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Abstract

In this paper, Hermite-Hadamard type inequalities involving Hadamard
fractional integrals via convex functions are studied. An important integral
identity and new Hermite-Hadamard type integral inequalities involving
Hadamard fractional integrals are also presented. Some applications to spe-
cial means of real numbers are given.

1 Introduction

Let f : [a,b] C R — R be a convex function, i.e., f(Ax + (1 —A)y) < Af(x) +
(1—-A)f(y) for all x,y € [a,b] and A € [0,1]. The classical Hermite-Hadamard
type inequality provides a lower and an upper estimations for the integral aver-
age of any convex function defined on a compact interval, involving the midpoint
and the endpoints of the domain. More precisely, if f : [a,b] — R is a convex
function, then it is integrable in sense of Riemann and

f(”b) < o [ i < L1020 M
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As we all known, the inequality (1) was firstly discovered by Hermite in 1881 in
the journal Mathesis (see Mitrinovi¢ and Lackovi¢ [1]). However, this beautiful
result was nowhere mentioned in the mathematical literature and was not widely
known as Hermite’s result (see Pecari¢ et al. [2]).

For more recent results which generalize, improve, and extend the inequalities
presented above, one can see Abramovich et al. [3], Cal et al. [4], Avci et al. [5],
Odemir et al. [6, 7], Dragomir [8, 9], Sarikaya et al. [10, 11], Xiao et al. [12],
Bessenyei [13], Tseng et al. [14], Niculescu [15] and references therein.

It is remarkable that Sarikaya et al. [11] proved the following interesting in-
equalities of Hermite-Hadamard type involving Riemann-Liouville fractional in-
tegrals.

Theorem 1.1. (see Theorem 2, [11]) Let f : [a,b] — R be a positive function with
0 <a<band f € Lia,b]. If f is a convex function on [a,b], then the following
inequality for fractional integrals hold

F(5) < g letse fO) + o fla)) < FOHE),

We remark that the symbol g J7, f and g [} f denote the left-sided and right-
sided Riemann-Liouville fractional integrals of the order « € R are defined by

(RLJ% )(x) = % [@=0e a0 <a<x<b),

and ) ) , .
(i ) = g L (=2 O, 0 <a<x <)

respectively. Here I'(-) is the Gamma function.

Theorem 1.2. (see Lemma 2, [11]) Let f : [a,b] — R be a differentiable mapping on
(a,b) with0 < a < b. If f' € La, b], then the following equality for fractional integrals
holds

f(a) ;f (b) _ ZF((;" jal)l (kL)% F(b) +Re JE f(a)] =
b—a [1

2 Jo

[(1—8)% —t*]f'(ta + (1 — t)b)dt.

Theorem 1.3. (see Theorem 3, [11]) Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b. If |f'| is convex on [a,b], then the following equality for fractional
integrals holds

fo) 0 _ ;((; jal)i [RLJ2 £(b) +re JE £(2)

b—a 1 y y
sear (13 ) P @ + 70

Remark 1.4. In fact, | f'| is convex on [a, b] can be changed to f’ is convex on [a,b).

<
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Motivated by the interesting works in [11], Wang et al. [16] established an-
other two fundamental integral identities including the second order derivatives
of a given function and proved some Hermite-Hadamard type inequalities in-
volving left-sided and right-sided Riemann-Liouville fractional integrals for
m-convex and (s, m)-convex functions respectively.

Recently, Hermite-Hadamard inequality involving Riemann-Liouville fractio-
nal integrals have been paid more and more attentions, however, there are few
work on the Hadamard fractional integrals, even if it has been reported many
years ago. Thus, it is natural to offer to study Hermite-Hadamard type inequali-
ties involving Hadamard fractional integrals.

In the following, we recall some necessary definitions and mathematical
preliminaries of left-sided and right-sided Hadamard fractional calculus theory
which are used further in this paper. For more recent development on fractional
calculus, one can see the monographs of Baleanu et al. [17], Diethelm [18], Kil-
bas et al. [19], Lakshmikantham et al. [20], Miller and Ross [21], Michalski [22],
Podlubny [23] and Tarasov [24].

