
Refinements of Miller’s Algorithm for Computing

Weil/Tate Pairing

Ian Blake, Kumar Murty and Guangwu Xu

University of Toronto

October, 2003

Abstract

In this paper we propose three refinements to Miller’s algorithm for com-
puting Weil/Tate Pairing. The first one is an overall improvement and achieves
its optimal behavior if the binary expansion of the involved integer has more
zeros. If more ones are presented in the binary expansion, second improvement
is suggested. The third one is especially efficient in the case base three. We
also have some performance analysis.

keywords: algorithm, elliptic curve, cryptography, Weil/Tate pairing

1 Introduction

The Weil and Tate pairings are nondegenerate bilinear maps on certain pairs of
points on elliptic curves to a multiplicative subgroup of an appropriate order in a
certain finite field.

The first notable application of pairings to cryptography was the work of Menezes
et al [10] who showed that the Weil pairing on supersingular elliptic curves (whose
Frobenius trace is divisible by the characteristic of the field of curve definition) can
be used to imbed the discrete logarithm problem on the elliptic curve into a discrete
logarithm problem on a certain subgroup of a suitable extension of the finite field
of the curve definition. The complexity of the logarithm problem on the curve is
often (for non-supersingular curves) assumed to have a complexity on the order of
the square root of the group order while that in finite fields is of subexponential
complexity. The work showed that discrete logarithm problems on supersingular
curves are unsuitable for many cryptographic applications. This represented a dra-
matic lesson on the caution required in choosing such curves. Frey and Rück [5] also
consider this situation using the Tate pairing, which has certain advantages.

Recent work on parings in cryptography has considered their use in the definition
and implementation of certain new and potentially very useful protocols. Boneh and
Franklin [3] used pairings to develop an efficient identity-based encryption (IBE) sys-
tem, the first such system since the notion of IBE was first described by Shamir [14].
In such a system a user’s public information such as his identity, email address etc.

1

can be used as their public key with their secret key being derived by a central au-
thority possessing certain additional information on the curve. Since then pairings
have been used to define numerous interesting protocols including the identity-based
key exchange and signature schemes by Sakai, Ohgishi and Kashahara[13], the one
round protocol for tripartite Diffie-Hellman key exchange by Joux[7], the short sig-
nature scheme by Boneh, Lynn and Shacham[4], and many others. Interestingly
these protocols invariably require the use of supersingular curves. The working of
the protocol depends on the properties of the pairing while the security of the proto-
col depends on the difficulty of the discrete logarithm problem in the multiplicative
group of an extension of the finite field which must then be chosen sufficiently large.

Thus the computation of Weil and Tate pairings is an important issue for such pro-
tocols which has attracted attention. The original algorithm for computing pairings
is due to Miller[11] and most current algorithms are based in some manner on it.
It is an efficient probabilistic polynomial-time algorithm for computing the pair-
ings. What the algorithm does is the evaluation of a rational function associated
with an n-torsion point of the ellicptic curve. The work of Barreto, Kim, Lynn
and Scott[1] and Galbraith, Harrison and Soldera[6] focus in particular on the Tate
pairing and they propose methods for its fast computation. They also consider a
practically useful case of fields of characteristic three. In [8], Eisenträger, Lauter
and Montgomery give an algorithm to speed up point multiplication of an elliptic
curve. Using their method, H(n) field multiplications and H(n) field squarings is
eliminated when performing scalar multiplication of nP for some point P , where
H(n) denotes the Hamming weight of the number n, i.e., the number of one bits in
the binary expansion of n. This observation, combined with a parabola substitu-
tion, enables them to get an improvement to Miller’s algorithm for general elliptic
curves. In the framework of this paper, their improvement requires H(n) fewer field
multiplications in addition. All of these contributions use ideas very different than
those used in this work.

In this paper, we present three versions of improvement to Miller’s algorithm. They
apply to general elliptic curves. Version 1 is efficient in any case and log2n field
multiplications are saved. In particular, this improvement includes some practically
interesting cases (for example, when n is a Solinas number of the form 2a ± 2b ± 1,
see [1]) that our version 2 and the algorithm of [8] are not strong enough to deal
with. Version 2 gains more saving in the case where n has relatively high Hamming
weight, to be more specific, 2H(n) field multiplications are removed. It is remarked
that the technique of Eisenträger, Lauter and Montgomery does not apply here.
However some modification can be still made to improve Miller’s algorithm to save
H(n)(instead of 2H(n)) field multiplications. Moreover, with this modification,
we are able to use the method of Eisenträger, Lauter and Montgomery in point
multiplication and save H(n) field multiplications and H(n) field squarings. The
third one is especially useful for the field of characteristic three where it saves log3n
field multiplications compared to the original algorithm in characteristic three. It is
noticed that in this case the point tripling can be made very efficient.

