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1 • IBTRODUCTIOII 

The problem of constructing ~onfidence intervals for a binomial 

success probability has a long history, dating back to the work of Clopper 

and Pearson (1934). Although the problem seems to be a simple one, it is 

made complicated by the fact that we are working with a discrete distribu

tion, and standard decision-theoretic techniques tend to break down under 

such circumstances. 

A mathematical trick sometimes employed, to overcome the problems in 

dealing with a discrete distribution, is to add an independent uniform 

(0,1) random variable to the binomial random variable, thereby creating a 

variable with a continuous distribution (see, for example, Stevens (1950), 

Lehmann (1959), or Blyth and Hutchinson (1960)). This trick should be 

treated with disdain: while it produces a problem that is tractable 

theoretically, it produces a solution that is useless in application. Here 

we will consider only nonrandomized confidence intervals. 

The Clapper-Pearson confidence intervals, which are still in use 

today, are constructed by intersecting one-sided lower and upper intervals. 

The problem with this construction is that, in many cases, the true 

confidence coefficient (the infimum of the coverage probabilities) is 

strictly greater than the stated level. The Clapper-Pearson intervals are, 

therefore, too wide for the stated level of confidence, and leave room for 

improvement. In order to do so, however, it seems that one must consider 

alternative methods of construction. 

Significant contributions to the construction of binomial confidence 

intervals were made by Sterne (1954), Crow (1956) and, most recently, Blyth 

and Still (1983). Sterne proposed a method for constructing shortest 

acceptance regions, which could then be inverted to produce confidence 
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regions. Crow refined Sterne's method to eliminate confidence regions that 

were not intervals, and also showed that this method produces a set of 

confidence intervals which minimizes the sum of the lengths. These 

intervals, referred to as Sterna-Crow intervals, have enjoyed fairly 

widespread use, and have been extensively tabled (Natrella, 1963). 

As pointed out by Blyth and Still, however, the Sterne-Crow intervals 

contain many irregularities. (For example, in some cases, when the 

observed number of successes increases, the lower endpoint of the confi-

dence interval remains unchanged.) Such problems result from the fact 

that, for many parameter values, there is more than one shortest acceptance 

region, and Crow used a somewhat arbitrary rule for selecting the one to 

use. 

The technique of Blyth and Still was to generate all shortest accep

tance regions for success probabilities that are multiples of .005. After 

eliminating those acceptance regions which would produce disconnected 

confidence regions, five rules were examined for deciding how to handle the 

nonunique shortest acceptance regions. The criterion decided upon was to 

select as the confidence limit the midpoint of possible values. The 

resulting procedure, which retains the property of minimizing the sum of 

the lengths, is also approximately unbiased with approximately equal 

probability tails. 

In this paper binomial confidence intervals are constructed by a 

direct method, working with the intervals themselves rather than inverting 

acceptance regions. An algorithm is developed that, when applied to an 

existing confidence procedure, produces a new procedure that is a uniform 

improvement, in the sense of having uniformly shorter length for the same 

confidence coefficient. This refinement algorithm actually produces not 
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one procedure, but a family of procedures, where each member of the family 

has the property of minimizing the sum of the interval lengths. This 

family is a complete class of procedures when the risk .is measured by 

expected length. In certain cases it is a minimal complete class. 

The refinement construction is actually equivalent to a continuous 

version of the Blyth-Still construction, but has the advantage of being 

somewhat more natural and easier to work with. (The Blyth-Still intervals 

are therefore members of the complete class.) In the absence of prior 

information there is little reason to prefer one member of the complete 

class over another, so tables of the entire class are given for 95% and 99% 

confidence levels. 

We also introduce and examine a particular optimality criterion, 

monotone minimaxity, which is a reasonable criterion if there is some 

belief that the success probability is 'in the middle.' Monotone minimax 

intervals are constructed and reported for 95% and 99% confidence levels. 

Section 2 contains the necessary notation and a few preliminaries, and 

in Section 3 the refinement algorithm is defined and properties of a 

refined procedure are given. In Section 4 the family of refined intervals 

is constructed and examined, while Section 5 treats monotone minimax 

intervals. There is also an Appendix, which contains the proof of Theorem 

4.1. 

