REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS
OF ALGEBRAIC SYSTEMS

PETER CRAWLEY AND BJARNI JONSSON

Introduction. An operator group with a principal series can
obviously be written as a direct product of finitely many directly
indecomposable admissible subgroups, and the classical Wedderburn-
Remak-Krull-Schmidt Theorem asserts that this representation is
unique up to isomorphism. Numerous generalizations of this theorem
are known in the literature.! Thus it follows from results in Baer
[1, 2] that if the admissible center of an operator group G satisfies
the minimal and the local maximal conditions, then any two direct
decompositions of G (with arbitrarily many factors) have isomorphic
refinements. In a different direction, it is shown in Crawley [4] that
if an operator group G has a direct decomposition each factor of which
has a principal series, then any two direct decompositions of G have
isomorphic refinements.

The results of this paper yield sufficient conditions for a group
(with or without operators) to have the isomorphic refinement property.
For operator groups a common generalization of the theorems mentioned
above is obtained: If an operator group G has a direct decomposition
such that the admaissible center of each factor satisfies the minimal
and local mawximal conditions, then any two direct decompositions of
G have centrally isomorphic refinements. For groups without operators.
we obtain the following result which eliminates any assumption of
chain conditions: If a group G (without operators) has a direct de-
composition such that the center of each factor is countable and the
reduced part of the center of each factor is a torsion group with
primary components of bounded order, them any two direct decom-
positions of G have centrally isomorphic refinements.

Actually our results hold for a much wider class of algebraic
structures, namely for algebras in the sense of Jbénsson-Tarski [6], and
it is in this more general framework that the theory is developed.
The terminology from general algebra used in this preliminary discussion
will be explained in §1.

Our techniques are based on an exchange property defined as
follows: An algebra B is said to have the exchange property if, for

Received August 27, 1963. This work was supported in part by NSF Grants G-17957
and G-19673. A summary of the results presented here has appeared in Bull. Amer.
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! For a fairly complete list of references see Baer [1, 2] or Specht [8], p. 449.
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any algebras A, C and D, (i€ I), the condition

A=BxC=T1ID,

1E€T
implies that there exist subalgebras E, < D, (1 ¢ I) such that

A=Bx11E,.
1€

The principal result relating this notion to the isomorphic refinement
problem is Theorem 7.1, which asserts that if an algebra A is a direct
product of subalgebras each of which has the exchange property and
has a countable generated center, then any two direct decompositions
of A have centrally isomorphic refinements. Two related results are
obtained where no cardinality conditions are imposed on the centers,
but the decompositions involved are of a more special nature. First
4.2), if A=B, X BiX By X «++-=C, x C, X Cy+-+, with countably
many factors, and if all the subalgebras B; and C; have the exchange
property, then these two direct decompositions have centrally isomorphic
refinements. Second (5.3), if A is a direct product of subalgebras each
having the exchange property, then any two direct decompositions of
A into indecomposable factors are centrally isomorphic.

In §§8-11 sufficient conditions are given in order for an algebra
B to have the exchange property. In §8 it is shown that if the center
B° of B has the exchange property, then so does B. There it is also
shown that in proving the exchange property for an algebra B we may
assume that the factors D; are isomorphic to subalgebras of B. In §9
we prove that if B° satisfies the minimal and local maximal conditions,
then B has the exchange property and B° is countably generated.
Sections 10 and 11 are devoted to the study of binary algebras (algebras
with just one operation, the binary operation -+). The main result
here (11.5) asserts that if the reduced part of the abelian group B°is
a torsion group all of whose primary components are torsion-complete,
then B has the exchange property. In the twelfth and final section
some counterexamples and open problems are discussed.

1. Fundamental concepts. Our terminology is largely the same
as that in Jonsson-Tarski [6], and it will therefore be described very
briefly. By an algebra we shall mean a system consisting of a set A,
a binary operation + called addition, a distinguished element 0 called
the zero element of the algebra, and operations F,(t € T') each of which
is of some finite? rank po(t), subject only to the following conditions:

2 In Jénsson-Tarski [6] the operations are not required to be of finite rank. The
main reason for this restriction is that it insures that the center of an algebra is a central
subalgebra,
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(1) Aisclosed under the operation + and the operations F,(t ¢ T);

(ii) for all zeA, 2 +0=0+ 2 = ux;

(iii) #,0,0, ---,0) =0 for all tcT.

The set T and the function g are assumed to be the same for all the
algebras under consideration. We shall identify the algebras with the
sets of all their elements, and shall in general use the same symbols,
+, F, and 0, to denote the operations and the zero elements of all the
algebras. If no auxiliary operations F, are present, i.e, if T = O,
then we refer to 4 as a binary algebra.

An obvious example of an algebra is an operator group, i.e. an
algebra for which addition is associative, each element has an additive
inverse, and each F,(t< T) is a unary operation which distributes with
respect to +. Similarly, an ordinary group without operators is a
binary algebra.

If A is an algebra, then the sum of finitely many elements

gy Xy, * 0, Xy, o+ €A 18 defined recursively by
> a,=0; 20 = >+, (n=20,1,---).
k<0 k<n+1 k<n

It is convenient to define also the (un-ordered) sum of certain special
systems of elements z;€ A(¢e€ ). This sum is defined if and only if
there exist finitely many distinct elements 4,, %, -+, %, € I such that
; = 0 whenever 1€l — {4, %, -+, t,-,} and such that

2w, = k%bxiqo(k)

k<n

for every permutation ¢ of the integers 0,1, .-+, 7 — 1. Under these
conditions we let

ST = X
1€l

<n

EX

For brevity, a system of elements x, € A (4 € I) will be said to be finitely
nonzero if there are only finitely many indices 4 e I such that «x; = 0.

The notions of subalgebra, homomorphism, isomorphism, and con-
gruence relation are assumed to be known. If # is a congruence
relation over an algebra A, then for x € A we let x/0 be the congruence
class to which x belongs, and for XS A we let X/0 = {x/6 | x ¢ X}.
In particular, A/6 is the quotient algebra of A modulo 4. Observe
also that if B is a subalgebra of A, then B/f is a subalgebra of A/4.
It should be noted that if ¢’ is the restriction of # to B, then B/#
and B/0’ are in general distinet algebras although they are isomorphic,

A subalgebra B of an algebra A is called a subtractive subalgebra
of A if it satisfies the following condition: If a€ A and be B, and if
either a +be B or b+ ac B, then ac B,

By a central subalgebra of A we mean a subalgebra C of A
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satisfying the following conditions:
(i) for each c¢e C there exists ¢e C such that ¢ + ¢ = 0;
(ii) if ecC and z,yc A, then x+(y+c¢) = (x+e)+y = (x+y)+e;
dii) if eceC,teT, k< p(t), and @, @, *++, Xoyy—: €A, then

Fi(y, ®y vy Tpgy Ty + €, Bprsy =+ +5 Togy—1)
= Fy(®, X1, =+, Bposy Tpy Tptay *** Togy—1)
+ F,0,0,:+-,0,¢,0,+--,0) .
kth -

It is easy to see that the family of all central subalgebras of an algebra
A is a complete sublattice of the lattice of all subalgebras of A. In
particular, the union of all the central subalgebras of A is a central
subalgebra of A. This largest central subalgebra of A is called the
center of A, and is denoted by A°. It is clear that if 4 is an operator
group, then A° is the usual group-theoretic admissible center of A.?
For a binary algebra A we can alternatively define the center of A
as the set of all those elements of A that have an additive inverse
and that commute and associate with all the elements of 4. If an
algebra A is such that A° = A, then we say that A is abelian.

Given two subalgebras B and C of an algebra A, a function f is
called a central isomorphism of B onto C,—in symbols f: B = C,—if
f is an isomorphism of B onto C and for each x ¢ B there exists ¢ A°
such that f(x) = « + ¢. We say that B and C are centrally isomorphic,
—in symbols B =¢C,—if there exists a central isomorphism of B
onto C.

By the outer direct product* of a system of algebras A;(te€l),—
in symbols

—we mean the algebra consisting of all functions z such that the
domain of z is I, (i) e A; for all ¢ e I, and 2(¢) = 0 for all but finitely
many 4€ I, The operations in this algebra are defined componentwise,
(@ + y)©) = (i) + y(?) and

Fy(w5, @1y =y Tpryy-)(8) = Fy(x(3), ®,(3), ++-, Zoy-1(7))
and its zero element is the function that associates with each index -

8 C.f., Specht [8], p. 118; here it is called the Q-center.

4 Sometimes the outer direct products are referred to as weak outer direct products,
and the Cartesian products (which are used only incidentally in this paper) are called
strong outer direct products. In other cases, especially in the theory of abelian groups,
outer direct products are called direct sums and Cartesian products are called direct

products.
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‘the zero element of the corresponding algebra A,.

The concept of an algebra is designed to make it possible to
introduce the notion of an inner direct product of subalgebras of an
algebra A, and to reduce the study of (isomorphie) representations of
subalgebras B of A as outer direct products to considerations involving
this new concept. Since the notions of outer and inner direct products
.are often confused in the literature, and in other cases the connection
between the two concepts is not clearly stated, it is perhaps worthwhile
to formulate this relationship in some detail. The basic idea is, of
course, that given a representation

fiB= f[ C,,
i€l
we can associate with each index 7 eI a subalgebra B; of B that is
-isomorphic to C;. By definition, this subalgebra consists of all those
-elements x € B such that f(z)(j) =0 for all jel— {t}. If a system
-of subalgebras B;(¢ € I) of B corresponds in this manner to a represen-
tation of B as an outer direct product, then we say that B is an inner
-direct product of the subalgebras B;(t € I). To complete the transition
from outer direct products to inner direct products we must find out
to what extent the subalgebras determine the representation, and we
must formulate intrinsic necessary and sufficient conditions for B to
be an inner direct product of a given system of subalgebras.
The solution of the first problem is easy: two representations,

fiB=C= EfIICi and f:B=( = 12[105

‘yield the same system of subalgebras B;(:€I) if and only if there
-exist isomorphisms g,: C; = C;, for all 2 €I, such that f’' = gf where
the isomorphism g¢: C = C’ is induced by the isomorphisms g;(7€I) in
the sense that g(x)(¢) = g«x(7)) for all xeC and 7€ l.

Regarding the second problem, we first observe that B is an inner
direct product of subalgebras B;(1€1I) of A if and only if, for every
-element x of the algebra

the sum >e; 2(1) exists, and the mapping z-— e 2(7) is an iso-
morphism of B onto B.

Consider now a system of subalgebras B;(ieI) of A, and define B
.as above., In order for the indicated map to be everywhere defined
and to be an isomorphism of B into A it is obviously necessary and

.sufficient that the following four conditions be satisfied:
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(1) For any finitely nonzero system of elements a; € B; (¢ € I), the sum
Siier @; exists.

(II) For any two finitely nonzero systems of elements a;, b, € B; (i e I),
if Eiel a;, = Ziel bil then a; = b% fOI‘ all ’I:GI.

(III) For any two finitely nonzero systems of elements a;, b; € B; (4 € I),

Z(ai+bi)zzai+zbi-
t€Y ier 1€r

(IV) For any te T, and for any finitely nonzero systems of elements
a,:.€B;¢tel),k=0,1, -+, p(t) — 1,

Ft(Z Qo,55 ** %y Z a’p(t)—m') - Z Ft(a'o,iy *t a’p(t)—l,i) .
i€l 1€1 i€1

Consequently, in order that there exists a subalgebra B of A such that
B is an inner direct product of the algebras B;(ieI), it is necessary
and sufficient that (I)~(IV) hold. Furthermore, if such an algebra B
exists, then it is unique and can be characterized by either one of the
following conditions:

(V) B is the set of all elements be A such that b = >;¢; a; for some
finitely nonzero system of elements a; € B; (i € I).

(V') B is the subalgebra of A generated by the union of all the
algebras B; (i e I).

The conditions (I)~(V) or (I)-(IV) and (V’) are often taken as the
definition of the phrase “the subalgebra B of A is the inner direct
product of the subalgebra B;(iel) of A.”

Since we shall henceforth be concerned exclusively with inner
direct products we will refer to these simply as direct products. The
direct product of a system of subalgebras B;(i€I) of an algebra A
will be denoted by

11 B;,

ier
and the direct product of finitely many subalgebras B, B, -+, B,_;
will also be written

B, x B, X «-- X B,_,.

In the finite case our notion obviously coincides with the direct product
in Jonsson-Tarski [6], where this notion is defined recursively in terms
of the binary operation x.