The work is organized as follows. After introducing the pairings and Miller’s algo-
rithm briefly in section 2, some basic facts and observations on elliptic curves are

2

presented in section 3. In section 4, we use the results from section 3 to simplify
some formulas used by Miller’s algorithm and get three improved versions of the
algorithm. In section 5, some detailed analysis of the three versions is given.

2 Weil Pairing, Tate pairing and Miller’s Algorithm

Let E/K be an elliptic curve. Recall that a divisor is an element of the free
abelian group (denoted by Div(E)) generated by the set of points of E(K). Given
a divisor D =

∑

P∈E nP (P), the degree of D is defined by deg(D) =
∑

P∈E nP .
We are interested in the subgroup of divisors of degree 0, namely Div0(E) =
{D ∈ Div(E) : deg(D) = 0}. For a nonzero rational function f over E, we
define div(f) =

∑

P∈E ordP (f)(P). It turns out that div(f) is an element in
Div0(E) and is called a principal divisor. A characterization of principal divisors
is: D =

∑

P∈E nP (P) ∈ Div0(E) is principal iff
∑

P∈E nP P = O where O is the
point at infinity. The relation ∼ on Div0(E) is defined to be D1 ∼ D2 iff D1 −D2

is principal.

The support of a divisor D =
∑

P∈E nP (P) is the set of points P with nP 6= 0. If
f is a nonzero rational function such that div(f) and D have disjoint supports, we
can extend the evaluation of f at D by defining f(D) = ΠP∈Ef(P)nP .

Let n be an integer which is prime to p =char(K) if p > 0, and E[n] = {P ∈
E(K) : nP = O}. Take P,Q ∈ E[n], there exist DP , DQ ∈ Div0(E) such that
DP ∼ (P)− (O) and DQ ∼ (Q)− (O). Then there exist functions fP , fQ such that
div(fP) = nDP , div(fQ) = nDQ. Suppose that DP and DQ have disjoint supports,
then the following is meaningful:

e(P,Q) =
fP (DQ)

fQ(DP)
,

and this is the Weil pairing.

The Tate pairing can also be defined based on fP (DQ). By a suitable field extension
if necessary, we may assume that the field K contains nth roots of unity. Let
P ∈ E(K)[n] and Q ∈ E(K). As before, there exits a function fP such that
div(fP) = n(P) − n(O). Take a point S ∈ E such that DQ = (Q + S) − S and fP

have disjoint supports. Then we have a map

φn : E(K)[n]× (E(K)/nE(K))→ K∗/(K∗)n

with
φn(P,Q) = fP (DQ),

where Q is the equivalence class in E(K)/nE(K) containing Q, and fP (DQ) is the

equivalence class in K∗/(K∗)n containing fP (DQ). The function φn is called Tate
pairing.

An essential part in computing the Weil/Tate pairing is the evaluation of fP (R)
for each point R in the support of DQ. In his unpublished manuscript, Miller gave
an elegant and efficient algorithm for this calculation. The main idea of Miller’s

3

algorithm is as follows. Randomly pick a point R, and let DP = (P +R)− (R). For
each integer k, there is a rational function fk such that

div(fk) = k(P + R)− k(R)− (kP) + (O).

In particular, fn = fP .

For any points S, T , let hS,T and hS be linear functions such that hS,T = 0 and
hS = 0 are the line passing through S, T and the vertical line passing through S
respectively.

Notice that

div(hk1P,k2P) = (k1P) + (k2P) + (−(k1 + k2)P)− 3(O)

and
div(h(k1+k2)P) = ((k1 + k2)P) + (−(k1 + k2)P)− 2(O),

and we have

div(fk1+k2
) = div(fk1

) + div(fk2
) + div(hk1P,k2P)− div(h(k1+k2)P),

and hence

fk1+k2
=

fk1
fk2

hk1P,k2P

h(k1+k2)P
. (2.1)

This is a recursive equation with initial conditions f0 = 1 and f1 =
hP,R

hP+R
. The latter

is because div(f1) = (P + R)− (R)− (P) + (O).

