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1 Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and ]J. Hadamard (see, e.g., [1], [2, p. 137]) is
one of the most well-established inequalities in the theory of convex functions with a geometrical inter-
pretation and many applications. These inequalities state that if f: I — R is a convex function on the
interval I of real numbers and w;, w, € I with w; < w,, then

w1 + W) 1 n flwy) + f(w)
f[ )Swz_wl [ roome s e e, @

2

Both inequalities hold in the reversed direction if f is concave. We note that the Hermite-Hadamard
inequality may be regarded as a refinement of the concept of convexity and it follows easily from
Jensen’s inequality. Hermite-Hadamard inequality for convex functions has received renewed attention
in recent years, and a remarkable variety of refinements and generalizations have been studied.

On the other hand, quantum calculus, sometimes called calculus without limits, is equivalent to
traditional infinitesimal calculus without the notion of limits. In the field of g-analysis, many studies
have recently been carried out. It has applications in numerous areas of mathematics such as combina-
torics, number theory, basic hypergeometric functions, orthogonal polynomials, and in fields of other
sciences such as mechanics, theory of relativity, and quantum theory [3-7]. Apparently, Euler invented
this important branch of mathematics when he used the g parameter in Newton’s work on infinite series.
Later, the g-calculus was first given by Jackson [3]. In 1908-1909, the general form of the g-integral and
q-difference operator was defined by Jackson [6]. In 1969, for the first time Agarwal [8] defined the g-frac-
tional derivative. In 1966-1967, Al-Salam [9] introduced a g-analog of the g-fractional integral and
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g-Riemann-Liouville fractional. In 2004, Rajkovic gave a definition of the Riemann-type g-integral, which
was generalized to the Jackson g-integral. In 2013, Tariboon introduced the ,, D -difference operator [10].

In recent years, because of the importance of convexity in numerous fields of applied and pure mathe-
matics, it has been significantly investigated. The theory of convexity and inequalities are strongly con-
nected to each other, therefore, various inequalities can be established in the literature which are proved
for convex, generalized convex, and differentiable convex functions of single and double variables, see,
for example, [10-29].

The general structure of this paper consists of five main sections including Introduction. In Section 2,
we give some necessary important notations for concept g-calculus and we also mention some related
works in the literature. In Section 3 we present some new Hermite-Hadamard-type inequalities for g*2
integrals. Some refinements of quantum Hermite-Hadamard-type inequalities are proved in Section 4.
We also examine the relation between our results and inequalities presented in the earlier works.
Finally, in Section 5, some conclusions and further directions of research are discussed. We note that
the opinion and technique of this work may inspire new research in this area.

2 Preliminaries of g-calculus and some inequalities

In this section, we present some required definitions and related inequalities about g-calculus.
We have to give the following notation which will be used many times in the following sections (see [7]):
_q9' -1

[nlg i1

Definition 1. [30] For a function F : [w;, w;] — R, the q,,-derivative of F at x € [w1, w;] is characterized by
the expression:

) - Fign+ (1 - Quwy)
Q-9 - wy)

F
w0, DgFO0) = , N # W )

If ¥ = w;, we define wquF (wy) = lim,[_m,quF (») if it exists and it is finite.

Definition 2. [18] For a function F : [w;, w,] — R, the g¥2-derivative of F at » € [w;, w,] is characterized by
the expression:
Fign+ (1 - gwy) - F0)

1-q9(w2-%

“2D F(%) = , N # W,
If ¥ = w,, we define “2D F(w,) = lim,_,,"?D,F(x) if it exists and it is finite.