A subalgebra C of an algebra B is called a factor of Bif B=CXx D
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for some algebra D, B is said to be indecomposable if it has at least.
two elements and the only factors of B are B and {0}. By a direct
decomposition or, briefly, a decomposition of B we mean a represen-
tation of B as a direct product of subalgebras. The direct decompositions.
of B,
B=11C;=11D;,
1€7 JEJT

are said to be (centrally) isomorphic if there exists a one-to-one
mapping f of I onto J such that, for each <el, C; and Dy, are
(centrally) isomorphic. Finally, the second decomposition is said to be
a refinement of the first if for each je€J there exists ¢ ¢l such that
D;=C,.

2. Elementary properties of direct products. In this section several
simple properties of direct products are listed. Since many of these
results are already known from the literature (c.f. Jonsson-Tarski [6]),
and the derivations of the remaining ones offer no difficulty, all proofs

will be omitted.
We assume throughout this section that A is an algebra.

LemMma 2.1. If B and C are subalgebras of A such that B x C
ewists, then for all b,b’e B and ceC,

b+c=c+b and G+)+c=b+0O"+¢)=0+c)+0.
LemMA 2.2, Ewvery factor of A is a subtractive subalgebra of A.

LeMmA 2.3. (The modular law) Suppose B and C are sub-
algebras of A such that B x C exists, and suppose D is a subtractive
subalgebra of A. If BZ D, then (BXCYND=Bx(CNnD). In
particular, if BEDZ B x C, then D= B x (CN D).

LemmA 2.4, If, for each i€ l, B, and B! are subalgebras of A
such that B!S B;, and if the direct product

i€r

ewists, then

(1) the direct product
B = ]I B}

1€1

ewists and is a subalgebra of B.
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(i1) B' = B if and only i+f B} = B; for all i¢el.

(iii) B’ is a subtractive subalgebra of B if and only if, for each
v eI, B} is a subtractive subalgebra of B;.

(iv) B’ is a central subalgebra of A if and only if, for each ¢l
B; is a cenitral subalgebra of B,.

LemmaA 2.5. Suppose B, (i cI) are subalgebras of A. Then
A - H Bi

i€r
if and only if there exist homomorphisms f;, of A onto B, for all
4 eI, such that for each ac A

a= > fla), and f.f{a)=0 whenever t,5€l and i+7.
134

T hese homomorphisms f;, if they exist, are unique and have the
property that f.f; = f; for all ie L.

DEFINITION 2.6. Assuming that
A = H Bz ’
t€T
the homomorphisms f; characterized by the conditions in Lemma 2.5
are called the projections of A onto the algebras B; induced by the
given decomposition of A.

LEMMA 2.7. Suppose B;(i€l) are subalgebras of A, Then the
direct product

11 B

1€l
exists if and only if for each finite subset J of I the direct product
I1 B;

€T

exists.

LeMMA 2.8. Suppose that B;(ieI) are subalgebras of A, that
I = Uhiex Ji, and that the sets J,(ke K) are pairwise disjoint. If
either the direct product

B=T1I B

t€I
exists, or if the direct products
i €K

€I

exists, then all these direct products exist, and B = B'.
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LEMMA 2.9. Giver two direct decompositions of A,

A=TIB and A=TIC,,

1ET jed

the second decomposition of A is a refinement of the first if and
only if for each tel there exists a subset J, of J such that

B,;: ]___[Cj.

JEJT;

LEMMA 2.10. If B;(iel) are subalgebras of A, if the direct
product

I B;

iE€T

exists, and 1f J and K are subsets of I, then

(15)n (1) = 215

ied 1EL IESJNE

LeMmA 2.11. Suppose B; (tel) are subalgebras of A, and for
each 1€l let B, be the subalgebra of A that is generated by the union
of all the algebras B; with jeI and © # j. Then the direct product

11 B;

€1

ewists if and only if B; X B; exists for all i¢el.

Lemma 2.12, If C s a ceniral subalgebra of A, then for all
a, 0’ €A and ceC,
a+c=c+a, and a-+c¢c=a +c¢ implies a =a'.
Lemma 2.13. If C is a central subalgebra of A, then C is a

subtractive subalgebra of A, and C is an abelian group under the
operation +.

LEmma 2.14. If B is a subtractive subalgebra of A, and if C is
a central subalgebra of A, then

(i) BN C is a central subalgebra of A.
(ii) B x C ewists if and only if BN C = {0}.
Lemma 2.15. Suppose C,, C,, +--, C,_, are central subalgebras of

A, and for k=1,2,«-+,m — 1 let C, be the subalgebra of A that is
generated by the wunion of the algedbras C,, C,, -+, C,.. Then the
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direct product

II C,

k<n
exists if and only if C,NC,={0} for k=1,2, -+, n — 1.
Lemma 2.16. If
A=TIB,
i€r
then
A= 1] B:.
1€I
LeEmMA 2.17. Suppose
A=]1IB;=11C;,
jer

i€l
and for iel and jedJ let f; and g; be the projections of A onto B;

and onto C; that are induced by these two decompositions. If 4,4 €l,
jed, and © = v, then fig,fi;, maps A into the center of B;.

Lemma 2.18. If
A=BxC=11D,,

i€l

then

B x C:i];[I((ch cC)ynby).

LemMA 2.19. If B,C and D are subalgebras of A such that
B X C ewists, then the conditions

BxC=BXxD and B°xC=DBxD

are equivalent.

LEMMA 2.20. Suppose A= B X C =B x D, and let f and g be
the projections of A onto C and onto D induced by these two decom-
positions. Then the restriction g’ of g to C 18 a central isomorphism

of C onto D, and the inverse of g’ s equal to the restriction of [
to D,

3. Exchange properties. The central concept of this paper, the
exchange property, was mentioned in the introduction. We now formu-
late this notion more precisely.
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DErFINITION 3.1. Given « cardinal m, an algebra B is said to
have the m-exchange property if for any algebra A containing B as
o subalgebra, and for any subalgebras C and D,(icI) of A, where
the cardinal of I does not exceed m, the condition

A=BxC=]lD;

1E€T
tmplies that there ewist subalgebras K, S D;(i € I) such that

i€l
We say that B has the exchange property if it has the m-exchange
property for every cardinal m. We say that B has the finite ex-

change property if it has the m-exchange property for every finite
ccardinal m,

It would be of some interest to know whether, for two given
.cardinals m and » with 1 < m < n, the m-exchange property implies
the n-exchange property. It will be shown later in this section that
this is the case whenever % is finite, whence it follows that the 2-ex-
.change property implies the finite exchange property. In all other
cases the answer is unknown. However, since every algebra that is
known to have the 2-exchange property is also known to have the
.exchange property, this question is not crucial at the present.

This section will be devoted to a series of lemmas involving or

relating to the exchange properties that will be used in the subsequent
;sections

DEFINITION 3.2. A congruence relation 0 over an algebra A <s
said to be conststent with a decomposition

A=TIB

ier
of A if, for all z,yc A and i¢el,
xfy tmplies f(x)0f(y) ,

where f; is the projection of A onto B, induced by the given de-
.composition.

If A is a group, then the congruence relation ¢ that corresponds

to a normal subgroup N of A is consistent with the above decomposition
of A if and only if

N:ieHI(BiﬂN).
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For an arbitrary algebra A, a congruence relation 6 over A is easily
seen to be consistent with a given decomposition of A if and only if
# is generated (in an obvious sense that need not be made more precise
here) by its restrictions to the factors in the decomposition.

LeMmA 3.3. Suppose the congruence relation 6 over the algebra
A is consistent with the decomposition

14::]]:B1

1€

of A. Then
Ao = 1IEI[ (B,)6) .

More generally, for any system of subalgebras B;S B; (ie ),

Proof. For each 1€ let f; be the projection of A onto B; induced
by the given decomposition of A. The consistency of 6 is equivalent
to the assertion that for each ¢ ¢ I there exists a map g, of A/f onto
B;/0 such that gix/6) = fi(x)/6 for all xc A. It is obvious that ¢; is
a homomorphism. For each xe A,

r = gzé.f}(x) ’
and therefore

%[0 = %; (fi2)/0) = % g{x/0) .

Finally, if ¢ and 7 are distinet members of I, then for all xec A,
9:9,(x/0) = f,f«(x)/6 = 0/6. Hence the first part of the conclusion
follows by 2.5. The second part of conclusion follows from the first
part together with the observation that the algebra

(1B:)s
) el
‘consists of all elements
(3o)fo = S @0,
1€ ter
associated with finitely non-zero systems x; ¢ B; (i € I).

LEMMA 3.4. Suppose the congruence relation 0 over the algebra
A 18 comsistent with the decompositions
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A=BxC=]1D,
i€r

of A, and suppose the restriction of 0 to B is the identity relation.
If, for each i1, E; is a subalgebra of D)0, and if

A0 =Blo x T1 E;,

€I

then there exist subalgebras E; <= D, (i€ I) such that E; = E,/0 for all
1€l and

A=Bx]IlE,

(131

Proof. For each teI let f; be the projection of 4 onto D, induced
by the second of the two given decompositions of A. Letting

(1) A'=B xC,
we infer from 2.18 that
(2) A" =11 D/ where D/=A'ND;(icl).

iET

Obviously (B/8)° = B°/0, since the restriction of & to B is the identity
relation, It therefore follows by (1), (2), 3.3 and 2.19 that

(3) A'J0 = B°[0 x C|0 = TI(D[0) = (B/6) x I E;.
Next observe that
(4) D6 = (A'/6) N (Dy/6) .
To prove this we use the fact that
Al0 = (BJ6) x (C/6) = ]1 (Di/0)

and that

A'l0 = (B°]0) x (C/0) ,
and we infer by 2.18 that
(5) A'fo = 11 (A'/0) 0 (Dy/0))

Since in (4) the left hand side is obviously included in the right hand
side, the equality follows from (3) and (5) with the aid of 2.4 (ii).

It follows from (3) and (4), together with the hypothesis E; < D,/0,
that

(6) E,=D}o.
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Letting

E,={x|xeD] and z/0c £},
we see that FE; is a subalgebra of D;, and we infer from (6) that
(7) E, = EjJb .

From the fact that D/ is a subtractive subalgebra of A’ and that E,
is a subtractive subalgebra of A’/6 it readily follows that E; is a sub-
tractive subalgebra of A’. Consequently,

tel

is also a subtractive subalgebra of A’. Furthermore, if be B°N E,
then

b/0 € (B*[6) 0 (E/6) = {0/6} ,

.and therefore 8 = 0. Thus B°N E = {0}, and we infer by 2.14 (ii) that
the direct product B° X E exists, and is a subalgebra of A'.

To complete the proof it suffices to show that D, & B° x K for
every kel. Consider an element xe D]. By (3) and (7) there exist
an element be B° and a finitely nonzero system of elements ¢; e E,
such that

x0b + > e;

tE€I
‘There exists an element b € B® such that b + b = 0. Hence

b+ x0Se;.

1€

‘Consequently f.(b) + wfe, and fi(d) = fi(b + x)fe;, whenever k = iel.
Inasmuch as

beB<II D!,

‘€I

we infer that f.(b) + xcE, and that fi(b)c E;, whenever k = icl.
"Thus

fi®) = b+ kgelfi(g)eﬁ x K,

and hence
&= fid) + (fi(d) + ®)e B°* X E ,

as was to be shown.

Lemma 3.5. If B is a factor of an algebra A, then there exists
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a unique congruence relation 8 over A with the proverty that if C
is any subalgebra of A with A = B x C, and if g is the projection
of A onto C induced by this decomposition, then for all x,yc A the
conditions xfy and g(x) = g(y) are equivalent.

Proof. Since the projection g of A onto C induced by the de-
composition A = B x C is a homomorphism of A onto C, the condition

20y if and only if g(x) = g(y)

defines a congruence relation & over A. To complete the proof it
therefore suffices to show that for any other decomposition A = B x C’,
and the induced projection ¢’ of A onto C’, the conditions g(x) = g(¥)
and ¢'(x) = g'(y) are equivalent. To see that this is true we simply
observe that for all xe A, ¢'(x) = ¢'g(x) and ¢g(x) = gg’(x). In fact,
there exists be B such that © = b + g(x); hence

g'(x) = ¢'(b) + g'g(x) = g'g(w) .

The second formula is proved similarly

DEFINITION 3.6. If B is a factor of an algebra A, then the
congruence relation 0 characterized by the conditions in Lemma 3.5
18 called the congruence relation over A induced by B.

COROLLARY 3.7. Suppose B and C are subalgebras of an algebra
A such that

(i) A=BxC,

and suppose 0 is the congruence relation over A induced by B. Then
0/6 = B, and the restriction of 0 to C is the identity relation over
C. Furthermore, 6 is consistent with any decomposition of A that
18 a refinement of the decomposition (i).

LEMMA 3.8. If B, C, D, (iel) and F are subalgebras of an algebra
A such that

(i) A=BxCxE=TID; x E,

i€r

and if 0 is the congruence relation over A imduced by E, then for
any subalgebras F, S D;(1e 1) the condition

(ii) AJ6 = (BJ0) x 1L (¥3/6)

amplies that
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(iii) A=BxTIF. xE.