2. Prelild.nariea 

Let X be a binomial random variable based on n trials with success 

probability 9, that is, 

( 2 .1) 



-4-

A confidence procedure C is a collection of n+l intervals [~ ,u ], x•O, 
X X 

•.. , n. The coverage probability of a confidence procedure C is the 

probability that the random interval [~X,uX] covers the true parameter 

value, and is given by 

P(9ECj9) • 
n 

I I (9)(n) ex(l - e)n-x 
0 (~ ,u ] X 

x• X X 

(2.2) 

When using a confidence procedure one would like to assert a minimum 

coverage probability, i.e., a number 1-a such that 

(2.3) 

If (2.3) holds for a procedure C, we usually call C a 1-a confidence 

procedure. It may be the case that the inequality in (2.3) is strict so 

that the true confidence coefficient (= inf9P(9ECf9)) is larger than the 

nominal level (1-a), however the nominal level is the number usually 

asserted. Such procedures are called conservative and, in the binomial 

case, are clearly non-optimal since, for the specified 1-a, one can 

construct a dominating procedure simply by narrowing the intervals. 

Throughout this paper we will only deal with intervals that satisfy 

the following two conditions: 

1 • .Equi variance 

Since the binomial distribution is invariant under the transformations 

X~ n-X and 9 ~ 1-9, we require that the confidence intervals be equi-

variant under these transformations, that is, 

~X = 1 - U 
n-x 

x•O, .•• ,n ( 2. 4) 

Thus a confidence procedure C • {(~x,ux]' x•O, ••• ,n} is uniquely determined 

by its lower endpoints. Although the adjective "equivariant" is sometimes 

omitted in what follows, it is to be implicitly assumed that all statements 

only apply to equivariant intervals. 
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2. Monotonicity of Endpoints 

For fixed n, we require J, > J, and u 1 > u for x•0,1,···,n-1. 
x+1 x x+ x 

This is an intuitively appealing requirement, and is one of the four 

desiderata listed by Blyth and Still (1983). Also, although we offer no 

proof, it seems reasonable to conjecture that intervals without this 

property are inadmissible. 

Confidence intervals are always defined as closed intervals, as they 

have been defined here. In theory, this is fine, and in practice, there is 

no real difference between considering the intervals open or closed. With 

the binomial distribution, however, technical difficulties can arise when 

locating the relative minima of coverage probabilities. Without going into 

details, we find it easiest to consider the intervals to be half open, of 

the form (J,,u], in our calculating formulas. This adjustment has no effect 

on the use of the intervals, where we take them to be closed. 

3. Refined Intervals 

3.1 The Refine.ent Algorithm 

We now describe a simple algorithm which, when applied to any 1-a 

binomial confidence procedure, will produce a new 1-a confidence procedure 

with uniformly shorter length. The strategy is simply to move all the 

lower endpoints of the intervals as far to the right as possible. 

Starting with 

refined procedure, 

a confidence procedure C • {(J, ,u ], x•O,···,n} a 
X X 

c* .. {(J,*,u*], x•O,···,n} will be constructed. In 
X X 

the implementation of the following algorithm, the equivariance constraint 

is to be maintained at all stages. Thus, if any '-k is increased, the 

corresponding un-k • 1-J,k is decreased by the same amount. 
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The Algorithm: For each k•n, n-1,···,1 increase ~k until 

one of the following occurs: 

for some j. 

* If a) occurs first, set ~k • ~k' decrement k, and start 

again. If b) occurs first, check if P(~ktCI~k) > 1-a. If this 

inequality holds continue increasing ~k until a) or b) occurs 

again. * If this inequality does not hold, set ~k-uj and move 

to the next value of k. 

In practice one could use a bisection method to solve a), and would 

also specify the precision desired in the equalities a) and b). It is easy 

to see that the algorithm stops after the n steps have been executed .. The 

function P(tktCitk) must eventually start decreasing as ~k increases, and 

since it is at least 1 - a at the start of the step, either a) or b) must 

occur. 

According to the strict definition of algorithm (Knuth, 1973, p. 4), 

the above description fails since it doesn't consist of a finite number of 

operations. (Knuth would call the above procedure a "computational 

method"). However, we use the word here, in a less formal sense, to mean 

"a procedure for solving a mathematical problem that involves repetition of 

an operation." 

