b • c (21)

In AspectJ, one can add advice to method calls. Equation
(22) shows the result of adding “after” advice to each term
in (21), and (23) shows the result of adding another layer
of after advice to each term in (22):

X = aafter1 • a • bafter1 • b • cafter1 • c (22)

X = aafter2 • aafter1 • a • bafter2 • bafter1
• b • cafter2 • cafter1 •c (23)

Equations (21)-(23) can be derived easily by folding the
rows Origami matrix of Table 6, where the first row defines
the initial terms and subsequent rows define particular after
advice. By folding rows and then columns, equations (21)-
(23) follow. Before and around advice can also be encoded
in our notation.

We originally folded matrices using shell scripts; currently
we use ant scripts [23]. Thus the tools that we need to
“annotate” or “insert advice” into designs are very simple,
an advantage of our approach. Another advantage is repre-
sentation generality. By using equations, we can define and
refine both source code and non-code representations of
tools etc. with exactly the same formalism.

A predecessor to MDSOC is the work by Harrison and
Ossher on subjectivity [10], which embodies a fundamental
observation about software design: an object does not have
a single interface, but rather has a large number of inter-
faces. The interface that is given to an object is subjective,
that is, one that is specific to the task at hand. As an exam-
ple, consider a book. Obvious attributes (with their accom-
panying set and get methods) are name, title, and author.
But these attributes/methods are useful only for library-like
applications; they are not useful for warehouse applications
(where attributes of physical size are critical — name, title,
author are useless), or for publishing applications (how

Figure 8. Relationships among 1-D models and n-D Models

space of all equations
derivable from M

M

D

space of all equations
derivable from D

space of all equations
derivable from M

MM

D

space of all equations
derivable from D

C B A

base c b a

1stAdvice cafter1 bafter1 aafter1

2ndAdvice cafter2 bafter2 aafter2

Table 6. Origami Matrix Emulating Before Methods

much ink and paper are needed?). Subjectivity is a funda-
mental part of Origami. An Origami matrix says all tools
are refined when feature F is added, but the meaning of F is
specific to a tool. There is no single definition of refinement
F, but rather different interpretations/implementations spe-
cific to the tool under consideration.

6 Conclusions

Modularity has multiple goals: to encapsulate functionality
that can be reused, to hide implementation details, and to
offer more compact ways of specifying systems out of
larger parts. The history of modularity shows a progression
of larger abstractions (e.g., functions, suites of functions
(e.g., classes), suites of classes (packages or components)).
Most recently, the concept of “fortresses” has been intro-
duced to talk about the encapsulation of enterprise software
architectures [18]. Each new abstraction is quite different
than the ones before it; each has different properties, capa-
bilities, scale, and applications. Concepts that apply at one
level of modularization may not apply at other levels.

Step-wise refinement offers an alternative to this trend. We
have shown how equational specifications can be used to
define product-lines in the small (e.g., programs of 30 lines)
and in the large (e.g., programs of 30K lines), a difference
of three orders of magnitude in program size. We have
shown how a small set of ideas can be uniformly applied at
different levels of abstraction. Further, we believe that
equational representations scale to systems of arbitrary size
and complexity.

Equational representations alone are not enough to achieve
scalability. Combining them into multi-dimensional mod-
els, a form of MDSOC, provides much smaller descriptions
of complex programs. In this paper, we showed that pro-
grams whose specifications might be O(kn) terms in length
had short and more understandable specifications of length
O(kn) when multi-dimensional models are used.

As the emphasis on automation in software development
increases, we believe that equational representations of pro-
grams will play an increasing role in automated program
synthesis. Our work provides strong evidence that equa-
tional representations based on step-wise refinement scales
to very large systems.

Acknowledgements. We thank Roberto Lopez-Herrejon
for his helpful comments on clarifying drafts of this paper.

7 References

[1] AspectJ. Programming Guide. http://aspectj.org/

doc/proguide

[2] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement”, ICSE 2003.

[3] D. Batory, R. Lopez-Herrejon, J.P. Martin, “Generating Prod-
uct-Lines of Product-Families”, 2002 Automated Software
Engineering Conference. Revised paper submitted to journal
publication.

[4] D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Ori-
ented Frameworks and Product-Lines”. 1st Software Product-
Line Conference, Denver, Colorado, August 1999.

[5] D. Batory and B.J. Geraci, “Composition Validation and Sub-
jectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering, Feb. 1997, 67-82.

[6] I. Baxter, “Design Maintenance Systems”, CACM, April
1992.

[7] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker,
“Generative Programming for Embedded Software: An
Industrial Experience Report”, GCSE/SAIG 2002.

[8] E.W. Dijkstra, A Discipline of Programming. Prentice-Hall,
1976.

[9] M. Griss, “Implementing Product-Line Features by Compos-
ing Component Aspects”, First International Software Prod-
uct-Line Conference, Denver, August 2000.

[10] W. Harrison and H. Ossher, “Subject-Oriented Programming
(A Critique of Pure Objects)”, OOPSLA 1993, 411-427.

[11] K.C. Kang, et al., Feature-Oriented Domain Analysis Feasi-
bility Study, SEI 1990.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin, “Aspect-Oriented Programming”,
ECOOP 97, 220-242.

[13] G Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm,
W.G. Griswold. “An overview of AspectJ”. ECOOP 2001.

[14] H. Ossher and P. Tarr. “Using Multi-Dimensional Separation
of Concerns to (Re)Shape Evolving Software.” CACM
44(10): 43-50, October 2001.

[15] H. Ossher and P. Tarr, “Multi-dimensional separation of con-
cerns and the Hyperspace approach.” In Software Architec-
tures and Component Technology (M. Aksit, ed.), 293-323,
Kluwer, 2002.

[16] C. Prehofer, “Feature-Oriented Programming: A Fresh Look
at Objects”, ECOOP 1997.

[17] T. Reenskaug, et al., “OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems”,
Jour. OO Programming, 5(6): October 1992, 27-41.

[18] R. Sessions, “Software Fortresses: Modeling Enterprise
Architectures”, Addison-Wesley, 2002.

[19] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, ACM TOSEM. March 2002.

[20] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns”, ICSE 1999.

[21] M. Van Hilst and D. Notkin, “Using Role Components to
Implement Collaboration-Based Designs”, OOPSLA 1996,
359-369.

[22] D. Weiss and C.T.R. Lai, Software Product-Line Engineer-
ing. Addison-Wesley, 1999.

[23] The Apache Ant Project. http://ant.apache.org/