1€l
Proof. Since E/0 is the one-element algebra {0/6}, we have
A6 = (BJ0) x T (F/0) X (E[0) .
eI

Inasmuch as the restriction of ¢ to B is the identity relation over
B, we infer by 3.4 that there exist subalgebras F/S D,(1el) and
E’'S E such that
A=BXx ]l F;, x E’
i€r
and such that F,/6 = F//6 for all 1el. Since the restriction of 0 to

D; is the identity relation over D,, this last condition implies that
F! = F,, and by the modular law we have

E=E x E" where B" = En(B x E[F)
1€X
If xe¢E”, then * =y + 2 for some ye€B and z¢€]];e; F;. Hence
Y/6 + 2/60 = x/0 = 0/0, and it follows by (ii) that y/6 = z/6 = 0/6. Re-
calling that the restrictions of ¢ to B and to ]l.e; F; are the identity
relations over these algebras we infer that ¥y =z = 0, hence x = 0.
Thus E” = {0}, £’ = E, and (iii) holds.

COROLLARY 3.9. If B,C,D;(vcl) and E are subalgebras of an
algebra A with
A=BXCxE=]]ID,x E,
i€l
and tf B has the m-exchange property, where m is the cardinal of
I, then there exist subalgebras F; S D;(t € I) such that
A=Bx]lF, xE.

i€er

LEMMA 3.10. Suppose m s a cardinal and n is a positive
integer, and suppose B, B, ---, B, are subalgebras of an algebra B
with B= By, X B, X «++« X B,. Then B has the m-exchange property
if and only if each of the algebras B,(k = 0,1, +++, n) has the m-ex-
change property.

Proof. Tt suffices to consider the case n = 1. First suppose B,
and B, have the m-exchange property. If A is an algebra that contains
B as a subalgebra, if C and D, (4 € I) are subalgebras of A with
(1) A=B,xB,xC=11D:,

i€l
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and if the cardinal of I does not exceed m, then there exist subalgebras
E, S D;(t€I) such that
A=B x Il E;.
ierl
From this and the first decomposition in (1) it follows by 3.9 that
there exist subalgebras F, S E; (i ¢ I) such that

A:BOXBIXHFi.
. 1€
Thus B has the m-exchange property.
Now suppose B has the m-exchange property. Consider an algebra
A containing B, as a subalgebra, and subalgebras C, D, (¢ e I) with
A=B,xC=11D,,
[1=91
and assume that the cardinal of I does not exceed m. Replacing the
given algebras, if necessary, by isomorphic copies, we may assume
that there exists an algebra A’ such that both A and B, are sub-
algebras of A’, and such that A’ = A x B,. Then
AA=BxC=B x]]D,.
1€l
If m is infinite. then we can apply the m-exchange property to these
two decompositions, but in order to accommodate also the finite cases
we choose an element ke, and let ['’=1—{k} and E = B, x D,.
Then
A=BxC=ExI1ID,.

ier’
Hence there exist subalgebras E'S K and D/ S D, (i cI’') such that
(2) A'=B X E'"x ]I D!.

tEI’

Since B x E’ is a factor of A’, and hence a subtractive subalgebra of
A’, and since BE& B X E'S B x D,, it follows from the modular law
‘that B X E' = B X D] where D} = (B x E')N D,. Substituting this
into (2) we obtain

A'=B x|l D/,

i€T

Inasmuch as

A’:leA:le<Bo><HDi’>

i€l

and
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B, x [I Dic A,

1€T1
we conclude by 2.4 that
A=B,x1ID;.

i€r

Thus B, has the m-exchange property.

LemmA 8.11. If an algebra B has the 2-exchamnge property, then
B has the finite exchange property.

Proof. It suffices to show, for an arbitrary integer m > 1, that
if B has the m-exchange property, then B has the (m + 1)-exchange
property. Assuming that

A=Bx(C=D,xD x --- xD,,,

let E=D, x D, X +++ X Dpy. Then A= B x C=F x D, and since
B has the 2-exchange property, there exist algebras 'S K and D, & D,
such that A = B x K’ x D,,. Letting

E"=EnBxD,) and D, =D,N(B x E"),

we infer by the modular law that £ = E’ x E" and D, = D) x D).
From the decompositions

A=Bx (E'"x D)= (E" x D) x (E' x D!

we see by 2.19 that E" is isomorphic to a factor of B. Consequently
K" has the m-exchange property by 3.10. Since

E=E XE"=DyxX D, X +++ XDy,

it therefore follows that there exist subalgebras D/!S D,,©=0,1, -+,
m — 1, such that

E=FE"xD/xDl x---xD,)_,.

Inasmuch as K"S B x D, S K" x (' x D,), and application of the
modular law yields

B x D, =E"xE"” where E' =(B X D,)N(E' x D,),
and we conclude that

A=EFE"XE"XE"=EXE"=D!XD] X +«+XxD)_,xE"xE"
=B XD/ XD/ X+« xD,.

Thus B has the (m + 1)-exchange property, as was to be shown.
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LeMmA 3.12. Suppose m is a cardinal greater than 1, and
suppose B is an algebra whose center is generated by a set whose

cardinal does not exceed m. If B has the m-exchange property, then
B has the exchange property.

Proof. Assuming that
A=BxC=1]lD,,
1€

write

D,=1ID, for J&I.

ieJ

Then there exists as set J =1 such that B°S D,, and such that J is
finite if m is finite, and the cardinal of J is at most m if m is infinite.
By hypothesis (and by 3.11 in case m is finite), there exist subalgebras.
E, S D, for all 1¢J and a subalgebra F of D,_; such that

A=BXx ]l E, x F.

1€
Letting E;, = F'N D, for 1€ I — J, we shall show that
(1) F= 11 E;,

iter—J
whence it follows that
A=BXx]lE,.

i€l

Given a € F, there exists a finitely non-zero system of elements
d,eD;,(teI — J) such that

a:.Z di'

1E€I—J

Considering a fixed index kel — J, we can find elements be B, ¢; € E;
(iedJ) and fe F such that

(2) dk:b""%ei’]"f-
By 2.17, be B°, hence be D,., Consequently the element
(3) c=0b+ > e
1ES
belongs to D;. But the elements d, and f belong to the subtractive

subalgebra D, ; of A, and it follows by (2) and (3) that xe D, ;.

Thus x =0,d, = f,and d, e FND, = E,. Since this last formula holds.
for all kel — J, we conclude that

ac H Ei.

i€1—J
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From this (1) easily follows.

4. Direct decompositions with countably many factors. The next
theorem and its simple proof are included primarily in order to show
why a similar argument fails to apply when we drop the assumption
that the set I be finite.

THEOREM 4.1. If the algebra A has the m-exchange property
(where m 1is some cardinal), and if

A=1IB =T1IC

rel JjEJ

where the set I is finite and the cardinal of J does mot exceed m,
then these two direct decompositions of A have centrally isomorphic
refinements.

Proof. For notational convenience we assume that I consists of
the integers 0,1, ---, ». By 3.10, B, B,, ---, B, have the m-exchange
property, and by successive applications of 3.9 we obtain, for each
jed, a sequence of subalgebras

ngc(;,jgcl’,jg cee 2 C:L—l,j;C’:L,j - {0}

such that
A=DBx -+ x B, x I Ci; t=0,1,---,n).

JET

Since all the subalgebras C., are factors of A, it follows by the
modular law that subalgebras C,; (¢ =0, ---, », j¢J) exist such that
for each jeJ,

C;=0Cs; x Gy, and Ci;=Cj; x Cy; (G=1,---,m).

Consequently

CJ’:I.[Ci,J' (ged)

and

A:HBzX H HCi,j (pZO,l,---,n+1),
i<p pSisn jEJ
comparing the two decompositions obtained from this last formula by
taking two successive values of p,» =k and »p =k + 1, we infer by
2.20 that
B, =TIC,; (k=0,1,.-+,m);

JjeJ
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and we conclude that B, has a decomposition

B, = _];[JBM with B,,; =°C,; all jeJ.
J
Attempting to extend the above argument to the case when both
I and J are infinite, one encounters difficulty in connection with the
“passage through limits.” For instance, in the simplest case, where I
is the set of all natural numbers, the above process yields subalgebras
C,;,Ci;(t=0,1---,7¢J) with

C;=0C,i x1IC,; and B,=°[[C,;,
isk jeJ

but it may happen that the direct product
1I C,;

is a proper subalgebra of C;. It is not known how this difficulty can
be overcome in general, but we will show how it ean be avoided in
certain situations. For the case when I and J are denumerable, this
is done below by a simple argument involving a diagonal process.

Observe that in the proof of 4.1 we did not make direct use of
the fact that A has the m-exchange property, but applied this property
to the factors B,;. Because of the finiteness of I this distinction is
immaterial here, but in later results a significant generalization is
obtained by assuming the exchange properties for the factors in some
decomposition (or decompositions) rather than for the whole algebra.
Incidentally, 4.1 could actually be generalized by observing that no
use is made of the fact that B, has the m-exchange property.

THEOREM 4.2. If an algebra A has two direct decompositions
with countably many factors,
(1) A=B, X B, X B, X «++=Cy X C; Xx Cy X +=+,
where all the factors B, and C; have the W,-exchange property, then
these two direct decompositions have centrally isomorphic refinements.
Proof. Since B, has the W,exchange property, there exist sub-
algebras C,,;, C},; with C; = C,; x C;; for 7 =0,1,2, --- such that
(1) A=B X Ciyx Cs; X CpyX eee,
and from this it follows by 2.20 that |
(2) Bogc O,OXCO,1><CO,2><"'
The factor C;, of C, has the W,exchange property by 3.10. Applying
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3.9 to (1) and the first decomposition in (i) we obtain subalgebras
B;,, B., with B, = B,, X B}, for 1=10,1,2, -++ such that
(3) A=DByX Cjy X BjyX B, X BjygX e+,
and it follows, again by 2.20, that
Cio =Z° By, X Byy X Byp X «oe

Now, using the fact that B!, has the YW,exchange property, we apply
3.9 to (8 and (1). This yields subalgebras C,;, Ci; with Ci; =
C,; x C}; for =1,2,8, --- such that
(4) A:BOXC(;,OXB{,OXC{,IXC{,ZXC;,:QX”.!
B, =°Ciy X C3 X Cpg X 2+
Next, from (4) and (3) we obtain subalgebras B;,, Bi, with B, =
B, X Bj, for ¢t = 2,8, --- such that
A=B, X Cl, X Bl X Ciy X By, X Bj, X Byy X +v+,

Cili=°B,; X By; X By X +++ .

Continuing in this manner we obtain subalgebras B, ;, Bi; for ©>J

and C,,; for 7 <37 such that the following four conditions hold for
1=1,2,3, +--and §=0,1,2, -+ :

(5) B, =B;, X B;; X +++ X B,;., X B; ;,,
(6) Ci=0Co; X Cp; X v+ X Cj; X Cly,
(7) T =05 X Chipy X Cigpa X o0,

(8) Cli Z°Bji1,5 X Bjia,j X By X -

From (2), (7) and (8) we infer that there exist algebras B;,; for ¢ < 7
and C;; for 7 > j such that

(9) B;,;=<C;; fort,7=0,1,2 -+,

(10) B, = B,y X By, X Byy X *++,

(11) B =B, X Bjss X By 4y X o+ for 1=1,2,3,++,
(12) C)i= Ciir; X Ciya; X Ciygy X +o+ for j=0,1,2+-+

Together with (5) and (6) the last three formulas yield
Bi:Bi,o X Bi,l X Bi,z X oeee,
Cj - Co,j X Cl,j X Cz,j X e

Thus the two original decompositions of .4 have the refinements
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A=1] HBi,j:H HCM,

<o j<oo <o oo

and according to (9) these are centrally isomorphic.

5. Decompositions into indecomposable factors. In order to prove
the existence of centrally isomorphic refinements for two decompositions
with countably many factors we had to assume that all the factors
involved had the Y,-exchange property. In proving that two decom-
positions with indecomposable factors are centrally isomorphic we can
get by with a much weaker assumption. This is due to the next two
lemmas.

LemMA 5.1, If an indecomposable algebra B has the 2-exchange
property, then B has the exchange property.