Definition 1.5. The left-sided and right-sided Hadamard fractional integrals of order
a € RT of function f(x) are defined by

(5% ) (x) = % / (m%)“_lf(t)%, (0<a<x<b),

o

and

. 1 b/ e\Y i
(N =y [, (n5) f0F, 0<a<x<b),
where I'(+) is the Gamma function.
The following two inequalities are also needed.
Lemma 1.6. (see [25]) For0 < 0 < 1and 0 < a < b, we have
ja” = b7 < (b—a)”.

Lemma 1.7. (see [26]) For all A,v,w > 0, then for any t > 0, we have
1-0 [* 1 A1, — 1— A —A
t U/ (t—s)"""s" e wsdsgmax{l,Z U}F(A) 1-1—5 w
0

In the present paper, we establish some new Hermite-Hadamard’s inequali-
ties involving left-sided and right-sided Hadamard fractional integrals and some
other integral inequalities using the identity obtained for Hadamard fractional
integrals.
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2 Hermite-Hadamard’s inequalities for Hadamard fractional in-
tegrals

Hermite-Hadamard’s inequalities for Hadamard fractional integrals can be rep-
resented as follows.

Theorem 2.1. Let f : [a,b] — R be a positive function with0 < a < band f € L|a, b].
If f is a nondecreasing and convex function on [a, b], then the following inequality for
fractional integrals hold

FVAD) < D g )+ @] <50 @)

Proof. Since f is a nondecreasing and convex function on [a, b], we have for
x,y € [a,b] with A = 3,

v < (1Y) < A LA, o

Set x = enb—t(Inb=Ina) g ) — pinatt(Inb=Ina) for ) < t < 1, then
Zf(\/%) _ Zf(’ /elnb+1na) < f(elnb—t(lnb—lna)) _i_f(elnaﬂht(lnb—lna))' (4)

Multiplying both sides of (4) by #*~1, then integrating the resulting inequality
with respect to t over [0, 1], we obtain

SFVab) = (/e

1 1
< pa—1 ¢( Inb—t(inb—Ina) dt+/ pa—1 ¢( na+t(nb—Ina)y 7,
< [ e i+ [ )

B 1 /a Inb—Inu ”‘_1f(u)d_u
~ Ina—InbJy \Inb—1Ina u
1 b (Inv—Ina\*! dv
+1nb—1na/a (lnb—lna) f)=

['(a)

= b= e S ®) + f@)

which implies that

FVAB) < ool 0) + - fla)

On the other hand, note that f is nondecreasing, we have

f(elnb—t(lnb—lna)) +f(elna+t(lnb—lna)) < Zf(elnb) — Zf(b). (5)
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Then multiplying both sides of (5) by t*~! and integrating the resulting inequality
with respect to t over [0, 1], we obtain
1 1
g1 £ (pInb—t(nb—Ina)y 74 1 / pa—1 ¢(JIna+t(Inb—Ina)y 7,
e jat+ [l )

_ %[Hmﬂb) + wlpf(a)]

1
< zf(elnb)/ toc—ldt
0
2
which yields that
I'(a+1)

b —mnaye S (0) + wli-f@)] < 2/(b).

The proof is completed. n

Example2.2. Leta=1,b=¢,a =2, f(x) = x2. Then all the assumptions in Theorem
2.1 are satisfied. Clearly,

2 € 1 2(1_5) 1 2 3
uli-f(e) = /1(1—lnt)tdt = /0 se ds = it

4
2 ¢ Ly 1, 1
H]e_f(l) = /1 tIntdt = /0 se“5ds = Ze +1'

Thus,

F(3) 2 2 _ 1 2 1 2
(2) <= e< m [H]1+f(€) + H]eff(l)] =55 < e-.
3 Hermite-Hadamard type inequalities for Hadamard fractional
integrals

We first establish the following important lemma.