Definition 3. [30] Let F : [w;, w;] — R be a function. Then, the g,,-definite integral on [w;, w,] is defined as

wy . 1
[ Fo0udx = 1 - 9@w: - 00 F @ws + (1 - i) = @2 - 0 [F(@ - Oy + twr)dt
wq n=0 0

In [10], Alp et al. proved the following g,,,-Hermite-Hadamard inequalities for convex functions in the setting
of quantum calculus:

Theorem 1. Let F : [w;, w,] > R be a convex differentiable function on [wi, w,] and 0 < q < 1. Then
q-Hermite-Hadamard inequalities are as follows:

F[qw1+wzJ< 1 fF(X) gy < FF@) + Fw)

[z]q B Wy — W, e [2]4
w1
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On the other hand, Bermudo et al. gave the following new definition and were able to prove the corre-
sponding Hermite-Hadamard-type inequalities:

Definition 4. [18] Let F : [w;, w,] — R be a function. Then, the g¥2-definite integral on [w;, w,] is defined as

w) . 1
[ Foo®dp= 1 - s - w) Y aF@wr + (1 - Y02 = @z - 0 [ Fltwr + (1 - Dwdyt.
0

n=0
w1

Theorem 2. [31] We have the following identities for q“2-integrals:

(i) ‘”ZDq{jF(t) “qut] = —F(%).

(i) [“D F(t)*2d,t = F(w,) - F(x).

n

(iii) [[F(6) + GO dgt = [FO)dyt + [G(t)*d,t.

w) w3
() [GO)“DF00“dx = [FOOGO)NIL - [Flgn + (1 = q)wz)“"DyG0) “*d .
w1 w1
Theorem 3. [18] Let F : (w1, w,] — R be a convex function on [w,, w,] and 0 < q < 1. Then, q-Hermite-
Hadamard inequalities are as follows:

F(cul + qwz] .1 TF(x)wqux . F@) + gF(@;) @

[2]q wy — Wq [2]q

3 New Hermite-Hadamard-type inequalities for g“:-integrals
In this section, we prove two new quantum Hermite-Hadamard inequalities for g“2-integrals.

Theorem 4. If F : (w1, w,] — R is a convex differentiable function on [w,, w,] and 0 < q < 1, then we have

F(wy) + qF ((Uz)'

F[qwl + wzj _0-9w, - wl)F{qwl + wzJ <! 5 5)
q

< F0)“d n <
2, 2, 2l wz—le b0 g <

Proof. We can write the equation of the tangent line for the function F at the point Eﬂ‘“ﬁ, F (ij as

[2] [2]
follows: ! ’
h(x) = F qui + Wy | | g 4@+ W2 X_qw1+w2
[z]q [Z]q [2]4

for all x € [w1, w,]. Since F is a convex function, it is clear that h(x) < F(x) for all ¥ € [w,, w,]. Thus, we have

J-h(x)‘”qux < -[F(x) “2d u.

w1 w1
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By Definition 4, we get

2 Wy 3 _ I quw, + W | g1t W | qWs t+ W) ||w,
J R J H 21, j+ F{ 21, ][X 21, H o

_ _ quw: + Wy 1| QW1 + Wy _ 4 + W g,
= (w; an)F[ o, ] +F ( 2, JJ[M 2 ] d,x

_ _ quw, + Wy
= (wy - w)F [—[z]q ]

+ F’[Mj{(l - )@ - 0)Y " @01 + (1 - HW) - (@, - w) T2

[2]4 =~ o
- — 2
= (W, - w)F| 4Lt @2 | _ (- @)Wz - 1) [ qui + w; ’
[z]q [2](] [2]q
which gives the first inequality in (5). The second inequality is the same as in Theorem 3. 0O

Remark 1. If we take the limit ¢ — 17 in Theorem 4, then the inequalities (5) reduce to (1).

Theorem 5. If F : (w1, w,] — R is a convex differentiable function on [wy, w,] and 0 < q < 1, then we have

1 f s F@) + gF@,)
< T JF(X) < 2l . (6)

F(wl + wz) (A -q)(wr - wl)F,(wl + wzj
2 2[2], 2

Proof. Similar way as in Theorem 4, we can write tangent line for the function F at the point

[%’ F(‘”l;’”zjj as follows:

k()t) _ F(wl + Cl)z) + F’(wl + a)zj(x _ wh + a)zj
2 2 2

for all x € [wy, w,]. Since F is a convex function, we get

wy [175)
Ilc(x) “2du < IF (0 “2dx.