3.2 Properties of a Refined Confidence Interval 

Starting with a confidence procedure C • {[~ ,u ], xcO, ••• ,n}, let c* 
X X 

• {[~*,u*], x•O, ... ,n} be a refinement of C. 
X X 

Since c* is obtained by 

increasing lower endpoints, and since the proced~res are invariant, it 

immediately follows that 

* * u - ~ s u - ~ 
X X X X 

x•0,1, ... ,n (3.1) 
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u 
X - " X 

( 3.2) 

Thus, c* obtains a uniform length reduction over C. c* also has the 

property of minimizing the sum of the n+1 lengths over all 1-a invariant 

intervals, a result which follows from the following interesting properties 

of c*. 

For each ,t* of 
k 

c* 
' 

call coincidental endpoint (or just 

coincidental) if ,t* 
k 

u* for 
m 

some m. Let A ., 

dental}. We then have the following lemmas. 

Lemma 3.1 If 

procedure, 

c* 

* L (u 
xa:Q x 

n 

.. is a refined 

* - ,r. ) = n+l - 2 L 1 - 2 L 
X 

XEA xe:Ac 

1 

{ x: ,t * is coinci
x 

a confidence 

( 3. 3) 

That is, the sum of the n+l lengths of c* is independent of the placement 

of the coincidental points. 

Proof: Since c* is invariant u* = 1 - •* hence 
x "'n-x' 

* 
Now if "k 

* = 1 - '-n-m' 

n * * L (u -1- ) "' 
0 X X 

X"" 

is coincidental, 

* * 
or 1-k + '-n-m • 1. 

* * 
dental, since 

'-n-m - 1 - u 
m 

establishes (3.3). n 

* * n * 
'-n-x - .1 ) • n+1-2 L ,t 

X x=Q X 

* * 
we have " "' k 

u for 
m 

some m, 

* 
It also follows that 

,tn-m 
is 

* * • 1 
- " - u n-k· 

Substituting 
k 

( 3. 4) 

* 
and, hence ,.k 
also coinci-

into (3.4) 

Lemma 3.2: The non-coincidental endpoints of a 1-a refined confidence 

procedure are unique. 
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Proof: Let C and C' be two refined 1-~ confidence procedures, and let ~k 

be any non-coincidental endpoint of C'. Also, let u' satisfy 
m 

(3.5) 

that is u' , m is the smallest upper endpoint greater than ~k. We first 

show that, in the procedure C, u is the smallest upper endpoint greater 
m 

than ~k. If um < ~k' then, according to the algorithm, ~k can be increased 

beyond u and 1-~ confidence is retained, that is, for some ~ > 0, 
m 

for 

or, in terms of the calculating formula, 

k-1 
L (n) (~ )x(l-~ )n-x > 1 _~ 

X k k 
x=m+l 

(3.6) 

But if this were the case, ~k would be greater than u~, a contra-

diction. Hence ~k < um. 

Thus, both ~k and tk must satisfy 

(3.7) 

k-1 

where g(9) • ! (~)ex(1-9)n-x. If m • 0, g(9) is strictly decreasing in e, 
xzm 

and it follows that we must have ~k • ~k. If m > 0, the derivative of 

g(e) can be written 

k-m 

1_ g(e) • nem-1( 1-e)n-m [(n-1) _ (n-1X_!_) ] 
de m-1 k-1 1-9 

(3.8) 

showing that g(9) has a unique maximum, and the equation g(9) • 1-~ can 

have at most two roots. However, the algorithm will always choose the 

rightmost root, so once again we have ~k • ~k and the lemma is estab-

lished. n 
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From Lemmas 3.1 and 3.2 we can conclude that, for a given a, all 

refined confidence procedures have the same value for the sum of the 

lengths of the intervals. This fact, together with the fact that the 

refinement algorithm uniformly decreases the interval lengths, gives us the 

following theorem. 

Theorem 3.1: Any 1-a refined confidence procedure has the property of 

minimizing the sum of the lengths of the individual intervals. 