Miller’s algorithm is given more formally below and its simliarity to the algorithms
in [1, 3] is noted:

Algorithm 2.1 (Miller’s algorithm)
INPUT: Integer n =

∑t
i=0 bi2

i with bi ∈ {0, 1} and bt = 1, and a point S ∈ E
OUTPUT: f = fn(S).

f ← f1; Z ← P ;
For j ← t− 1, t− 2, . . . , 1, 0 do

f ← f2 hZ,Z(S)
h2Z(S) ; Z ← 2Z;

If bj = 1 then

f ← f1f
hZ,P (S)
hZ+P (S) ; Z ← Z + P ;

Endif

Endfor

Return f

As indicated in [1], when we consider Tate pairing, the function fk can be choosen
so that

div(fk) = k(P)− (kP) + (k − 1)(O).

4

In this case the above Miller’s algorithm remains the same except f1 = 1.

For fields of characteristic three, the following version of Miller’s algorithm is more
efficient, taking advantage of the fast implementation of point triples in such a case
(see [1, 6]):

Algorithm 2.2 (Miller’s algorithm in characteristic three)
INPUT: Integer n =

∑r
i=0 ti3

i with ti ∈ {0, 1, 2} and tr 6= 0, and a point S ∈ E
OUTPUT: f = fn(S).

If tr = 1 then

f ← f1; Z ← P ;
Endif

If tr = 2 then

f ← f1
2 hP,P (S)

h2P (S) ; Z ← 2P ;

Endif

For j ← r − 1, r − 2, . . . , 1, 0 do

f ← f3 hZ,Z(S)
h2Z(S)

h2Z,Z(S)
h3Z(S) ; Z ← 3Z;

If tj = 1 then

f1f ← f
hZ,P (S)
hZ+P (S) ; Z ← Z + P ;

Endif

If tj = 2 then

f ← f1
2f

hZ,2P (S)
hZ+2P (S) ; Z ← Z + 2P ;

Endif

Endfor

Return f

3 Preliminary Observations and Facts

Some well known facts and observations that can be used to simplify computations
in Miller’s algorithm are noted in this section.

Consider the elliptic curve E of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

For a linear function
h(x, y) = k(x− a) + b− y

on E, where a, b and k are constants, define h(x, y) as the conjugate of h as follows:

h(x, y) = k(x− a) + b + y + a1x + a3.

Note that for a point R ∈ E, h(R) = h(−R). Also note that the product h(x, y)h(x, y)
is exactly the norm NK(x,y)/K(x)(h).

5

The following fact will be useful. It is apparently well known although no proof of
it in the literature was found.

Lemma 3.1 If the line h(x, y) = 0 intersects with E at points P = (a, b), Q = (c, d)
and −(P + Q) with P + Q = (α, β), then

NK(x,y)/K(x)(h) = −(x− a)(x− c)(x− α).

Proof: Notice that NK(x,y)/K(x)(h) can be reduced to a function of the form

−x3 + t2x
2 + t1x + t0,

where t0, t1, t2 ∈ K. Moreover, each of (x − a), (x − c) and (x − α) is a factor of
NK(x,y)/K(x)(h), and so the desired factorization follows.

[]

For a point Q ∈ E, we write Q = (xQ, yQ), i.e., xQ is the x−coordinate of Q and yQ

the y−coordinate of Q.

The following observations will play a key role in the refinements of Miller’s algo-
rithm.

Lemma 3.2 Let Q ∈ E[n] and S 6= Q, 2Q, · · · , nQ. Then

1.
hQ,Q(S)

h2
Q(S)h2Q(S)

= −
1

hQ,Q(−S)
.

2. For any integer k,

h(k+1)Q,kQ(S)

h(k+1)Q(S)h(2k+1)Q(S)
= −

hkQ(S)

h(k+1)Q,kQ(−S)
.

3.
hQ,Q(S)h2Q,Q(S)

h2Q(S)h3Q(S)
= −

hQ,Q(S)hQ(S)

h2Q,Q(−S)
.

Proof: By Lemma 3.1, we have

1.

hQ,Q(S)

h2
Q(S)h2Q(S)

=
hQ,Q(S)hQ,Q(−S)

h2
Q(S)h2Q(S)hQ,Q(−S)

=
NK(x,y)/K(x)(hQ,Q)(S)

(xS − xQ)2(xS − x2Q)hQ,Q(−S)

= −
1

hQ,Q(−S)
.