w1 w1

By Definition 4, we get

w) w2

Ik(x)wqu}t _ J.|:F(w1 + CUZ\J + F/(wl + U}ZJ(K _ Mj}wzd[]x
2 2 2

w1

w1

w2
= (W, - w)F w1 + Wy + F w1 + Wy X_(l)1+(l)2 20
2 2 2 1

w1

= (@ — W) F(Mj
Wy + Wy

+F (%){(1 - @)W - w)) ¢ (q'w; + (1 - ¢VW)) - (W3 — W) >

n=0
w; + wzj (1-q)(wa - wl)zF,(wl + wzj
2[2], 2 )

- @: - w)F

This gives the first inequality in (6). The second inequality is the same as in Theorem 3. O
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Remark 2. If we take the limit ¢ — 1~ in Theorem 5, then the inequalities (6) reduce to (1).

Lemma 1. Let F : [wy, w2] — R be a convex continuous function on [wy, w,] and 0 < q < 1. Then we have

w) Wy Wy Wy
F 72'[ I(tx + (1 - t)y)“2d,ndy 72'[ IF(tx + (1 - t)y)d " dy
(wr — w) (wr — w)
w1 w1 w1 Wy
Proof. Lemma 1 follows directly from Definition 3 and quantum Jensen’s inequality. O

4 Main results
In this section, we present the refinements of quantum Hermite-Hadamard inequalities for g*2-integrals.

Theorem 6. Let F : (w1, w,] — R be a convex continuous function on (w1, w,] and 0 < q < 1. Then we have

wy Wy
Wi + qw; I I Wy LW, w, F(wy) + gF(w))
F < F(tvx + 1 - t)y) dx d IF(X) dx<— 7
( 2], ] s - woz R 2, @)
w1 Wy
for allt € [0, 1].
Proof. Since F is convex on [w1, w,], it follows that
F(tv + A1 - t)y) < tF0) + (1 - )F(y) (8)

forallx, y € [wy, w,]and t € [0, 1]. Taking double g*2-integration on both sides of (8) on [w,, w;] X [w1, w>],
we obtain

W) W) Wy Wy
IIF(tx + (1 - t)y)2dudyy < II[tF(x) + (1 - )F(y)]“d x"*dy
w1 W1 w1 W
Wy Wy W Wy
=t IjF(x) “dx2dy + (1 - t)J IF(y)“quxwquy
w1 W Wy W

- tw - @) [Fo0™dyx + (11— 0@, - 00 [F)"dyy

w1 w1
2
- @2 - ) [F00“dx,
w1
which proves the second part of (7). On the other hand, by Lemma 1, we have

(05X 05 wy Wy

F 72.["‘(0( + (1 - 0y)dudy | < —2IIF(tx + (1 - t)y)“2dudy )
(wy — wy) g (wy — wn) S
and we also get
w: w wl + qw,;
——— | |tx+ (1 - Hy)Pd " dy = ————=. 10
(@, - w1>2 /] Y 21, 10

By (9) and (10), we have the first part of (7). O
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Remark 3. If we take the limit g — 1~ in Theorem 6, then the inequalities (7) reduce to the following
inequalities:

0 + W, T . F@,) + Fw,)
F( 5 ) < = w1)2 IIF(tx + (1 - t)y)dudy < P IF(x)dx < 5 )

which are given by Dragomir in [32].
Corollary 1. Under assumptions of Theorem 6 with t = %, we have the inequalities

Wy Wy w)
qw, + w; 1 IJ (K + ij w 1 J w qF(w,) + F(w,)
F < F| =2 |d x*d y < FoO“dw< =2 "V (g
{ 2], J - oyt ) )T =, ) d 21, an
1 W1 1

Remark 4. If we take the limit g — 1° in Corollary 1, then (11) reduces to the inequalities

Wy + Wy n+y F(wy) + F(wy)
F( 2 j< (w; - 6111)2 IIF( jdxdy = (wz - wy) jF(x)dx < 2 '

w7 W

which are given in [33].

Theorem 7. Let F : [w,, w;] — R be a convex continuous function on [w,, w,] and 0 < q < 1. Then we have

wH Wy 1 wywy

a+ Y \w, ;. w, 1 ~ Oy gy g s
o o g | [ o omaeagag
o (12)
< 7((02 ~ ) IF(M) 2d X.