Lemma 3.1. Let f : [a,b] — R be a differentiable mapping on (a,b) with0 < a < b. If
f' € La, b], then the following equality for fractional integrals holds

O e i F0) 1 ()]

= IbIng i g pgete0-g g nas ity )
0

Proof. Denote

[ = /1[(1 _ t)zx i tzx]elnb—t(lnb—lna)f/(elnb—t(lnb—lna))dt )
0
= Il + IZ/
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where

L = /01(1 _ pyrelnb—t(inb—Ina) g1 inb—t(inb—Ina)y gy

L = — /01 faelnb—t(inb—Ina) ¢7 (plnb—t(inb—Ina)) 1y

Integrating the term [; with t over [0, 1],

1
L = /0(1_t)zxelnb—t(lnb—lna)f/(elnb—t(lnb—lna))dt ®)
Inb—t(Inb—Ina)y |1 1
_ _aafle | o / _ oya—1 g/ Inb—t(Inb—Ina)
= O Ty |, mb—tna )y LTS Jat

_f(b) o /ﬂ Inu—Ina\*" _ du
= mb—tna  na—mp2 S \nb—mna,) 7%

f) o /b et
Inb—Ina  (nb—Ina)pil J, (e )
f)  T(a+1) i
Similarly, we get
1
L = _/O g2 o b—tinb-Ina) ¢/ (Inb-t(Inb—Ina) 1y ©)

1

tle(elnb—t(lnb—lna)) o

1
pr—1 elnb—t(lnb—lna) dt
i )

Inb—1Ina 0  Inb—1na
_ fla w /b e a1gndu
= b-Ina (b _Ina) J, (Inb —Inu)* " f(u) .

__ fla) T(a+1) .
= Tb—Ina  nb—Tng)et Warf )

Submitting (8) and (9) into (7), it follows that

= ﬁififﬁf? - (1n11;(f;3a+1 [a)ee f(0) + n]y-f(a)). (10)

Inb—Ina

Thus, by multiplying both sides by 57 in (10), we have conclusion (6) imme-
diately. m
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Example 3.2. Leta=1,b=¢,a =2, f(x) = x2. Then all the assumptions in Lemma
3.1 are satisfied. Clearly,

+
N —

the left-sided term of (6)

—
1
the right-sided term of (6) <= / (1 -2 gy
0

Using the above lemma, we can obtain the following explicit estimate for some
a € (0,1].

Theorem 3.3. Let f : [a,b] — R be a differentiable mapping on (a,b) with 0 < a < b.
Ifa € (0,1], f’ € L[a,b] and is nondecreasing, then the following equality for fractional
integrals holds

ST D) bl ) 4 S @)

2 ~ 2(Inb —1Ina)®
b(Inb—1Ina) [a+2 /Inb—Ina\ " \/% " »
e e A CINCS!

Proof. Using Lemma 3.1 and the nondecreasing property of f/, we find

— 1
Inb 5 Ina /O |(1 o t)zx o t“| elnb—t(lnb—lnu)|f/(b)’dt

b(lnb_lna)|f/(b)| % _ n\a _ g ,—t(Inb—Ina)
; /0[(1 B — e dt

b(lnb_lna)’f/(b” ! o a1, —t(Inb—Ina)
+ ; /%[t (- DYe dt

_ Mmool O g, 12)

where

NI—

[(1 o t)lx . tlx]e—t(lnb—lna)dt,

1
[tlx . (1 . t)lx]e—t(lnb—lna)dt.

8
I
Nb—k\ o\
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Calculating K; we have

K =

IN

<

1
/2 [(1 . t)lx . ta]e—t(lnb—lnu)dt
0

1

/2(1 Zt)tx —t(Inb— lna)dt

2/ IX—|—1 e lnbglnasds
1 Inb—1Ina\ *
1,27%Y (1
max{ }(m)( =)

& +2 /Inb—Ina\ "
x+1 2 !

where Lemma 1.6 and Lemma 1.7 is used.

Calculating K, we have

K>

1
_ ﬁ [tlx . (1 o t)lx]e—t(lnb—lnu)dt

2

< /1 (2t . 1)ae—t(lnb lnu)dt

lnb lna
- 1) Sds
2/ S

1 Inb-1
_ e —(Inb— lna)/ (1—T)“€nTMTdT
0

2
no—ina 1
< %e‘lbzl/o (1—1)%dt

a

b
2(a+1)7

where Lemma 1.6 is used.
Thus if we use (13) and (14) in (16), we obtain the inequality of (11). This

completes the proof.

In general, for « € R™, one can obtain the following result.