6

2.

h(k+1)Q,kQ(S)

h(k+1)Q(S)h(2k+1)Q(S)
=

h(k+1)Q,kQ(S)h(k+1)Q,kQ(−S)

h(k+1)Q(S)h(2k+1)Q(S)h(k+1)Q,kQ(−S)

=
NK(x,y)/K(x)(h(k+1)Q,kQ)(S)

(x− x(k+1)Q)(x− x(2k+1)Q)h(k+1)Q,kQ(−S)

=
hkQ(S)

h(k+1)Q,kQ(−S)
.

3.

hQ,Q(S)h2Q,Q(S)

h2Q(S)h3Q(S)
=

hQ,Q(S)h2Q,Q(S)h2Q,Q(−S)

h2Q(S)h3Q(S)h2Q,Q(−S)

=
hQ,Q(S)NK(x,y)/K(x)(h2Q,Q)(S)

(xS − x2Q)(xS − x3Q)h2Q,Q(−S)

= −
hQ,Q(S)(xS − xQ)

h2Q,Q(−S)

= −
hQ,Q(S)hQ(S)

h2Q,Q(−S)
.

[]

Remark 3.3 1. Since div(f) = div(cf) for any nonzero constant c ∈ K, the sign
does not affect the calculation of either pairing and therefore, minus signs will
be omitted in the use of the above lemma.

2. In the rest of the discussion, the point P ∈ E[n] will be fixed and Q is taken
to be some multiple of P . In order to satisfy the condition of the lemma, it is
sufficient to let S 6= P, 2P, . . . , nP . This is also the requirement of the original
Miller algorithm.

4 The Refinements

Notice that Miller’s algorithm 2.1 uses the double-and-add method, and we can
display an explicit formula for the function fn as

fn = fn
1 Π1

i=t

(

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

h2⌊ n

2i ⌋P

h2⌊ n

2i ⌋P,bi−1P

h⌊ n

2i−1
⌋P

)2i−1

, (4.1)

where t = ⌊lg2 n⌋ and bi−1 = ⌊ n
2i−1 ⌋ − 2⌊ n

2i ⌋. In this formula, if bi−1 = 0, then
h2⌊ n

2i ⌋P,bi−1P = h2⌊ n

2i ⌋P,O = h⌊ n

2i−1
⌋P . Without loss of generality, we also assume

that hO = 1. We arrange the product to start from term t down to term 1. This is
the way that the algorithm works.

7

Similarly, in the case of base three, fn can be expressed as

fn = fn
1

(

h(3−⌊ n
3r ⌋)P,(⌊ n

3r ⌋−1)P

h2P

)3r

Π1
i=r

(

h⌊ n

3i ⌋P,⌊ n

3i ⌋P

h2⌊ n

3i ⌋P

h2⌊ n

3i ⌋P,⌊ n

3i ⌋P

h3⌊ n

3i ⌋P

h3⌊ n

3i ⌋P,ti−1P

h⌊ n

3i−1
⌋P

)3i−1

,

(4.2)
where r = ⌊lg3 n⌋ and ti−1 = ⌊ n

3i−1 ⌋ − 3⌊ n
3i ⌋.

4.1 Refinement 1

Consider the binary represenation of n =
∑t

i=0 bi2
i, and group every two terms in

Formula 4.1 together. Then we get the following relation by applying Lemma 3.1.