Proof. Let us consider the mapping ¢ : [0, 1] — R defined by
w) W)

¢(t) = mij(tx + (1 - t)y) 2d A zd

w1 Wy

Forall 4, t, € [0, 1] and a, B > O with @ + 8 = 1, by convexity of F, we have
w)y W)
jJ_F((atl + Bt + (1 - (at; + Bty))y) *d x"*dy

w1 w1
w)y W)

mf I Flatox + (1 - B)y) + Bltax + (1 - B)y))“d,x"d,y

w1 W
wr W2

@ w; W,
mij(tlx + (1= t)y)*ddy

w1 W
wr Wy

[ Jrex+ a - om©apedy = ap + poie,

w1 W1

Plat + Bt) = m

IN

B

(w; — wy)?

which shows that ¢ is convex on [0, 1]. By applying Theorem 3 for the convex function ¢ on [0, 1], we have
the inequalities

ol < 2O+ a90)
[%J I"’” <o,
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That is,
Wy Wy 1wy w,
%I j DAY |ng gy 7” IF(tx + (- Oy)ddyd t
(wy — wy) [2]4 (w7 — wy)
w1 W 0w wy
< JF 00 “2dx.
wy — Wq
This completes the proof. O

Remark 5. If we take the limit ¢ — 17 in Theorem 7, then the inequalities (12) reduce to the inequalities

1 wyw;

mﬂ' (K+y)d wdy m]ij(tx+ 1 - t)y)dxdydt

w1 W 0wy wy

1
= (w2 — w) JF(X)dX’

which are given in [33].

Theorem 8. Let F : [wy, w,] — R be a q-differentiable convex continuous function and O < q < 1. Then the
inequalities

Wy W3

0< IF(M)“Zd n - —ZJIF(tx + (1 - t)y)dudy
wy — W ((1)2 l) e
1 Wi (13)
<t qF(a)l) + F(wz) jF(q}( + (1 _ q)wz)wzd e
(2], Wy — Wy
are valid for all t € [0, 1].

Proof. Since F is convex on [w;, w;], it follows that

Fltv + 1 - t)y) < tF) + (1 - t)F(y) (14)

forallx, y € [wy, w,]and t € [0, 1]. Taking double g“2-integration on both sides of (14) on [w,, w;] X [w1, w>],
we obtain

W) W) w3 Wy
IIF(tx + (1 - t)y)dudy < Ij[tF(x) + (1 - t)F(y)]“d,x“*dy
wy W w1 W

- @2 - 0 [F09“dx,

wq

which gives the first part of (13). On the other hand, since F is g -differentiable convex on [w;, w,] and
F > “2D,F, we have

Ftx + (1 - t)y) = F(y) = t(x — y)“?D,F(y)
for all %,y € [wy, w;] and t € [0, 1]. Taking double g*2-integration on both sides of the above inequality on
(w1, W] X [ws, w,], we obtain

w) Wy w)y Wy

J.IF(tx + (1 - t)y)?dxdy - (w, - wl)JF(x)wzd >t J-j(x Y)“DF(y)“*d x"*dy (15)

w1 Wy w1 w1 W1
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By (iv) of Theorem 2, we have

jj(x - y)F*D F(y)“*d x"*d,y

Wy W

(@5 - wl)j [“[;]qb - y}“’ZDqF(y) “idy
q

w2
= W - )| [ 25Ty Ry jF(qy +(1- q)b)”D, (“ +ah ]‘”quy
(2], 1+gq
w1 w;
2
= (wy — wy) JF(M)wquM — (W, )ZM
(2],
w1
It follows from (15) that
wy Wy Wy
(wy — wy) IF(X) “2du — I'[F(tx + (1 - t)y)“2d,ndy
w; w1 Wy

, qF(wy) + F(w,)

<t (W - wy) 2,

- (w2 - wl)IF (gx + (g - Dwy)dyn |,

wq

for all t € [0, 1], which is the second part of (13). O

Remark 6. If we take the limit g — 1~ in Theorem 8, then the inequalities (13) reduce to the inequalities

0< IF(x)dx - > ij(tx + (1 - t)y)dudy
Wy — Wy (w, - w1)
<t Flw) + Fw,) _ ! IF(x)dx ,
2 — W

which can be seen in [33,34].