Proof. Suppose
A=BxC=1lD;.

i€I

Since each element of A is contained in the product of finitely many
factors D;, there exists a finite subset J of I such that

(1) BﬂiIeIIDii{O}.
Letting

£= 11,0
we have

A=1ID, x E.

i€

By 3.11 B has the finite exchange property, and there therefore exist
subalgebras D/ S D;(1¢J) and E’'S E such that
(2) A=BXxTID! x E

1€J
By the modular law we can find subalgebras D" with D, = D! x D/
for 1€, and E” with £ = E’ x E'. By 2.20,

B=1ID!"x E".
1€J
But as B is indecomposable, only one of the factors in this last produet
can be different from {0}, This cannot be the factor E”, for then we
would have D; = D, for all €4, and the product in (2) could not exist
because of (1). Thus E" = {0}, E' = E, and letting D/ = D, for all



820 PETER CRAWLEY AND BJARNI JONSSON

1€l — J we have

A=BXx]ID!.

€1

LEMMA 5.2. If an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then every indecomposable
factor of A has the exchange property.

Proof. Suppose
A=BxC=1]D,

i€r
where B is indecomposable and the algebras D, have the 2-exchange
property. By 5.1 it suffices to show that B has the 2-exchange prop-
erty. As in the preceding proof, we choose a finite subset J of I
with

(1) B0 1L D: # {0} .

By 3.10 the algebra
1? = II IZ

€T
has the 2-exchange property, and there therefore exist subalgebras
B'S B and ¢’ C such that
A=Ex B x (.

By the modular law, B’ is a factor of B, and because B' N K = {0} =
BN E, we have B’ = B. Therefore B'={0}., Thus A=B x C =
E x ¢'. Again by the modular law, C= C’' x (CN E’'), and using
2.20 we infer that £ = B X (C N E’). Thus B is isomorphic to a factor
of E, and therefore has the 2-exchange property by 3.10.

THEOREM 5.3. If an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then any two direct de-
compositions of A into indecomposable factors are centrally isomorphic.

Proof. Suppose
A=11B;=1IC;

i€l 1€J

where all the factors B; and C; are indecomposable and therefore, by
5.2, have the exchange property. For I'=1I and J' & J let

B(I')= 11 B; and C(J") =1l C;,
i€’ jed’
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and recall that, by 3.10, B(I') and C(J’) have the exchange property
whenever the sets I’ and J' are finite. In particular, it follows from
this and the indecomposability of the factors C; that if I’ is any finite
subset of I, then A = B(I') x C(J — J') for some subset J’ of J. More-
over, since B(I') =°(C(J'), we see with the aid of 4.1 that J’ must
also be finite and that, in fact, there must exist a one-to-one map ¢
of I’ onto J’ such that B, =<C,, for all 1€ I’. Similarly, for each
finite subset J’ of J there exists a one-to-one map + of J’ into I such
that C; =¢ By;, whenever jeJ’.
For kel let

I=1{ilieland B,="B), J,={jljed and C;="B,)}.

From the above considerations we see that each member of J must
belong to at least one set J,, and that if J, is finite, then I, must
have at least as many elements as J,. To complete the proof it suffices
to show that this last statement also holds when J, is infinite. To
prove this we consider, for each ¢ €I, the set N; of all elements je.J
such that A = B; X C(J — {j}), and show that

(1) N, is finite for each icl,
(2) U Nz:t]k.
TETg

From this our assertion follows, for since J, is assumed to be infinite,
(1) and (2) show that the number of elements in J, cannot exceed the
number of distinet sets N; with ¢ € I,, and hence cannot be larger than
the number of elements in I,.

Considering a fixed element 7€ I, choose a finite subset J’ of J
such that B; N C(J') = {0}. Then the direct product B; x C{J — {7}
fails to exist whenever jeJ — J’, and N, must therefore be a subset
of J'. Thus N, is finite.

Considering a fixed element j €.J,, choose a finite subset I’ of I
such that C; N B(I") #+ {0}. Then there exists a finite subset J' of J
such that A = B(I') x C(J — J’). Observing that jeJ’, let J’ =
J’' — {7) and apply 3.9 to the direct decompositions

A=CJ")xC; x CJ—J)=1I B, x C(J — J') .
r€Lf
This yields and element 7 eI’ such that
A=CJ"Yx B; x C(J—J)= B, x C(J — {3},

and therefore je€ N;. Since jeJ, and C; =°B,, we have ¢t I,. Thus
(2) holds, and the proof is complete.
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6. Factors with countably generated centers: Preliminary lemmas.
As a result of Lemma 6.3 below the isomorphic refinement problem for
algebras

A:HBzr

1€l

where the factors B; have countably generated centers, reduces to the
special case where I is countable, and A itself therefore has a countably
generated center.

LemMMA 6.1, If B,C and D;(teI) are subalgebras of an algebra
A such that

A=BxC=T1ID; and B =T11(B°'nND)),

ier i€l
then there exist subalgebras E;(iel) such that B°N D, S E; = D, and

€I

Proof. By 2.16,
Ac:BcXCo:HDié’

i€

and since each B°( D; is a factor of A° and a subalgebra of Dy, it
follows from the modular law that there exist subalgebras D; with
Df =B°ND) x D! for all iel. Thus

A°=B"x C°=B x ]I D/,

el
and it follows from 2.19 and 2.18 that
Bx C'=Bx D =]D!

i€l 1€

where D!’ = (B x C°) N D; for all iel. Again using the modular law
we infer that, for each i¢ I, D!' = D] x E, where

E = D;'n<B % TI D;>.
1#JET
Consequently

(1) BxC=1ID!x11E,.

1€7 i€r
Observing that
B x C°= B x (H D;)” - (H E) X (H D;>c,

1€I i€l iET
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and that
BCZH(Bani)gIeIIEf:< cy

‘€T

11 )

i€l
we see with the aid of 2.4 that
B — (H E) .
i€rI

Consequently
() -0

According to 2.14 this implies that the direct product
(2) A =C x| E,

iEer
exists. Furthermore, A’ contains B° x C° and therefore contains all
the algebras D/. Hence it follows by (1) and (2) that B x C°S A'.
The opposite inclusion also holds, since all the algebras E; are contained
in B x C°. Thus A’ = B x C°. Together with (2) and 2.19 this yields
the desired conclusion,
A=BxC=CXxIlE;.

1€r

LEMMA 6.2, Suppose B,(iel), C,(jeJ) and D are subalgebras
of an algebra A such that
(1) A=MB; xD=]1]C; x D,
i€l JET
and suppose B; is countably generated for each tcl. If kel, then

there exist a countable set K< I with ke K and subalgebras F; < C;
(7€) such that

(ii) A= 1l B;xI1F;x D,
i€I-K i€r

(iii) Il B; x D°=1] F; x D,
i€k jer

Proof. Since Bj is countably generated there exist countably
generated subalgebras E;,S C;(jeJ) such that E;, = {0} for all but
countably many j¢J and such that

BiS Il E;, x D¢,

JE€J

Since the algebra
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Fy = II lgim
j€a

is countably generated, there exists a countable subset I, of I such
that keI, and

F,.2 11 B; x D°.

i€I
Again, since the algebra

Glang

JE€I

is countable generated, there exist countably generated subalgebras
E; .S C;(jed) such that E;, S E;, S C; for all jeJ, E;, = {0} for all
but countably many jeJ, and

Glg HEj,1 X Dc .
jeds

Continuing in this manner we obtain an ascending sequence of
countable sets I, = {k} S .S L, < --» & I and, for each j €., an ascend-
ing sequence of subalgebras E; &S F,;,, S F;,& -+« & C¢ such that

MBIl E;. x DS ]I Bi x D°

€T, jer i€15 11
for’n:()’]_,z’.-.. Letting K::IOUIIU--. andEj:Ej‘OUEj,IU...
for all 7 eJ we therefore have

(1) Il Bi x De= 1] E; x D*.

iEK JEJ

Letting 6 be the congruence relation over A induced by D we
have

w0 = (1, B)0) < (L)) = 11 o
by 3.3 and 3.7. Letting

A= <<H B)fo)

A= 1 (B0,
and it readily follows that E,;/0 = AN (C,/6) for all jeJ. We there-
fore infer by 6.1 that there exist subalgebras F;(jeJ) with E; &
F; S C; such that

we see by (1) that

A= (( I, B:) o) > 11 o),
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and we conclude by 3.8 that (ii) holds. Finally, E; < Fy for all jeJ,
so that by (1)
I B:x DS Fy x D°.
i€EK Jj€J
Since, by (i) and (ii),
A= [l Bix I Bix D= 1] B:x I] Ff x D°,

i€I—~K i€EK 1€I—K jeJ

we conclude with the aid of 2.4 that (iii) holds.

LEMMA 6.3. If B;(iel) and C;(jeJ) are subalgebras of an
algebra A such that

A=11B;=1]] C;,
1€r jery
and if B is countably generated for each tel, then there exist a
(possibly tramsfinite) sequence of countable pairwise disjoint subsets
L, (@ <)) of I and subalgebras C;,=C;(jed, @ < \) of A such that
I =Uoucr L, and, for all 8 <\,
A= 11 NI B:x]IIII Cia.

BSa<A i€I, JE€J w<B

Proof. Letting U = Uacp ls, we can write this last formula in
the form

(1) A= Tl B XTI I Cia-

1€I-Ug €T w<B
Since this condition involves only sets I, and algebras C;,, with a < 5,
it can be used as an induction hypothesis. To secure the convergence

of our construction process we impose as a second induction hypothesis
the condition

(2) I BsIITChw.
i€EUg JE€J a<B
First observe that this last condition does in fact permit the
passage through the limit ordinals. More precisely, suppose 7 is a
limit ordinal, and suppose the sets I, and algebras C;, have been
chosen for all &« < 7 in such a way that (1) and (2) hold for all & < 7.
We wish to show that in this case (1) and (2) also hold for B = 7.
From the fact that the condition (2) holds for 8 < 7 it follows that
this condition also holds for B =7. Furthermore, since the direct
product
II B:xII Il Cja
iEI-Uy JET w<B

exists for all B < 7, we readily see that the direct produect
A'= TI B;x ]I 11 Cja

i€1-0y JeT a<n
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also exists. In order to prove that A’ = A, and hence that (1) holds
for B8 =7, it suffices to show that B, & A’ whenever hc U,. For each
such index h there exists an ordinal v <7 with he U,. Using (1)
with 8 =1, (2) with 8 =17, and 2.19 we conclude that

B, Il Bix I B;= [I Bix I 1IIC;a

i€I~Ty i€y i1€T-Ty €T aly
& II 13$>< II II Cbﬂvggfql-
1€I-Uy FE€T w<n

Now consider an arbitrary ordinal % and suppose the sets I, and
algebras C;,, S C;(j € J) have been defined for all & < » in such a way
that (1) and (2) hold whenever 8 =%. If U, = I, then we take A = 7.
Assuming that U, == I, let

D;,, = wgn Ciw (7€),
117:: II I)LW'

J€J
For each jedJ, D;, is a factor of A and a subalgebra of C;, hence
C; = D,,, x C}, for some subalgebra C;,. It follows that
A= Tl B.xD,=11C;,xD,.
i€I-Uy, jeJs
Choosing keI — U, we infer by 6.2 that there exist a countable set
I, with keI, & I — U, and subalgebras C;,<C;,(jeJ) such that
(8 A= I B;xMCi,xD,= 11 B:xI I Ci.,

Q€T Uy 1 jers T1€1-Unyyq JET @<n+1

(4) HB$><D§=IGIJC§,,,><D,§.

i€ly
Here, in accordance with our earlier notation,

U= U L=UUIL.
@<+
By (3), (1) holds for 8=+ 1, and from (4) and the fact that (2)
holds for B = % we infer that (2) holds for 8 =% + 1.
Since all the sets I, are nonempty, there must exist an ordinal »
such that U, = I, and the corresponding sets I, and algebras C;,
(@ < A, 7ed) clearly have the properties required by the lemma.

7. Factors with countably generated centers: Fundamental theo-
rem, We are now ready to prove the fundamental theorem relating
the exchange property to the isomorphie refinement property.

THEOREM 7.1. If an algebra A is a direct product of subalgebras
each of which has the exchange property and has o countably gener-
ated center, then any two direct decompositions of A have centrally
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isomorphic refinements.

Proof. Suppose
(1) A =TI B;

1€l
where, for each 7€ I, B; has the exchange property and B¢ is countably
generated. Since every factor of B; (and hence every algebra isomorphic
to such a factor) has the exchange property and has a countably gen-
erated center, it is enough to show that the decomposition (1) and any
other decomposition
(2) A= 11 C;

jE€EJ
have centrally isomorphic refinements.

‘Consider first the case when I is countable. For convenience

suppose I consists of the integers 0,1,2, ---. In this case the center
of A is generated by a countable set

Z = {am Uy, Qg "'} .