(

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

h2⌊ n

2i ⌋P

h2⌊ n

2i ⌋P,bi−1P

h⌊ n

2i−1
⌋P

)2i−1 (

h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P,bi−2P

h⌊ n

2i−2
⌋P

)2i−2

=

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P

h2⌊ n

2i
⌋P

h2⌊ n

2i
⌋P,P

h⌊ n

2i−1
⌋P

)2i−1 (
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P,P

h⌊ n

2i−2
⌋P

)2i−2

if bi−1 = bi−2 = 1

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P

h2⌊ n

2i
⌋P

h2⌊ n

2i
⌋P,P

h⌊ n

2i−1
⌋P

)2i−1 (
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P

)2i−2

if bi−1 = 1, bi−2 = 0

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P

h2⌊ n

2i
⌋P

h2⌊ n

2i
⌋P,P

h⌊ n

2i−1
⌋P

)2i−1 (
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P

)2i−2

if bi−1 = 0, bi−2 = 1

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P

h2⌊ n

2i
⌋P

)2i−1 (
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

h2⌊ n

2i−1
⌋P

)2i−2

if bi−1 = bi−2 = 0

=

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P h2⌊ n

2i
⌋P,P

h2⌊ n

2i
⌋P

)2i−1
(

h2⌊ n

2i−1
⌋P,P

h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P h⌊ n

2i−2
⌋P

)2i−2

if bi−1 = bi−2 = 1

(

h⌊ n

2i
⌋P,⌊ n

2i
⌋P h2⌊ n

2i
⌋P,P

h2⌊ n

2i
⌋P

)2i−1
(

1
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

)2i−2

if bi−1 = 1, bi−2 = 0

(

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

)2i−1

(

h2⌊ n

2i−1
⌋P,P

h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P h⌊ n

2i−2
⌋P

)2i−2

if bi−1 = 0, bi−2 = 1

(

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

)2i−1

(

1
h⌊ n

2i−1
⌋P,⌊ n

2i−1
⌋P

)2i−2

if bi−1 = bi−2 = 0

This relation provides the correctness of an improved Miller’s algorithm which is
generally efficient and achieves greater efficiency as the number of zero bi’s increases.
As the simplification is achieved by grouping two terms together, it is natural to
expand n in terms of base 4 which is given in the next algorithm.

Algorithm 4.1 (Improved Miller’s algorithm (version 1))
INPUT: Integer n =

∑r
i=0 qi4

i with qi ∈ {0, 1, 2, 3} and qr 6= 0, and a point S ∈ E
OUTPUT:f = fn(S).

8

f ← f1; Z ← P ;
If qr = 2 then

f ← f2 hP,P (S)
h2P (S) ; Z ← 2P ;

Endif

If qr = 3 then

f ← f3 h2
P,P

(S)hP (S)

h2P,P (−S) ; Z ← 3P ;

Endif

For j ← r − 1, r − 2, . . . , 1, 0 do

If qj = 0 then

f ←
f4h2

Z,Z
(S)

h2Z,2Z(−S) ; Z ← 4Z;

Endif

If qj = 1 then

f ← f1
f4h2

Z,Z
(S)h4Z,P (S)

h4Z+P (S)h2Z,2Z(−S) ; Z ← 4Z + P ;

Endif

If qj = 2 then

f ← f1
2 f4h2

Z,Z
(S)h2

2Z,P
(S)

h2
2Z

(S)h2Z+P,2Z+P (−S)
; Z ← 4Z + 2P ;

Endif

If qj = 3 then

f ← f1
3 f4h2

Z,Z
(S)h2

2Z,P
(S)h4Z+2P,P (S)

h2
2Z

(S)h2Z+P,2Z+P (−S)h4Z+3P (S)
; Z ← 4Z + 3P ;

Endif

Endfor

Return f

4.2 Refinement 2

Suppose that most bits in the binary represenation of n =
∑t

i=0 bi2
i are 1, then

Miller’s algorithm can be modified to save more field operations based on the fol-
lowing observation:

By rearranging Formula 4.1 and then applying Lemma 3.2, the following computa-
tions are obtained:

fn = fn
1

(

hP,P h2P,bt−1P

h2P

)2t−1

Π1
i=t−1

(

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

(h⌊ n

2i ⌋P
)2

h2⌊ n

2i ⌋P,bi−1P

h2⌊ n

2i ⌋P

)2i−1

= fn
1

(

hP,P h2P,bt−1P

h2P

)2t−1

Π1
i=t−1

(

h2⌊ n

2i ⌋P,bi−1P

h⌊ n

2i ⌋P,⌊ n

2i ⌋P

)2i−1

The fact that hnP = 1 has been used and the last term inside the product symbol
is 1

h⌊n
2
⌋P,⌊n

2
⌋P

.

9

Algorithm 4.2 (Improved Miller’s algorithm (version 2))
INPUT: Integer n =

∑t
i=0 bi2

i with bi ∈ {0, 1} and bt = 1, and a point S ∈ E
OUTPUT: f = fn(S).