C. Zhu

(13)

(14)

Theorem 3.4. Let f : [a,b] — R be a differentiable mapping on (a,b) with 0 < a < b.
If f' € Lla,b] and is nondecreasing, then the following equality for fractional integrals

holds

‘f(a) +f(b)  Tlat1) [
2

b(Inb

2(Inb —1Ina)* 1l f(0) +n Jp-f(a)]

< Mg (1o D)ol

(15)
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Proof. Using Lemma 3.1 and the nondecreasing property of f’, one can obtain

0 T o)1

— 1
Inb 5 Ina /0 |(1 o t)zx o t“| elnb—t(lnb—lna)|f/(b)’dt

b(Inb —Ina)|f'(b)| %[(1

B — t*]dt

A =P 1 gy
2
o+

(1)

b(Inb — Ina)[f ()|
2

_ b(Inb —Ina)
e e O e
where elnb—t(Inb=Ina) < pInb — } j5 ysed. The proof is completed. n

Remark 3.5. Theorem 3.3 and Theorem 3.4 give an upper bound for the approximation
of the integral average (151(;711“1[ * f(b) +u Jj-f(a)]. There exist some integral
functions that can not be expressed by elementary functions. So Theorem 3.3 and Theorem

3.4 are useful to deal with such integral functions. For example, set a = 1, b =
f(x) = x%, & = 3, then the left-sided hand of (16) reduces to

2 3
I+e _ F(Z) (/1 62(1_52)615 + /1 6252d5)
2 \/E 0 0

2 2 V2 V2
- (el e_/ e_szds—i—i/ eds ||
2 2\ v2Jo V2 Jo

It is obvious that the term foﬁ e~5ds can not solved directly due to [ e=s"ds can not
be expressed by elementary functions. But, applying Theorem 3.3 we can give an upper

bound e? + @for (17).

(17)

4 Applications to some special means

Consider the following special means (see Pearce and Pecaric¢ [27]) for arbitrary
real numbers «, B, « # B as follows:

H@6) = 1o % BER\{0},
x TP
Aa,B) = "‘;ﬁ a0 BeR,
Lwp) = Gy 1 # 1Bl B # 0

‘B”+1 —

n+1 %
Ly(a,B) = {(n—l—l)(ﬁ—«x)} ,nezZ\{-1,0}, a,f €R, a #B.
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Now, using the theory results in Section 3, we give some applications to spe-
cial means of real numbers.

Proposition 4.1. Let a,b € R", a < b. Then

Aa,b) — L(ab)| < b(lnbg—lna) {6 <lnb;1na)_1+ \/ﬂ a8)

and
A(a,b) — L(a,b)| < b(h‘b4—_h‘”). (19)
Proof. Applying Theorem 3.3 and Theorem 3.4 respectively, for f(x) = x and
« = 1, one can obtain the results immediately. n
Proposition 4.2. Leta,b € R*,a < bandn € Z, |n| > 2. Then
b—a
n+1l pn+1y n <
’A(” ) e ()] =
(n+1)b" (Inb—1na) [ [(Inb—Ina\ " \/E
3 6 > + ol (20)
and
b—a (n+1)" 1 (Inb —Ina)
n+1 pn+1y n <
'A(a L0 lnb—lnaL”(a'b)' < 1 . (21)
Proof. Applying Theorem 3.3 and Theorem 3.4 respectively, for f(x) = x"*!
anda =1,x € R,n € Z,|n| > 2, one can obtain the results immediately. n
Proposition 4.3. Let a,b € R*(a < b),a”! > b~L. Forn € Z, |n| > 2, we have
(i)
-1
1 1 o1y < (Inb —1na) Inb—Ina a
H o ba) - Lo La ) < B2 6 (RRE) o 2,
(ii)
IH Y(b,a) —L(b~L,a"Y)| < M,
4a
(iii)
H—l(an+1 bn+1) _ a !l —bp! Ln(b—l a—l) <
’ Inb—Ina " 7 -
(n+1)(nb—Ina) [, (Inb—Ina ! NG
8an+t1 2 bl
(iv)
a~t—p! (n+1)(Inb —Ina)

e

'H—l (an+1, bn+1) .

Inb —1Ina

Proof. Making the substitutions 2 — b=1,b = a~lin the inequalities (18)—(21),
one can obtain desired inequalities respectively. n
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