We shall construct an increasing sequence of finite subsets I, I,, I, + -+
of I and, for each j € J, two sequences of subalgebras D;,, D;,, D,,, «+-
and D/, = C;, D}, D}, +-- such that the following conditions hold for
E=0,1,2,---:

(3) kel,.
(4) v =D;,x D}, foralljed.
(5) A=TI B: X II DL, .
i€y 1€
(6) ake_]__[]__[Dj,z.
JEJ 1=k

By (2) there exists a finitely nonzero system of elements ¢}, C;
(7€) such that

— ’
Uy = Z Cio s
jes

and by (1) there exists a finite subset I, of I such that 0 < I, and such
that all the elements ¢}, belong to the algebra

B(;:HB«C-

i€,

Since B} has the exchange property, there exist subalgebras D/, S C;
(4 eJ) such that (5) holds for ¥ = 0, and letting
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Dyo=C;n (B x TI Di)

JFERES

for all jeJ, we see that (4) and (6) also hold for &k = 0. In the case
of (6) this is true because ¢;,eC; N ByS D;,, for all jeJ.

Now consider an integer # > 0, and assume that the finite sub-
gets [ &S L& -+ &1,, of I and the subalgebras D, D, *++, D; .,
D/y=0C;, D}, +++, D], (5€J) have been so chosen that (8)-(6) hold
for k=0,1,--+,n — 1. For each jeJ we have have

CJ' = H -Dj,k X CJ",n ’
k<n

and there exist finitely non-zero systems of elements
(7) ¢in€ 1l Dj and ¢;,eD;, (jed)
k<n

such that
a, = ZI (0 + Z C;,n .
€ JEJ

2€J
There exists a finite subset I, of I such that I,_, &1, and nel,, and
such that all the elements ¢j,, belong to the algebra

1;; == II lgi.

i€T,
Since B, has the exchange property, and since

A=11B;x 1l B;= 1l B;x Il Dj,,
i€I, i€I—1I, i€l, 1 jes
there exist subalgebras D/,.,.=D/,.(jeJ) such that (5) holds with
k = n, and letting

Dy = Dju(By X T Diis)
j#hed
for all jeJ, we see that (4) and (6) also hold for £ = n. In the case
of (6) this is true because of the first formula in (7) and because of
the fact that ¢;,e D}, N B,= D,, for all jeJ. Thus we see that the
sets I, and algebras D, , and D/, can be so chosen that (3)-(6) hold
for k=20,1,2, ---.
It follows from (4) that the direct products
C:r= 11 D, (jed) and A* =[] Cf
k<oco JEJ
exist, and from (6) we infer that A°< A*. Moreover, for any natural
number 7,
A=1I1II D X II Dj,..,
jer

jeJ ksn
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and using this together with (38) and (5) we see by 2.19 that

B.S I1 B x (IL D) = T T Dj, x (I D}.) s 4.

1€I, JET IEJ ksn JjeJ

Consequently A* = A, and we infer by 2.4 that C¥ = C; forall e J.
*From (4) and (b) we see that

A= 11 B;x ]Il Dj,, x Il Dj.na
j i€r

€I, 1 ieJ
= Il Bix 11 Bix Il Djsi,
TEL, T€I,—Ty JET

whence it follows that

I Bi=*ll D, .

i€T Ty jeJ

Consequently, by 4.1, there exist subalgebras B;,; and C;;, (1€, — I,_,,
jed) such that

B, =11 B;,; for all tel, — I, ,,
jieJ
Dj,n = H Ci,j for all jeJ ’
PEl Ty
B, ; =°C,,; for all 1el, — I,_, and jed.

Inasmuch as this holds for every natural number » (with I, = &),
we conclude that
A= B,;=1]II1I Cy;,
€I 3€J 1€l J€T

and that these two decompositions of A are centrally isomorphic and
are refinements of the decompositions (1) and (2), respectively.

We now drop the assumption that I is denumerable. By 6.3 there
exist a sequence of countable, pairwise disjoint subsets I, (@ < \) of I,

and for each jeJ a sequence of subalgebras D;,(a < \) of C; such
that I = [Jy<r I, and

(8) \ A= TI I B x ]I Il D;a
B=a<A i€ly . JET w<B
for all B = \. For B =\ this yields
A= H H -Dj,w y
JET @<

and using 2.4 we infer that

C;= 11 D, for all jed.
[ 29N

Taking in (8) two successive values for B, say 8 =7 and =7 + 1,
and comparing the resulting formulas, we see that
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(9) I B;=°]l Dj,.
I€Iy i€s

Since I, is countable, it follows from the first part of the proof that
the two decompositions in (9) have centrally isomorphic refinements,
and inasmuch as this holds for every v < A, we conclude that the de-
compositions (1) and (2) have centrally isomorphic refinements.

The preceding theorem ecan also be stated in the following,
apparently more general, form.

THEOREM 7.2. If an algebra A has two direct decompositions,

A=]JIB;=11C;,
ter JET
such that each of the factors B; (i € I) has a countably generated center
and each of the factors C;(jeJ) has the Wyexchange property, then
any two direct decompositions of A have centrally isomorphic re-
Jinements.

Proof. Choosing the ordinal A, subsets I,(a < ) of I, and sub-
algebras C;,(jeJ, a < \) according to 6.3, we have

(1) C; = H’\Cj,., for each jeJ,
@<
(2) T B:=°T1 C;a  for each @ <.
i€T, jer

Since, by hypothesis, each of the sets I, is countable, the first direct
product in (2) has a countably generated center, and hence so does the
second product. Consequently each of the factors C; . has a countably
generated center. Furthermore, by (1) and 3.10, each of the algebras
C; . has the YW,-exchange property. Hence, by 3.12, all the algebras
C,» have the exchange property. Since

A:HHC]'M,

JET a<A

the conclusion now follows from 7.1.

8. Sufficient conditions for an algebra to have the m-exchange
property. So far we have been primarily concerned with consequences
of the exchange property, but in the remainder of this paper we shall
investigate conditions that imply that a given algebra has the exchange
property. In the present section it will be shown that this problem
reduces to considerations that involve only abelian algebras.

THEOREM 8.1. For any cardinal m, if the center of an algebra
B has the m-exchange property, then B has the m-exchange property.
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Proof. Suppose
A=BxC=1lD,,
terl
where the cardinal of I is at most m. Then by 2.18,
Bc X C = H .D,;’
(14

where D] = (B° x C) N D, for each 7€ I. Hence there exist subalgebras
E,. = D!(iel) such that

BxC=B x]1lE,,

i€l
and we conclude by 2.19 that
A=Bx]I1E,.

el

THEOREM 8.2. For any cardinal m, tn order for an algebra B
to have the m-exchange property it is sufficient (and obviously neces-
sary) that the following condition be satisfied: For any algebra A
containing B as a factor, and for any subalgebras C and D;(i¢cI)

of A, if
A=BxC=11D,,

i€r
if the cardinal of I does mot exceed m, and if each of the algebras
D;(iel) is isomorphic to a subalgebra of B, then there exist sub-
algebras E;, < D, (i € I) such that
A=BX]IlE;.

i€l
Proof. Assume that the above condition is satisfied. Suppose

(1) A:BXC:_I;[ID“
where the cardinal of I does not exceed m. Let f and ¢ be the
projections of A onto B and C induced by the first decomposition of
A, and for i€l let h; be the projection of A onto D, induced by the
second decomposition.

Let 6 be the congruence relation over A defined by the condition
that, for all x,yc A,

x0y if and only if fh,(x) = fh,(y) whenever 7¢1.
We shall show that

(1) 0 is consistent with the decompositions (i) of A .
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(2) The restriction of 0 to B is the identity relation over B.

Suppose z,y€ A and x20y. Then
F@ = (S @) = S rhi)
= ) = (S hiw) = 1) -

In particular f(z)df(y). Moreover, this shows that for z,ycB the
condition xfy implies that x = f(x) = f(y) =y, so that (2) holds.
Again assuming that xfy, if k<l then

Shih(x) =0 = fh;h(y) whenever k «1¢cl,
Fhihi(x) = fh(x) = fhiy) = fhh(y) ,

so that h,(x)0h,(y). From the equations

Sl f (@) + fhg(@) = fh(f(x) 4+ 9(@)) = fhy(x) = fh,(y)
= fh(f(¥) + 9() = fhf®) + fhgy)

we infer that
(3) hifbif (@) + hiflug(@) = hifh, f(y) + hiflig(y)
for all 4, ke l. Since f(x) = f(y), we have

hifhif (@) = hifhof (y)

for all 4, ke I, and if © # k, then this element belongs to 4¢. There-
fore, by (3),

(4) hifhg(x) = h;fh,g(y) whenever i, kel and 7k,
Considering now a fixed index % € I, observe that

S, hofhug@) = hif (5, hio(®)) = hfo@ = h() = 0,

with the corresponding formula holding with « replaced by y. Hence,
in particular,

I;e:'z hifhg(x) = ,% hiflg(y) .

Furthermore, all the summands in these two sums belong to A° because
fhg(x) and fh,g(y) always belong to A°., Since, by (4),

#% . hifhg(x) = #kza hifhig(y) ,

this implies that



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 833

hifhig(x) = h;fhg(y) .

Thus in (4) we can omit the condition that ¢ # k, and we conclude
that, for all keI,

lug(@) = 5 hifhug(®) = 3 heflug@) = flug@) ,

so that g(x)fg(y). This completes the proof of (1).
From (1) it follows that

Al0 = (B[0) x (C[0) = 11 (Di/0) .

Notice that if keI and «, y € D,, then the conditions xfy and f(x) =
f(y) are equivalent, and therefore the mapping

x/0 — f(x) (xeD,)

is an isomorphism of D,/# into B. Since B = B/4, it follows that there
exist subalgebras E; < D,/0 (i € I) such that

A0 = (BJf) x IeI E;.

Consequently, by 3.4 there exist subalgebras K, = D, (i€ I) such that
A=BxI1IE,.

i€l
Because of 8.1, we may apply the criterion in 8.2 to B° in place
of B, and thus consider decompositions
A=BxC=1D,
i€T
where the algebras D, are isomorphic to subalgebras of B°. However,
the algebras D, need not be central subalgebras of A, and A there-
fore is not necessarily abelian. We shall now show that it is actually
sufficient to consider the case when A is abelian, in which case the
factors C and D;(iel) of A are of course also abelian.

THEOREM 8.8. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient that the following
condition be satisfied: For any abelian algebra A containing B° as
a factor, and for any subalgebras C and D;(tel) of A, of
(1) A=BxC=]]D,

1234
if the cardinal of I does not exceed m, and if each of the algebras

D;(iel) 1is isomorphic to a subalgebra of B°, then there exist sub-
algebras E,S D,(t e I) such that
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(ii) A=B xIIE,.

i€r

Proof. By 8.1 it suffices to show that B° has the m-exchange
property, and by 8.2 it is therefore enough to show that the condition
in our theorem implies the property obtained from it by deleting the
word “abelian.” Assume therefore that (i) holds, that the cardinal of
I does not exceed m, and that each of the algebras D;(tcl) is iso-
morphic to a subalgebra of B°. Under the operation + each of the
algebras D, is therefore a commutative cancellation semigroup, and
hence so is A. Consequently A can be embedded in an Abelian group
A in such a way that each element of A is the difference of two
elements of A. This exfension of A is unique up to isomorphism.
Furthermore, there is a unique way of extending the operations
F,(teT) to A in such a way that the resulting algebra is abelian:
If a, = a, — a) with a;,a;/ €A for k =0,1, «--, p(t) — 1, then we let

—_— 14 14 ! n Fr 143
Fag, @y =+, Qo) = Flag, @i, <« -, ahuyy) — Fylad, ar’y <o+, agi-1) .

That this definition is unambiguous and actually does yield an abelian
algebra is an easy consequence of the fact that the equation

Fy(w, + Yo, 0 + Uiy * ) Toiymr T Yorer10)
= Fy(@g, @1y + ) Toy—1) + (Yo, Y1y = *, Yorr—1)
holds whenever the elements z,, ¥, (k = 0,1, ---, o(t) — 1) belong to A.
For any subalgebra X of A let X be the smallest abelian subalgebra

of A that contains X. Then X consists of all elements of the form
x —« with 2, 2’ e X. It is easy to check the condition

A:HX]

JET

implies that

In particular, since B° = B¢,

For each tel, D, is_isomorphic to a subalgebra of B°, and the same
is therefore true of D;,. Hence, by hypothesis, there exist subalgebras
F,=D,(ieI) such that

A:BGXHF,;.

i€r

Given an element @ € A, there exist an element b € B° and a finitely
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nonzero system of elements f; € F, (¢ €I) such that
1€l
Since —be A, the element

a—b=23f
1€4L
belongs to A, and there exists a finitely nonzero system of elements
d;e D;(ie€ 1) such that

iET
Inasmuch as d;, f; € D; for all 1¢ I, we infer that d, = f; ¢ D, N F, for
all 1 e I, and therefore
a=b+SdeB x [[(DnF).
i€l

1€

It is now easy to show that (ii) holds with £, = D, N F; for all ¢ e I.