If bt−1 = 0 then

f ← f1
2hP,P (S); Z ← 2P ;

Else

f ← f1
3 hP,P (S)h2P,P (S)

h2P (S) ; Z ← 3P ;

Endif

For j ← t− 2, . . . , 1, 0 do

If bj = 0 then

f ← f2 h2Z(S)
hZ,Z(−S) ; Z ← 2Z;

Else

f ← f1f
2 h2Z,P (S)

hZ,Z(−S) ; Z ← 2Z + P ;

Endif

Endfor

Return f

In [8], Eisenträger, Lauter and Montgomery suggested a method that eliminates a
field multiplication and a field squaring in the computation of 2Q+P . They obtained
an improvement of Miller’s algorithm by using this observation and a parabola sub-
stitution. Their algorithm speeds up the computations in the case that most bits
in the binary represenation of n are 1. However, although their method can not be
combined with the above algorithm, we may modify and simplify the function fn as
follows so that the method of Eisenträger, Lauter and Montgomery can be used.

fn = fn
1 Π1

i=t

(

h⌊ n

2i ⌋P,bi−1P h(⌊ n

2i ⌋+bi−1)P,⌊ n

2i ⌋P

h(⌊ n

2i ⌋+bi−1)P h(2⌊ n

2i ⌋+bi−1)P

)2i−1

= fn
1 Π1

i=t

(

h⌊ n

2i ⌋P,bi−1P h⌊ n

2i ⌋P

h(⌊ n

2i ⌋+bi−1)P,⌊ n

2i ⌋P

)2i−1

.

An algorithm can be formed as before based on the above formula.

4.3 Refinement 3

As stated in [1, 6], point tripling is a relatively cheap operation in the case of
characteristic three and the base three version of Miller’s algorithm 2.2 should be
used in this case.

Let n =
∑r

i=0 ti3
i with tr 6= 0. Applying part 2 of Lemma 3.1 to Formula 4.2, we

10

see that

fn = fn
1

(

h(3−⌊ n
3r ⌋)P,(⌊ n

3r ⌋−1)P

h2P

)3r

Π1
i=r

(

h⌊ n

3i ⌋P,⌊ n

3i ⌋P

h2⌊ n

3i ⌋P

h2⌊ n

3i ⌋P,⌊ n

3i ⌋P

h3⌊ n

3i ⌋P

h3⌊ n

3i ⌋P,ti−1P

h⌊ n

3i−1
⌋P

)3i−1

= fn
1

(

h(3−⌊ n
3r ⌋)P,(⌊ n

3r ⌋−1)P

h2P

)3r

Π1
i=r

(

h⌊ n

3i ⌋P,⌊ n

3i ⌋P
h⌊ n

3i ⌋P

h2⌊ n

3i ⌋P,⌊ n

3i ⌋P

h3⌊ n

3i ⌋P,ti−1P

h⌊ n

3i−1
⌋P

)3i−1

.

This formula is realised by the algorithm 4.3 which improves algorithm 2.2.

Algorithm 4.3 (Improved Miller’s algorithm (version 3))
INPUT: Integer n =

∑r
i=0 ti3

i with ti ∈ {0, 1, 2} and tr 6= 0, and a point S ∈ E
OUTPUT: f = fn(S).

f2 ← f1
2 hP,P (S)

h2P S) ;

f ← f1; Z ← P ;
If tr = 2 then

f ← f2; Z ← 2P ;
Endif

For j ← r − 1, r − 2, . . . , 1, 0 do

f = f3 hZ,Z(S)hZ(S)
h2Z,Z(−S) ; Z ← 3Z;

If tj = 1 then

f ← f1f
hZ,P (S)
hZ+P (S) ; Z ← Z + P ;

Endif

If tj = 2 then

f ← f2f
hZ,2P (S)
hZ+2P (S) ; Z ← Z + 2P ;

Endif

Endfor

Return f

5 Analysis

In this section, some detailed analysis of the refinements are given and the number
of operations that can be saved discussed.

As indicated in [1, 6, 8], in the actual implementaion of the algorithms, the operations
in the numerator and denominator in each step are separated and the single division
is used at the end of the procedure.

Observe that the savings come from the elimination of terms like hX,Y (S) and hX(S).
It is easy to see that hX,Y (S) and hX,Y (−S) both cost one field multipliction if
the slope has been precalculated. Also note that both algorithm 4.1 and algo-
rithm 4.2 use the same method for doing point operations (doubling and addition)

11

as in Miller’s original algorithm 2.1. So we only count the field operations used to
evaluate hX,Y , hX and to multiply (or square) terms like hX,Y (±S), hX(S).

First, the savings made by using our first improvement, (algorithm 4.1) are esti-
mated. Consider a single round of the for loop of algorithm 4.1. Two field mul-
tiplications will be saved for each case. For example, qj = 1, then the deduction
is

f ← f1f
4

h2
Z,Z(S)h4Z,P (S)

h2Z,2Z(−S)h4Z+P (S)
.