Corollary 2. Under assumptions of Theorem 8 with t = 3, we have the inequalities

Wy W2

0< IF (00 2 — II (X hl yj“’zd udy
wy — W (w2 - CU]
w1 w1
(16)
1| gF(wy) + F(w,) 1 I w
<= - F 1- 2d n|.
<5 2l s (@x + (1 = @wy)dgxn

Remark 7. If we take the limit ¢ — 1~ in Corollary 2, then the inequalities (16) reduce to the inequalities

(LX)

N xty < 1 Flw) + Flwy)
wy — W IF(X)dK (0)2 - w1)2 I-[ ( jd d 2 2 wy — wlj‘F(X)dx

wq w1 W

0<

which are given in [33].
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Theorem 9. Let F: [w,, w,] » R be a q-differentiable convex continuous function which is defined at

the point “- %2 w”q‘”z € (w1, wy) and 0 < q < 1. Then the following inequalities hold:

w2 w3
0< jF(x)‘”qux - fF b+ (1 - 1) T2 D g o

wy — W Wy — W (2],

w W
(17)
wy
cq-p H@) +Fw) 1 j F(gx + (1 - @wy)“dyx .

[z]q -

Proof. Since F is convex on [w;, w,], by Theorem 3, it follows that

P J.F(x) dn = R IF(X) dgn + P J.F(x) 2d
w, Wi + qw,
2w2_w1jF(x) dx+(1-DF (7[% J
W1 + qW; |,
> o _wljF(tx+ 1- )7[2111 j dx

forallt € [0, 1], which becomes the first part of (17). On the other hand, since F is g-differentiable convex on
(w1, w,], we have

_pWitqws | _pl @t 9w e,
F[tx+(1 t) 21, j Fx) > (1 t){ 2l x] D,F(%).

Taking the g“2-integration on the above inequality on [w;, w,], we obtain

_[F tx + (1 - )M “2d IF(x)de X
Wy — Wy (2], wz - Wi
(18)
Wy + qW» w w
> —t - u|“2D F(»)“2d «.
w; - wl.[ - )[ (2], XJ aF 00 g
We also have
(@019 o roavdx— (£ og aFw) + F@))
TR 00%dx = | Flgu + (1 - q)wy)*?dgx - (w3 - wl)T- (19)
q q
w1
From (18) and (19), we get the second part of (17). O

Theorem 10. Let F : [wy, w;] — R be a q-differentiable convex continuous function which is defined at

the point 2222 ¢ (wy, w,) and O < q < 1. Then the inequalities
p 2l

1-6 (1-¢g(w; - wl)F/[qwl + CUZJ
(2]q (2]q

w, qw; + Wy |y,
: w; — wIIF(M) dgx - w; — W IF [t}{ +a-0 [2]4 J dgx (20)
| Fw) + Flw) 1 N B w
< (1-1 21, o fF(qx +(1-qw,) dqx

are valid for all t € [0, 1].
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Proof. The proof of this theorem follows a similar procedure to that in Theorem 9 by using Theorem 4. [

Theorem 11. Let F : [wy, w;] » R be a q-differentiable convex continuous function which is defined at
the point %2 “'1“"2 € (w1, w,) and 0 < g < 1. Then the inequalities

(1-q)(w; - wl)F,(wl + wzj

1-t
-0 2([2]¢) 2

IF(M)“Zd n - IF (tx +(1-1t @+ wz)“’qux

Wy — Wy W) — W (21)
F(wy) + F(wa)

2

IN

17 v
a-t o [Fax+ a - g

are valid for all t € [0, 1].
Proof. The proof of this theorem follows a similar procedure to that in Theorem 9 by using Theorem 5. [

Remark 8. If we take the limit g — 17, then the inequalities (17), (20) and (21) reduce to

0 —— JF(x)dx - JF(tx +(1-1t Wy + wzjdx
wy — Wq wy — W1
< -p F@) +F@) IF(x)dx
2 wy — W

which are given in [33].
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