9, Factors with central chain conditions, In this section we will
show that algebras satisfying certain central chain conditions have the
exchange property and have countably generated centers, and these
results will be applied to obtain the principal isomorphic refinement
theorem for general algebras. The chain conditions involved are made
precise in the following two definitions.

DeFINITION 9.1. An algebra A 1is said to satisfy the minimal
condition if every nonempty family of subtractive subalgebras of A
has a minimal member. Similarly, A satisfies the maximal condition

if every nonempty family of subtractive subalgebras has a maximal
member.

DEFINITION 9.2. An algebra A is said to satisfy the local maximal

condition 1if every finitely generated subtractive subalgebra of A
satisfies the maximal condition.

It should be noted that the minimal and (local) maximal conditions
as defined above involve only subtractive subalgebras of an algebra A.
In particular, since the subtractive subalgebras of an operator group
are precisely its admissible subgroups, for groups the minimal and
maximal conditions as defined in 9.1 and 9.2 are just the usual group-
theoretic chain conditions.

The first theorem of this section makes use of the following lemma
which is a consequence of the results of Baer [1].
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Lemma 9.3. ([1]; Theorem D p. 96 and Theorem 3 p. 93)° Let G
be an operator group which satisfies the minimal and local maximal
conditions, If G =B x C =D x E where B is indecomposable, then
there exist factors D'S D and E’ S E such that G = B x D' x E’.

Suppose now that A is an abelian algebra with auxiliary operations
F,(teT). ForeachteTand eachk < o(t) define the unary operation
F,, by

F,(a)=F(0,++-,0,a,0,-+,0) for all ac A .
kth

Since A is abelian, it follows that for each te¢T and elements
gy, Upiy— € A We have
Fyag, ) Gonr) = X, Fiu(a) .
k<p(t)

Consequently the (subtractive) subalgebras of A and the direct decom-
positions of A remain unchanged if we replace the operations F,(te T')
by the operations F\,, (k < p(t),te T). Moreover, this new system so
obtained is obviously an abelian operator group. Hence the following
lemma is immediate by 9.3.

LEMMA 9.4. If A is an abelian algebra which satisfies the
minimal condition and the local maximal condition, and if A=
B x C=D x E where B is indecomposable, then there exist factors
D'SD and E'S E such that A= B x D' x K’

THEOREM 9.5. If the center B° of an algebra B satisfies the
minimal condition and the local maximal condition, then B has the
exchange property.

Proof. By 8.1 we may assume that B = B°. Since B satisfies
the minimal condition, it is a direct product of finitely many inde-
composable subalgebras, and therefore by 38.10 and 5.1 it is sufficient
to show that B has the 2-exchange property.

Consider an abelian algebra A containing B as a subalgebra, and
algebras C, D, and D, such that D, and D, are isomorphic to subalgebras
of B and such that A= B x C = D, x D,. Then both D, and D,
satisfy the minimal and local maximal conditions, and it readily follows
that the same is true of A. Therefore by 9.4 there exist subalgebras
E, D, and E, S D, such that A = B X E, X E,, and we conclude by
8.3 that B has the exchange property.

5 See also Specht |8], pp. 250, 259 and 260.
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In order to apply the preceding theorem in conjunction with 7.1,
we must further show that under the given hypothesis B° is countably
generated. This observation is based on the following lattice-theoretic
lemma. The terminology and simple facts from lattice theory used
below can be found in Birkhoff [3].

LEMMA 9.6. If L is an upper continuous modular lattice, if
every decreasing sequence of elements of L 1is countable, and if every
element of L is a join of finite dimensional elements, then every
element of L is a join of countably many finite dimensional elements.,

Proof. First consider an element a € L that is a join of atoms.
Then there exists an independence sequence g, Py, * <+, De, +++ (E < N)
of atoms of L such that

a = Z pe .

£<a

Since the elements

PN p: (<N
form a strictly decreasing sequence, A must be countable, and there-
fore a is the join of countably many atoms.

Now consider an arbitrary element a € L. For each n=1,2, ---
let P, be the set of all the elements # € L with # < a whose dimension
does not exceed n, and let a, = >, P,. Then

a=>0a,.
n< oo
By the first part of the proof there is a countable set @, P, such
that a, = > Q,. Suppose n >1 and € P,. Then either # < a,_, or
2z + a,_, covers a,.;, since each member of P, — P,_, covers at least
one member of P,_,. Consequently a, is the join of atoms in the
qguotient sublattice a/a,_,. Since the hypothesis of the lemma is
satisfied with L replaced by this sublattice, we again use the first
part of the proof to infer that

an = a’n—l + Z Qn

where @, is a countable subset of P, — P,_,. It follows that each qa,
is a join of countably many finite dimensional elements, and therefore
a is also a join of countably many such element,

COROLLARY 9.7. If B is an abelian algebra that satisfies the
minimal condition and the local maximal condition, then B is counta-
bly generated.
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Proof. The lattice L of all subtractive subalgebras of B is modular
and upper continuous, and, by hypothesis, every decreasing sequence
of elements of L is finite. Also, if C is a finitely generated subtractive
subalgebra of B, then the lattice L(C) of all subtractive subalgebras
of C satisfies the double chain condition. Consequently L(C) is finite
dimensional, i.e., C is a finite dimensional element of L. Since every
subtractive subalgebra of B is the lattice join of finitely generated
subtractive subalgebras, L satisfies the hypothesis of 9.6. Hence B is
the lattice join of countably many finite dimensional elements of L;
equivalently, B is generated by the set-union of countably many sub-
tractive subalgebras C such that L(C) is finite dimensional. But if
L(C) is finite dimensional, then C is clearly finitely generated. Thus
it follows that B is countably generated.

Combining 9.5, 9.7 and 7.1 we obtain our principal isomorphic
refinement theorem for algebras with auxiliary operations.

THEOREM 9.8. If an algebra A has a direct decomposition

A =1T1] B;
i€l
such that, for each < I, B; satisfies the minimal condition and the
local maximal condition, them any two direct decompositions of A
have centrally isomorphic refinements.

10. Lemmas on abelian groups. When applied to algebras with-
out auxiliary operations F),, Theorem 9.8 can be stated in the following
equivalent form: If a binary algebra A is a direct product of sub-
algebras B;(teI) such that, for each icl, B: is a direct product of
finitely many primary cyclic and gquasi-cyclic groups, then any two
direct decompositions of A have centrally isomorphic refinements,
For every abelian group satisfied the local maximal condition, and the
condition imposed on the abelian groups B: above is equivalent to the
assertion that they satisfy the minimal condition. In the next section
we shall obtain a result that is considerably more general than the
one stated above. Here we list a number of known results and prove
five lemmas concerning abelian groups that will be used in the proof
of this more general theorem.

If G is an abelian group and » is an integer, then the subgroups
nG and G[n] are defined by

nG = {nx|zxecG},
Gln]l ={x|xcG and nx = 0}.

As usual, we say that an abelian group G is divisible if nG = G for
every integer n # 0, and we say that G is of bounded order if there
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exists an integer n = 0 such that nG = {0}. An abelian group is said
to be 7reduced if it has no nonzero divisible subgroup, and by the
reduced part of an abelian group G we mean the quotient group G/D
where D is the maximal divisible subgroup of G. If X is a subset
of a group @, then [X] denotes the subgroup of G generated by X;
in particular, if 2 €, then the cyclic subgroup of G generated by «
is denoted by [z].

Let G be an abelian p-group (p some prime). By the height of
an element # € ¢ we mean the largest integer 7 such that « ¢ p'G, if
a largest such integer » exists, otherwise the height of £ is «©. Thus
height ¢ = « if xe€p"G for n =1,2, ---, and height z =r < o« if
xep'G but x¢pt'G. Obviously the zero element of G has infinite
height; if this is the only element in G of infinite height, then we
say that G has no elements of infinite height. Thus G has no ele-
ments of infinite height if and only if N.<.. »"G = {0}

If G is an abelian p-group with no elements of infinite height,
then a topology can be introduced in G by taking as a neighborhood
basis for 0 the subgroup p"G(n =1,2, +-.). This topology is ecalled
the p-adic topology of G. G can be completed in its p-adic topology,
and the torsion subgroup G of the topological completion of G is also
an abelian p-group without elements of infinite height.®

An abelian p-group G is said to be torsion-complete if G has no
elements of infinite height, and G is equal to the torsion subgroup of
the topological completion of G, G = G. Alternatively, G is torsion-
complete if and only if G has no elements of infinite height, and every
Cauchy sequence {®,};<.. of G, for which the orders of the elements
x, are bounded, converges to a limit in G." For convenience we will
call a Cauchy sequence {x,};<., for which the orders of the x, are
bounded, a bounded Cauchy sequence.

An explicit representation of torsion-complete abelian p-groups can
be given as follows. Let U, U, U, --- be a sequence of p-groups
such that U, is a direct product of cyclic groups of order p” for each
n=1,2 +---. Let I'" be the Cartesian product of the groups U, U,
U, «--, that is, I" is the set of all functions f defined on the positive
integers such that f(n)e U,, with addition defined component-wise.
Then the torsion subgroup of I' is torsion-complete. Conversely, if G
is a torsion-complete abelian p-group, then there exists a sequence of

6 This is essentially given by Kaplansky [7], p. 50.

7 Fuchs [3], p. 114, calls these groups closed. However, we have adopted the
terminology of Kaplansky -[7], p. 54, in order to remain consistent with topological
terminology. Fuchs’ definition of Cauchy sequence also differs somewhat from ours in
that he requires a Cauchy sequence to be bounded and converge at a specified rate.
Again we have followed Kaplansky [7] in using the usual topological concept of Cauchy
Sequence.
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groups U, U,, U, --+, where U, is a direct product of cyclic groups
of order p* for each » =1,2, .-+, such that G is isomorphic to the
torsion subgroup of the Cartesian product of U, U,, U,, ---.* In par-
ticular, every primary abelian group of bounded order is torsion-
complete, and every countable torsion-complete primary abelian group
is necessarily of bounded order.

By a pure subgroup of an abelian p-group G we mean a subgroup
S of G such that SN p"G =p"S for all n=1,2,---. It is easily
seen that the p-adic topology of a pure subgroup of an abelian p-group
G with no elements of infinite height is the same as the topology
induced by the p-adic topology of G. A subgroup U of a p-group G
is called a basic subgroup if U has the following properties:

(i) U is a direct product of cyeclic groups;

(ii) U is a pure subgroup of G;

(iii) the quotient group G/U is divisible. A subset X&G is
wndependent if the subgroup [ X ] generated by X is the direct product
of the cyclic subgroups [x] generated by the elements xe X. If in
addition, [X] is a pure subgroup of G, then X is called a pure inde-
pendent subset.

The following ten lemmas are well known; proofs and references
to the original sources can be found in Fuchs [5] as indicated in each
case.

LEMMA 10.1. (5], p. 62) If a subgroup S of an abelian group
G is divisible, then S is a factor of G.

Lemma 10.2. ([5], p. 64) A divisible abelian group is a direct
product of subgroups each of which s isomorphic to either the additive
group of rationals or a primary quasi-cyclic group.

LemMA 10.3. ([5], p. 78) If S is a subgroup of an abelian p-
group G, and if every element of S[p] has the same height in S as
it does in G, t.e., if S[p]Np"G = S[pjNnv*Sn=1,2, --.), then S is
a pure subgroup of G.

LeEmMMA 10.4. ([5], p. 78) If S is a pure subgroup of an abelian
v-group G, and if S[p] = G[p], then S =G.

LeEmMMA 10.5. ([5], p. 97) A subgroup U of a primary abelian
group G is a basic subgroup if and only if U is generated by a
maximal pure independent subset of G.

LemmaA 10.6. ([5], pp. 98 and 104) A primary abelian group G
8 Fuchs {5], p. 114.
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has at least one basic subgroup, and all the basic subgroups of G are
isomorphic.

LEMMA 10.7. ([5], p. 104) If o primary abelian group G is of
bounded order, then the only basic subgroup of G is G itself.

LemMA 10.8. ([5], pp. 98-99) Let G be an abelian p-group, and
suppose that a subgroup U is a direct product U = U, x U, x U, X +-+,
where U, is a direct product of cyclic groups of order p* for each
n=1,2 ---. Then the following conditions are equivalent:

(i) U is a basic subgroup of G;

(iil) G=U, X +++ XU, X [pP"G U Uisn U] for each n =1,2, +++;

i) U, x --- x U, 18 ¢ maximal factor of G of bounded order
p* for each n=1,2, -,

LemmA 10.9. ([5], p. 112) If G is a primary abelian group
with no elements of infinite height, then there exists a torsion-complete
primary abelian group containing G as a pure subgroup.