If we assume that f1 and f have already been written as quotients on the right
hand side, then it takes 2 squarings and 6 multiplications for the numerator, and
2 squarings and 4 multiplications for the denominator. This should be compared
with 2 rounds of the for loop of the original Miller’s algorithm 2.1 with the following
result:

f ← f1f
4
h2

Z,Z(S)h2Z,2Z(S)h4Z,P (S)

h2
2Z(S)h4Z(S)h4Z+P (S)

.

It requires 2 squarings and 8 multiplications for the numerator, and 2 squarings and
4 multiplications for the denominator. So, the number of field multiplication saved
in total is 2 log4 n = log2 n.

Next, the savings made by using algorithm 4.2 are considered. For each single round
in the for loop, if bj = 1, our computation of

f ← f1f
2 h2Z,P (S)

hZ,Z(−S)

needs 1 squaring and 3 multiplications for the numerator, and 1 squaring and 3
multiplications for the denominator. This is two field multiplications fewer then the
computation of

f ← f1f
2 hZ,Z(S)h2Z,P (S)

h2Z(S)h2Z+P (S)

which is from the original algorithm. Thus the overall savings is 2H(n), where again,
H(n) is the weight of the binary expansion of n.

As indicated in section 4.2, we can rewrite the case of bj = 1 of the for loop in the
original Miller’s algorithm as

f ← f1f
2 hZ,P (S)hZ+P,Z(S)

hZ+P (S)h2Z+P (S)

and simplify it to

f ← f1f
2 hZ,P (S)hZ(S)

hZ+P,Z(−S)
.

One field multiplication is saved from the numerator and hence a total of H(n) field
multiplications are saved. But since there is no need to reference (the y-coordinate
of) 2Z, the trick of Eisenträger, Lauter and Montgomery can be used, so another
H(n) field multiplications and H(n) field squares can be saved.

Similar to the previous discussion, it can be checked that the algorithm 4.3 saves
log3 n field multiplications compared with its base three counterpart. Note that in

12

this case, log3 n of point triplings are performed. Since tripling can be made very
efficient, therefore algorithm 4.3 is a good choice here.

Table 1 summarizes the performance of the new algorithms, where the numbers in
the saving column indicate the number of field multiplications eliminated in the
respective algorithms.

Table 1: Performance of the improved algorithms
Algorithm Saving Condition for improvement

Algorithm 4.1 log2 n All values of n
Algorithm 4.2 2H(n) Higher Hamming weight
Algorithm 4.3 log3 n Characteristic three

Finally, two examples are given. We list the calculation formulas for f191, f257 using
Miller’s algorithm from [1, 3] (Algorithm2.1), our improved version 1(Algorithm4.1)
and our improved version 2(Algorithm4.2). Notice that the prime numbers 191 and
257 represent two extreme situations since the first has only the one zero in its
binary expansion and the second is of weight two, the minimal weight possible for
a nontrivial prime number. Here the symbols hkP,mP , hkP are shortened as hk,m, hk

respectively. Also hk,m is used to denote hkP,mP (−S).

Example 5.1 Compute f191:

Number 191 = (10111111)2 = (2333)4

Algorithm 2.1 f = f1
191 h64

1,1

h64
2

h32
2,2

h32
4

h32
4,1

h32
5

h16
5,5

h16
10

h16
10,1

h16
11

h8
11,11

h8
22

h8
22,1

h8
23

h4
23,23

h4
46

h4
46,1

h4
47

·

h2
47,47

h2
94

h2
94,1

h2
95

h95,95

h190

h190,1

h191

Algorithm 4.1 f = f1
191 h64

1,1

h64
2

h32
2,2

h32
4

h32
4,1

h
16

5,5

h16
10,1

h16
11

h8
11,11

h8
22

h8
22,1

h
4

23,23

h4
46,1

h4
47

h2
47,47

h2
94

h2
94,1

h95,95

h190,1

h191

Algorithm 4.2 f = f1
191h64

1,1
h32
4,1

h
32

2,2

h16
5,5

h16
10

h16
10,1

h
16

5,5

h8
22,1

h
8

11,11

h4
46,1

h
4

23,23

h2
94,1

h
2

47,47

h190,1

h95,95

Compute f257:

Number 257 = (100000001)2 = (10001)4

Algorithm 2.1 f = f1
257 h128

1,1

h128
2

h64
2,2

h64
4

h32
4,4

h32
8

h16
8,8

h16
16

h8
16,16

h8
32

h4
32,32

h4
64

h2
64,64

h2
128

h128,128

h256

h256,1

h257

Algorithm 4.1 f = f1
257 h128

1,1

h
64

2,2

h32
4,4

h
16

8,8

h8
16,16

h
4

32,32

h2
64,64

h128,128

h256,1

h257

Algorithm 4.2 f = f1
257h128

1,1
h64
4

h
64

2,2

h32
8

h
32

4,4

h16
16

h
16

8,8

h8
32

h
8

16,16

h4
64

h
4

32,32

h2
128

h
2

64,64

h256,1

h128,128

6 Comments

Three refinements for the computation of the Tate/Weil pairing have been given
and the corresponding performance analyzed. The savings in the number of mul-

13

tiplications noted could prove important for the performance of algorithms in the
implementations of many of the new and interesting protocols that have been, and
will continue to be, developed using these pairings.

References

[1] P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott,Efficient algorithms
for pairing-based cryptosystems, Advances in Cryptology-CRYPTO ’02,(Santa
Barbara, CA, 02) (M. Yung Ed.), Lecture Notes in Comput. Sci., vol. 2442,
Springer-Verlag Heidelberg, 2002, pp. 354–368.

[2] I. F. Blake, G. Seroussi and N. P. Smart, Elliptic Curves in Cryptography, Cam-
bridge University Press, Cambridge, (1999).

[3] D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing,
Advances in Cryptology, Crypt’01 (J. Kilian ED.), Lecture Notes in Comput.
Sci., vol. 2139, Springer-Verlag Heidelberg, 2001, pp. 213–239.

[4] D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing,
Advances in Cryptology, Asiacrypt’01 (C. Boyd ED.), Lecture Notes in Comput.
Sci., vol. 2248, Springer-Verlag Heidelberg, 2001, pp. 514–532.

[5] G. Frey and H. G. Rück, A remark concerning m-divisibilty and the discrete
logarithm in divisor class group of curves, Mathematics of Computation, 62

(1994), 865–874.

[6] S. Galbraith, K. Harrison and D. Soldera, Implementing the Tate Pairing, Algo-
rithm Number Theory Symposium, ANTS-V (C. Fieker and D. Kohel EDS.),
Lecture Notes in Comput. Sci., vol. 2369, Springer-Verlag Heidelberg, 2002,
pp. 324–337.

[7] A. Joux, A one round protocol for tripartite Diffie-Helman, Algorithm Number
Theory Symposium, ANTS-IV (W. Bosma ED.), Lecture Notes in Comput. Sci.,
vol. 1838, Springer-Verlag Heidelberg, 2000, pp. 385–393.

[8] K. Eisenträger, K. Lauter and P. L. Montgomery, Fast Elliptic curve arithmetic
and improved Weil pairing Evaluation, Topics in Cryptology, CT-RSA’03, Lec-
ture Notes in Comput. Sci., vol. 2612, Springer-Verlag Heidelberg, 2003, pp. 343–
354.

[9] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, 48

(1987), 203-209.

[10] A. J. Menezes, T. Okamoto and S. A. Vanstone, Reducing elliptic curve loga-
rithms to logarithms in a finite field, IEEE Transactions on Information Theory,
39 (1993), 1639-1646.

[11] V. Miller, Short Programs for functions on curves, unpublished manuscript,
1986.

14

[12] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology,
CRYPTO’85, Lecture Notes in Comput. Sci., vol. 218, Springer-Verlag Heidel-
berg, 1986, pp. 417–462.

[13] R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairing, SCIS-
2000, OKinawa, Japan, 2000.

[14] A. Shamir, Identity-based cryptosystems and signature schemes, Advances in
Cryptology–Crypto’84, Lecture Notes in Comput. Sci., vol. 196, Springer-Verlag
Heidelberg, 1984, pp. 47-53.

[15] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathe-
matics, 106, Springer-Verlag, 1986.

[16] E. R. Verheul, Self-blindable credential certificates from the Weil pairing, Ad-
vances in Cryptology, Asiacrypt’01 (C. Boyd ED.), Lecture Notes in Comput.
Sci., vol. 2248, Springer-Verlag Heidelberg, 2001, pp. 533–551.

15

