
REFINING AND EXTENDING THE PROCEDURAL NET 

Mark E. Drunimond 

Department of Artificial Intelligence 
University of Edinburgh 

Hope Park Square 
Edinburgh, Scotland, U.K. 

Abstract 

This paper presents a new definition for Plans 
The objects defined are called Plan Nets, and are 
similar in spirit to Sacerdoti's Procedural Nets 
(1975) It is argued that Plan Nets are more 
descriptive tham Procedural Nets, because they can 
easily describe iterative behaviour The Plan Net 
definition is motivated by providing an operational 
semantics for the Procedural Net, and noticing that 
all Procedural Net state spaces are "loop free" This 
is seen to restrict the behaviours that can be 
described by the Procedural Net to those which do 
not. include iteration It is suggested that Plan Net. 
state spaces can contain loops, and thus can 
describe iterative behaviour 

1. Paper Overview 
In the next section we give Sacerdoti's 

definition of the Procedural Net, A simple method for 
deriving Procedural Net behaviours is also presented, 
and it is argued that the Procedural Net cannot 
describe iteration Section 3 defines and discusses 
the Plan Net Two sample Plan Nets are given An 
operational semantics is suggested for the Plan Net, 
and it is argued that Plan Nets can describe 
iteration The Procedural Net and the Plan Net are 
compared in Section 4 Section 5 concludes 

2 The Procedural Net 
A Procedural Net has been defined as "a 

network of actions at varying levels of detail, 
structured into a hierarchy of partially ordered time 
sequences " (Sacerdoti, 1975, p 10) The basic 
objects in a Procedural Net are actions, and some 
ordering relations on the actions Because of this, 
we refer to the Procedural Net as an "event space" 
representation A net can be drawn as an 
action-on node graph, with directed arcs between 
nodes An arc running from one node a to another 
node B means that the action denoted by a must 
occur "before" the action denoted by B 

We can derive the possible behaviours of a 
given Procedural Net by analyzing the state space 
which it describes. A net's state space can be 
produced by playing a version of the "pebbling game" 
(Pippenger, 1980) While pebbling was not developed 
with this application in mind. it does capture our 

intuition of what "before" means in a Procedural Net 
In our version of this game, we place "pebbles" on 
the nodes of a Procedural Net as they are executed 
The net starts out pebble-free. and finishes up 
pebble laden each node must be pebbled; that, is, 
each action must be executed Pebble placement is 
carried out according to the rule: A node may be 
pebbled if all of its immediate predecessors arc 
pebbled. 

The Procedural Net has been criticized recently 
(McDermott. 1983, Rosensehein. 1984) This paper 
addresses the Procedural Net's inability to describe 
"iterative" behaviour Such behaviour is difficult to 
model in a natural way using a Procedural Net Since 
the arcs of a net are taken to mean "before", one 
cannot simply direct an arc from an action "back 
into" the net 

It is obvious that all Procedural Net 
state spaces will be loop free, since the number of 
pebbles on a net must increase monotonically There 
will never be an action which removes a pebble; thus 
never an action which can produce an earlier state 
This is due to the strict, "before" interpretation of 
the Procedural Net's arcs 

While Sacerdoti did include a mechanism for 
dealing with iteration, it hides the notion of 
"process" inside a special replicate node His 
treatment of iteration poses problems Below, we 
suggest that by defining an alternative "event space" 
representation for plans, we can describe iterative 
behaviour. This new definition follows the belief that 
iteration must be expressed in terms of the 
structure of a plan, so that a planner can reason 
about the iteration 



M. Drummond 1011 

A place is thought of as a "condition", a static 
thing which does or does not hold. If a place pi is 
marked (M(pi) = 1) it is considered to be believed [by 
the planning system], and if it is unmarked (u(pi) = 
0), it is considered to be not believed [by the 
planning system]. 

Transitions are events, the Plan Net 
counterparts of a Procedural Net's actions. Events 
are dynamic entities; conditions are static Events 
are things which "happen" 

The Allow relation (Ra) is an abstraction of two 
simpler relations: Cause (Re), and Enable (Re) Events 
cause conditions, and conditions enable events The 
input places of a transition describe those conditions 
which must be believed to hold in the world for the 
event the transition denotes to be enabled The firing 
of a transition models the activation of its event. 
After firing, the output places of the transition 
describe the new conditions that are believed to 
hold 

Sample plans in this formalism are given in 
Figures 1 and 2 The plan of Figure 1 is designed to 
solve a canonical Blocks World problem. An initial 
marking is included. The plan of Figure 2 is one for 
(endlessly) hammering a nail. The plans look large, 
but this is due to redundant information being 
included in the formalism When a plan is drawn as a 
graph it shrinks to more modest proportions (see 
Drummond, forthcoming), 

4 Comparing the Nets 
In this section we argue that the Plan Net 

representation is more powerful than the Procedural 
Net because of an explicit epistemological 
commitment to conditions and events The 
Procedural Net makes no clear distinction between 
them. Using the Allow and Before relations as defined 
above, we can produce state spaces which contain 
cycles; that is, ones which correspond to iterative 
behaviour. 

NOAH (Sacerdoti, 1975), and its descendents, 
such as NONLIN (Tate, 1976), DEVISER (Vere. 1981). 
and SIPE (Wilkins, 1983) all use plans based on 
Sacerdoti's original Procedural Net The following 
comments are expressed principally in terms of 
NOAH, but apply equally to these newer planners 

The Allow relation takes the form of a "before" 
link in a Procedural Net which has been introduced 
by pattern-directed operator invocation. Such a link 
might appear, for instance, between an action which 
must make block A clear, and an action which must 
stack A on B. 