LEMMA 10.10. ([5], p. 117) If S is a pure subgroup of a primary
abelian group G, and if S itself is torsion-complete, then S is a
Sfactor of G.

LeEMMA 1011, If U=V x W is a basic subgroup of an abelian
p-group G, and if V is of bounded order, then there is o subgroup
H of G such that G =V x H and W& H.

Proof. Since U is a direct product of cyclic p-groups, there is
an integer m such that

V=V, X e xV, and W=W, X «+- X W, X W, ,

where V, and W, are direct products of cyclic groups of order p* (k =
1, ---,m), and W,, is a direct product of cyclic groups of orders greater
than p™. Then

U=V, x W) X +ee X (V. X W)X W),
and hence by 10.8,
G=VXXW, X+ XW, X[p"GUW,].
Consequently the subgroup H = [p™G U W] has the required properties.

LemMmA 10.12. If X is a maximal pure independent subset of an
abelian p-group G, and if Y is a pure independent subset of G, then
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there exists a maximal pure independent subset Z of G such that
Y& Z=SXUY.

Proof. By Zorn’s Lemma there exists a pure independent subset
Z of G which i1s maximal with respect to the property Y& Z= X UY.
Suppose Z is not a maximal pure independent subset of G. Then there
exists a maximal pure independent subset Z’ such that Z < Z’. Choose
any deZ’' — Z. If the order of d is p*, let

X, ={x|reX and p"x = 0} .

By 10.5 and 10.11 there exist subgroups H, and H, of G such that
Z< H, and

G =|d] x H,= H; x g [«] .

Then there exist an element ec H, and a finite subset {zy, -+, 2.} &
X, such that

defe] X [x] X +ov X [Zp].

Observe that if # ¢ G is an element of order at most p™ such that
p"'u ¢ H,, then u has order exactly p*, and [u] N H, = {0}; therefore,
as H, has index p" in G, we must have G = [u] X H,. Consequently,
since H, contains no factor of order p* by 10.8 (iii), it follows that
p*¢c H,, On the other hand, since p"'d ¢ H,, there exists &k < m
such that p*~x, ¢ H,. But then G = [x,] X H,, and this implies that
Z U{x,} is a pure subset of G with Y& ZcZU{z,}&SXUY. Since
this contradicts the choice of Z, it follows that Z is a maximal pure
independent subset of G.

Consider now a torsion-complete primary abelian group G and a
pure subgroup S of G. Define S to be the subgroup consisting of all
those elements = ¢ G which are limits in G of bounded Cauchy sequences
of S. It is easy to see, and is implicit in the proof of the next lemma,
that S is just the topological closure of S in G. Moreover, if T is a
pure torsion-complete subgroup of G containing S, then 72S; in
particular if S itself is torsion-complete, then S = S.

LeMMA 10.13. If S is a pure subgroup of a torsion-complete
abelian p-group G, then S is a pure torsion-complete subgroup of G.

Proof. First observe that if {s,},... is a Cauchy sequence of S
converging to an element x, and if p™x = 0, then there is a bounded
Cauchy sequence {t,};<.. of S which converges to x such that p™t, =0
for all k. By picking an appropriate subsequence, if necessary, we
may assume that
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x — 8, € PG k=1,2 ).

Since p™x = 0, we have p™s, € p**™G. Thus, since S is pure, there is
an element s, €S such that p"s, = p**™s, for each k = 1,2, ---. Let
t,=s, — p's.(k =1,2,+-+). Then clearly p*t, = 0, and
x"‘tk:(x_sk)”}—pkskeka (k:1,2,"’),
i.e., {t,};<. is a bounded Cauchy sequence of S, bounded by p™, which
converges to .
Let {2,},<. be a bounded Cauchy sequence of S. Since G is
torsion-complete, there is an element x € G which is the limit of {x,},.

in G. By picking an appropriate subsequence, if necessary, we may
assume that

x — ¥, € PG k=1,2,.-4).

Since {*.},<. is bounded, there is an integer m such that p™z, =0
(k=1,2, «-.-)., Moreover, since each x, € S, there are Cauchy sequences
{St,n}nce such that {s,,}.... converges to z, foreach k =1, 2, ---. And,
as observed above, we can choose the s,,, such that

P8, =0 and x, —s,,,€p"G
for all n,k=1,2, ---. Let ¢, =s,,. Then
T — b= (@ — @) + (2, — 8,,) €P*G,

and hence {¢,},... is a bounded Cauchy sequence of S which converges
to ®. Therefore x ¢S, and S is torsion-complete.

To see that S is pure, let €S, and suppose that z e p'G. Then
there is a bounded Cauchy seguence {s;};<.. of S such that

x — 8, PG
and hence that
Sp — S, EP'G

forallk =1,2, .--. Consequently s,,, € p"G, and therefore, since S is
pure, there exist elements ¢, €S and s, €Sk =1, 2, ---) such that

Pt =84, and 8., — S, = P's}, forall k=1,2, ...,

Define elements ¢, € S(k =1,2, --.) recursively by &,., = ¢, + p*s/...
Then clearly {tlc_}k@ is a bounded Cauchy sequence of S which converges
to a limit ¢S, Moreover, if p't, = s,,,, then

— ko'
Ptews = Dl + D780 = Spi + (Sriptr — Srit) = Spipnr

hence p't, = s,,, for all k=1,2, ..., It follows that p't = %, whence
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zep'S. Thus S is a pure subgroup of G.

COROLLARY 10.14. If U s a basic subgroup of a torsion-complete
primary abelian group G, then U = G.

Proof. By 10.10, 10.8 and 10.13.

LEMMA 10.15. If R=SxT isa pure subgroup of a torsion-
complete abelian p-group G, then R =S x T.

Proof. Suppose x¢SNT and « %= 0. Then there are bounded
Cauchy sequences {8;};<. and {¢,},<c. of S and 7T, respectively, such
that

x— 8, & —t, € PG k=1,2,--).

Since x # 0, x has height r for some integer . It follows that s, and
t, must also have height » for each &k > r. And, as s,€8S,t, €T, and
R =8 x T is a pure subgroup of G, it readily follows that s, — ¢,
has height » for each k > ». But this is a contradiction since

si—bh=@—t)—(x—s)epG (k>r).

Consequently SN T = {0}. On the other hand, if {2.};<.. is a bounded
Cauchy sequence of R converging to a limit x ¢ R, then {f(2,)};<.. and
{9(2,)}1 <. are bounded Cauchy sequences of S and T, respectively, where
f is the projection of R onto S, and g is the projection of R onto T.
Hence there are elements weS and ve T which are the limits of
{Ff(Z)}i<w and {g(x;)},<., respectively. Since

x, = f(x,) -+ g(x,) for each £ =1,2, ---,
it follows that # = u + v, and we conclude that B = S x T.
11. Exchange and isomorphic refinement theorems for binary
algebras. In the present section conditions are found in order for a
binary algebra B to have the exchange property, and these conditions

are combined with the results of preceeding sections to obtain unique-
ness and isomorphic refinement theorems for binary algebras.

The center B° of a binary algebra B can be written as a direct
product '

BE=Px QX R

where P is a divisible torsion-free abelian group, @ is a divisible torsion
abelian group, and R is a reduced abelian group. The groups @ and
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P x @Q are unique, and P X @ is the maximal divisible subgroup of
B¢, Therefore R is isomorphic to the reduced part of B°. By 3.10,
B° has the exchange property if and only if each of the factors P, Q
and R has this property. In the case of P the exchange property
readily follows from 8.3 and some elementary properties of vector
spaces. Since a torsion abelian group is uniquely a direct product of
its primary components, it is clear that a torsion abelian group has
the exchange property if and only if each of its primary components
has the exchange property. In the case of divisible primary groups,
and hence for @, the exchange property again follows essentially from
vector space properties. As for reduced groups, the main lemma of
this section asserts that a torsion-complete primary abelian group has
the exchange property. Consequently every torsion abelian group with
torsion-complete primary components has the exchange property.

LEMMA 11.1. Every torsion-free divisible abelian group G has
the exchange property.

Proof. Using the criterion of 8.3, suppose

1€l
where each of the factors D, (i € I) is isomorphic to a subgroup of G.
If A’, C'" and D/ (i€ I) are the maximal divisible subgroups of A4, C
and D, (1€ I), respectively, then
A=GxC=11D!.
1€l
Furthermore, for each 4 ¢ there is a subgroup D/’ such that D, =
D! x D]’, and thus
A=A xTJID!.
i€l
Regarding A’ as a vector space over the field of rational numbers, we
can choose a basis X for G and extend it to a basis Y for A’ in such
a way that every element of ¥ — X belongs to one of the factors D,.
Letting E/ be the vector space spanned by D/ N (Y — X), we conclude
that
A'=G x Tl E!.

i€er
Therefore

A=GxTIE,

i€I

where E;, = E{ X D;"(ie€I), and hence G has the exchange property.
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LeMMmA 11.2. Every primary abelian group G of bounded order
has the exchange property.

Proof. Suppose
A=GxC=1ID

i€r1
where each of the factors D, is isomorphic to a subgroup of G. Then
A is a primary abelian group of bounded order. ILet Y be a maximal
pure independent subset of G, and for each 1¢l let X, be a maximal
pure independent subset of D;. Then X = U,e; X; is a maximal pure
independent subset of A, and it follows by 10.12 that there exists a
maximal pure independent subset Z of A such that YEZES X UY.
By 10.5 and 10.7, A is generated by Z, and G is generated by Y.
Consequently, if E; is the subgroup generated by the set D, N (Y — X)
for each 7¢I, it follows that
A=GXxX]1lE;.

i€

Thus G has the exchange property.

LEMMA 11.3. Ewvery divisible abelian p-group G has the exchange
property.

Proof. Suppose
A=G x C=1ID,

i€l

where each D; is isomorphic to a subgroup of G. If A’, C" and D/ (e l)
are the maximal divisible subgroups of 4, C and D, (¢ € I), respectively,
then

A=GxC xIID/.

i€rI
Furthermore, if D;’ is such that D, = D] x D! for each 7¢I, then
A=A xI] D.

i€l
Clearly
AMZQMXMM=EEM,

and since G[p] is of bounded order p, there exist subgroups U, &
D/[p](t € I) such that

(1) AM=ﬂngm.
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For each tel there exists a divisible subgroup E! of D/ such that
E![p] = U, and it follows from (1) that the direct product
A" =G x H Eq;'
1€l
exists, Moreover, since A” is divisible, it is a pure subgroup of A4’,

and using the fact that A’[p]S A” we infer by 10.4 that A’ = A".
Thus

A=Gx]1E

i€l

where E; = E! x D, and G has the exchange property.

LeMMA 11.4. Ewvery torsion-comblete abelian p-group G has the
exchange property.

Proof. We first prove that G has the 2-exchange property and
hence the finite exchange property. Thus suppose

A=GxC=D,x D,

where D, and D, are isomorphic to subgroups of G. Then A4 is an
abelian p-group without elements of infinite height, and hence by 10.9
there is a torsion-complete abelian p-group A’ containing A as a pure
subgroup. By 10.13 we may assume that A’ is the closure of 4, 4’ = A,
and in this case it follows by 10.15 that

A=GxC=D,xD.

Choose maximal pure independent subsets X,, X, and Y of D,, D, and
G respectively. Then X = X, U X, is a maximal pure independent
subset of A, and by 10.12 there is a maximal pure independent subset
Z of A such that YEZE XU Y. Since every subset of Z generates
a factor of [Z], the subgroups generated by D,N Z and D, N Z are
pure in A. Let E, and E, be the closures of the subgroups generated
by D,N Z and D, N Z, respectively. Then by 10.14 and 10.15,

A=Gx E, xE,.

Since E, x (G x E)2D, x D,2G x E, we infer from the modular
law that

D, x D, =(E,ND, x D)) x G x E,=Gx (D,NE) x E, .

Therefore E, x (G x (D,N E))2D, x D,2G x (D, N E,), and a second
application of the modular law yields
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A=D,x D,=(E,N(D, x D)) x Gx (D,NE,)
=G x(DNE)*x(D.NE).

Consequently G has the 2-exchange property.
Now suppose
1E€L
where each of the factors D, is isomorphic to a subgroup of G. Ais
therefore an abelian p-group with no elements of infinite height. For
each 7€l let f; be the project of A onto D; induced by the second
decomposition in (1). We begin by proving the following statement:

(S) There exist a finite set J< I and subgroups G, and G, such
that G = G, X Gy, G, is of bounded order, and

(2) GIPISTLD, .

Assume that (S) is false. Then for every finite subset J < I and every
decomposition G = G, X G; where G, is of bounded order, there is an
element ¢ € G,p] and an index i€l — J such that fi.(x) # 0. Using
this we shall construct a sequence of elements x,, x,, x,, - -+ € G[p] and
a sequence of indices %, 4y, %, + -+ € I such that the following conditions
hold for every positive integer n:

(3) height x, > height fi(x,_,) whenever 1€l and fi(z,,) +0;
(4) fiw) = fi,(®) = -+« = fi (%)) = 0 = f; (x,) .

Pick any element x,€ G[p]. Suppose the elements 2., -- -, x,, € G[p] and
the indices 4,, *- -, ©,, €I have been so chosen that (3) and (4) hold for
n=1,---,m. Then the set

J. ={t]|7€I and fi(z,) = 0 for some n < m}
is finite, and we can choose a positive integer » such that
r = height fi(x,) whenever 1€J,,n =< m and fiz,)=0.

By 10.8, G has a decomposition G = G, X G, such that p""'G, = {0} and
such that G, has no factor of order less that p"*%. Therefore there
exists and element @,.,€G[p] and an index ¢,y €l — J, such that
fi,(@ms) # 0. Since the height of x,,, is necessarily larger than 7,
we infer from the choice of » that (3) holds for n = m + 1. Also,
since 7,4, € J,, it follows that (4) also holds with » = m 4+ 1. Thus
the existence of the sequences of elements x, € G[p] and of indices
4, € I satisfying (3) and (4) follows by induction.
For each m =0,1,2, -« let
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Yn =T+ oo+ T
If m > n, then it follows from (4) that

fin(ym) = ftn(x’lb) +oeee fwn(xm) .

From (3) we infer that the height of f; (x,) is less than the height of
fi,(@,) for k =n + 1, ---, m. Consequently

(5) height f; (y.) = height f; (x,) whenever m > n .

Notice that (3) also implies that the height of =, is at least m.
Therefore

Ymir — Ym = T €EDP"G (m=0,12--.),

and since each ¥, has order p, the sequence {¥,}m<. is a bounded
Cauchy sequence of G which must converge to a limit y ¢ G. Further-
more, for each 7¢I, the sequence {fi(¥n)lm<. 18 a bounded Cauchy
sequence of D, which converges to fi(¥). Now f.(y) = 0 for all but
finitely many ¢ < [, and therefore there is a positive integer # such
that f; (y) = 0. But the sequence {f; (¥.)}n<. cannot converge to 0,
since according to (5) the heights of the elements f; (), f: (),
fi,(¥s), -+ are bounded. Thus we have a contradiction, and hence (S)
must be true.

Choose J, G, and G, according to (S). Considering the decom-
position

A=1ID;x 11 D,
€T i€I—J
let f be the projection of A onto the factor [[;e; D;, and let G* be
the image of G, under f. It follows from (2) that f maps G, iso-
morphically onto G*, and that

(6) G*[p] = G[p] .

In particular, G* is torsion-complete. Furthermore, if x e G*[p], then
x = f(x), and the height of z in G* is at least as large as the height
of x in G,. Since G, is a pure subgroup of A, it follows by 10.3 that

G* is a pure subgroup of A. Thus, by 10.10, G* is a factor of A,
and consequently

InND =G*< H
i€J
for some subgroup H. By the first part of the proof, G* has the

finite exchange property, and thus there exist subgroups E; S D; (i € J)
such that
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HDz:G*XHEl.

©tEJS ey

Therefore

A=G xGXC=G*xT1E,
(274
where E, = D, if iel — J. From (6) and this last decomposition we
see that the direct product
A=G x]IlE;,
i€l
exists. Moreover, if ¥ € G* then there is an element z € G, such that
y = f(x2). Hence x = ¥ + 2 for some element 2 € [];e;—; D; = [lie;—s Ei,
and we conclude that ¥ = ¢ — 2e A’. This shows that G* S 4’, and
therefore A’ = A. Finally, G, is of bounded order and thus has the ex-
change property by 11.2. According to 3.9 we can therefore find
subalgebras F, S E,; (i € I) such that
A:GOXGlx[[F.L:GX HF,.
i€l

i€l

Hence G has the exchange property, and the proof of 11.4 is complete.

THEOREM 11.5. If B is a binary algebra such that the reduced
part of B° is a torsion group each primary comdPonent of which s
torsion-complete, then B has the exchange property.

Proof. This is an immediate consequence of 8.1, 11.1, 11.3 and
11.4, together with the introductory remarks of this section.

Combining 11.5 with 4.2, 5.8 and 7.1, respectively, we obtain the
following principal uniqueness and isomorphic refinement theorems for

binary algebras.

THEOREM 11.6. If a binary algebra A has two direct decompo-
sitions with countably many factors,

A=B X B, X By X e+ =Cy x C; X C; X v++,

where the reduced parts of all the groups B and C: are torsion
groups with torsion-complete primary components, then these two
direct decompositions of A have centrally isomorphic refinements,

COROLLARY 11.7. If A is a binary algebra such that the reduced
part of A° is a torsion group with torston-complete primary com-
ponents, then any two countable direct decompositions of A have
centrally isomorphic refinements.
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THEOREM 11.8. If a binary algebra A has a direct decomposition

A =1] B,
el
where, for each i€ l, the reduced part of Bi is a torsion group with
torsion-complete primary components, then any two direct decom-
positions of A itnto indecomposable factors are centrally isomorphic.

THEOREM 11.9. If a binary algebra A has a direct decomposition

A =11 B,
1€1
where, for each i€ l, B is countable and the reduced part of B s
a torston group each primary component of which is of bounded order,

then any two direct decompositions of A have centrally isomorphic
refinements.

A final theorem describes a class of binary algebras with uncountable
centers having the isomorphic refinement property.

THEOREM 11.10. If A s a binary algebra such that the maximal
divisible subgroup of A° is countable and the reduced part of A° is
a torsion group each primary component of which is a torsion-com-
plete group with countable basic subgroups, then any two direct
decompositions of A have centrally isomorphic refinements.

Proof. Suppose
(1) A=]1B;=11C;.
JI€JT

[X=34
Since the maximal divisible subgroup of A° is countable and the basic
subgroups of each primary component of the reduced part of A° are
countable, it follows that there exists a countable subset I’ of I such
that B = {0} foreachie I — I’. The factor [];c;_; B; has the exchange
property, and hence there are subalgebras D;, D] (jeJ) such that
C; = D; x D; and

A= Tl B, xTID;.

i€r—I’ JeJ

Consequently

(2) 11 B, =11 Dj,

1€1—I' JEJT
and, as [l;e;—; B = {0}, we infer by 2.19 that
(3) II Bi = H -Dj .
JEJS

tEer’
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Repeating the argument above for the factor [];e;D;, there is a
countable subset J’ of J such that D; = {0} for each jeJ — J’, and
there are subalgebras E;, E/ (¢ € I') such that B, = E; X E{ and

(4) I Dy=°]11 K¢,
JET—T’ ier’

(5) 11 D; =11 E;.
j€y’ i€’

The pairs of decompositions (2) and (4) each have centrally isomorphic
refinements by 11.9, and the decompositions (5) have centrally isomorphic
refinements by 11.7. Therefore the original decompositions (1) have
centrally isomorphic refinements, and the proof is complete.

12. Counterexamples and open problems. This final section con-
tains two examples that yield negative answers to some questions
related to the results in this paper. A number of unsolved problems
suggested by our investigations are also mentioned.

In 3.10 it was shown that if an algebra B is a direct product of
finitely many subalgebras each of which has the exchange property,
then B has the exchange property. The first example shows that this
result cannot be extended to products of infinitely many subalgebras.
In fact, the example shows that if B is an abelian p-group such that

B=B X B, x B, X ++-

where, for k. =1,2,83..+, B, is a cyclic group of order p*, then B
does not have the 2-exchange property. Thus the simplest unbounded
abelian p-group fails to have the exchange property.

Let

A =TT bl x [T [v4]

where, for £k =1,2,3, ---, [u,] and [v,] are cyclic groups of order p*.
Also, let

Uy + Do, C= ﬁ [vid s

1 k=1

s

B =

k

I

8

D, = (Ve + PUL] , D, =11 [u,] .

1 k=1

&
l

It is easy to check that
A=Bx(C=D xD,,

and in order to prove that B does not have the 2-exchange property
it is sufficient to show that the assumption that
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(1) A:BXE1><E2, E1gD1; Ezgpz

leads to a contradiction.

Assume that (1) holds. Since A is a direct product of finite groups,
it and all its direct factors have the-unique factorization property.
Inasmuch as C = E, x FE,, this implies that for each positive integer
k only one of the groups K, and E, has a cyclic factor of order p*.
Observing that

BxE,SBxD,=BxpC,

we have v, = b + pc +e where be B, ¢cecC, b+pce BX E,, and ec K.
Using the fact that B x C exists we see that, for »r=1,2,8, ---, k — 1,
the element p"(v, — b) = p""'¢ 4+ p"e has height r, and hence the height
of pe is also r. Since p“e = 0, this shows that [¢] is a pure subgroup
of E,, and hence a factor of FE,, of order p*. Consequently E, cannot
have a direct factor of order p*, and since this is true for every
positive integer k, we infer that E, = {0}, and hence A= B x E, < B x D,.
But it is easy to see that neither u, nor v, belongs to B x D,, and
we have thus arrived at a contradiction.

In 8.1 it was shown that if the center of an algebra B has the
exchange property, then B has the exchange property. Our second
example shows that the converse of this result is false. For this
purpose we construct a group B such that

(1) B‘is an infinite cyclic group.
(ii) The commutator subgroup of B equals B, |B, B] == B.

First observe that this does in fact imply that B has the required
properties. In fact, suppose B° = [u] and let A = B° X C where C = [v]
is also an infinite cyclic group. Also let D, = [2u 4 8v] and D, = [3u + 5v].
Then A=D, x D,. Since B°xD,=B°x[3v]+ A and B°x D,=B° X [5v]+# A,
we see that B° does not have the 2-exchange property. On the other
hand, suppose A is any algebra containing B as a subalgebra, and
suppose C and D; (i €I) are subalgebras of A such that

1€l
Let g and %, be the projections of A onto C and D, induced by these
two direct decompositions of A. Then gh; maps B homomorphically
into the center of C, whence it follows by (ii) that, for each b e B,
ghi(b) = 0 or, equivalently, h,(0) e B. Thus, for each 7¢I, h; maps B
into BN D;, and we infer that
B = H (B n Di) .

i€l
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It follows by the modular law that for each ¢ eI there exists a sub-
algebra E; & D; such that D, = (BN D;) X E;, and we conclude that
A=BXx]IlE;.

€I
Hence B has the exchange property.

In order to construct a group having the properties (i) and (ii)
we proceed as follows. For n =2,38,4, --- let H, be the group of all
n by n matrices of determinant 1 over a field of characteristic 0 that
contains a primitive nth root of unity. Then the center of H, contains
a cyclic group of order n, and the commutator subgroup of H, equals
H,. The Cartesian product H of H,, H,, H,, --- therefore has the
properties that its center contains an infinite cyeclic group and that the
commutator subgroup of H is equal to H. We now take for B a free
amalgamated product of two isomorphic copies B, and B, of H, with
amalgamated subgroup Z = B, B, an infinite cyclic group contained
in the centers of both B, and B,. It is known that B° = B:(\ B so
that B° is in this case the infinite cyclic group Z. Thus (i) holds,
and it is obvious that (ii) is also satisfied.

The most interesting unsolved problem suggested by the results
in this paper is whether in Theorem 7.1 the assumption of countably
generated centers is needed. Specifically, s it true that if an algebra
A 18 a direct product of subalgebras each of which has the exchange
property, then any two direct decompositions of A have isomorphic
refinements? Even if the answer is negative, one might hope for an
affirmative answer in special cases, such as for groups whose centers
are of bounded order. Of course, if the answer should turn out to
be affirmative, then this would include Theorems 4.2, 5.8 and 7.1 as
special cases.

Another problem concerns the relation of the finite exchange prop-
erty and the exchange property: Is the exchange property always
implied by the finite exchange property? In connection with Theorem
7.1 it would be particularly interesting to know whether for an algebra
B with a countable generated center the finite exchange property
implies the W -exchange property (and therefore the exchange property).
It is not hard to show that for such an algebra B the condition

A=BxC=DxD xD, x «..
implies that
A=BXE, X E, X Ey X «««

where each of the factors E, is a subalgebra of the finite product
D, x D, X +++ X Dy, but we do not know whether the factors E, can
be replaced by subalgebras of the factors D,.
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Theorem 8.3 raises the problem of determining those abelian
operator groups that have the exchange property. In this regard the
following question seems particularly relevant: Is it true that if an
abelian operator group satisfies the minimal condition, then it has
the exchange property? For ordinary reduced abelian groups the
results in § 11 apply only to groups with no elements of infinite height.
It would be of interest to know whether the class of all reduced
primary abelian groups having the exchange property contains any
groups with (nonzero) elements of infinite height.
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