4. Faailies of Refined Procedures 

For any given input, the refinement algorithm produces a single 

refined procedure. However, from this single procedure we can generate an 

entire family of equivalent procedures. Since the coincidental points may 

not be uniquely defined, any coincidental point that satisfies the proba-

bility constraint is allowable. By specifying the range of these allowable 

coincidental points we can define a family of refined intervals. 

Suppose ~k is a coincidental endpoint of a refined confidence proce

dures C, say ~k • um • r. The coverage probabilities at ~k and um are then 

and ( 4.1) 

k 
't' (n~x n-x P(u eCiu ) = ~ (1-r) 

m m x•m+1 x 

and each of these quantities is greater than 1-a. Note that even though 

~k-um' the two coverage probabilities in (4.1) are not equal because we are 

working with half-open intervals, as mentioned in Section 2. If.we now 

define 
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(4.2) 

* then the allowable range of values for tk is r* ~ ~k ~ r , where 

* r c max{r m(r) ~ 1-a} 
(4.3) 

r* • min{r m(r) ~ 1-a} 

This calculation can be done for each coincidental endpoint of C, the 

result being a family of refined intervals which we will denote by R • 
a 

Each procedure in R is a 1-a refined confidence procedure, so it 
a 

enjoys the minimum length property of the previous section. Moreover, the 

family R is a complete class of procedures; any procedure not in R can be 
a a 

dominated by a procedure in R . We now make this statement precise. 
a 

A natural measure of size for a binomial confidence procedure is its 

length. If we let L(x) = ux- tx' x=O,l, ... ,n where the collection 

{(tx,ux)} is some confidence procedure C, we can measure the risk of C with 

its expected length E9L(C), where 

(4.4) 

0 
If, for fixed a, a confidence procedure C is not in R, the arguments in 

a 

0 
the previous subsection show that C must have at least one noncoincidental 

endpoint that is different from those in R • This means that the refine
a 

ment algorithm will produce a nontrivial decrease in the length of at least 

0 
one interval of C , 

with the property 

so it immediately follows that there exists c* e R 
a 

* ~ E 9L(C ) 

* > E9L(C ) 

for all 9 

(4.5) 
for some 9 

0 
showing that C is inadmissible. Thus, R contains all the 1-a admissible 

a 

confidence procedures, and hence is a complete class. 
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Table 1 gives the families R for a • .05,.01 and n • 6,30. (For 
a. 

n S 5, R has a unique member, with endpoints given by the intersection of 
a 

two 1-a level one-sided procedures, and agrees with the Blyth-Still 

intervals. In general, for each n there exists a sufficiently small a such 

that R is unique: one need only choose a to require the intervals so wide 
a 

Although R itself may contain inadmissible procedures, in general the 
a 

members of R are not comparable; their risk functions will cross. The 
a 

family of intervals provides great flexibility for an experimenter in 

allowing him to choose that procedure which is most suited to a particular 

experiment. For example, if it is believed that e lies near 1, one would 

like to use a procedure which gives shorter intervals for larger X, and the 

coincidental points can be chosen to reflect this. 

When examining the range of values of the coincidental points given in 

Table 1, it might at first appear that one can reverse the order of the 

endpoints. For example, for n • 25, a • .05, ~ 14 • .354 ± .024, ~ 15 • .396 

± .021, so it seems that one can choose ~ 14 • .354 + .024 • .378 and ~ 15 • 

.396- .021 z .375. However, according to our requirements we must always 

have ~ 14 < ~ 15 • It is possible to choose ~ 14 = .378 or ~ 15 • .375, as long 

as the other endpoint does not overlap. 

When one obtains a complete class of procedures, a natural question is 

whether the class is also minimal, i.e., are all the rules in the class 

admissible? This is usually a difficult question to answer, and is not 

answered in general here. 

a minimal complete class. 

However, in certain situations, the class R is 
a 
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Theorem 4.1: For fixed u, if the class R consists of procedures with only 
u 

one pair of coincidental lower endpoints, then R is a minimal complete 
u 

class. 

Proof: Given in the Appendix. 

If there is more than one pair of coincidental points, the question of 

whether R is still a minimal complete class is much more difficult to deal 
a 

with. The risk functions become sufficiently complex so that determining 

whether or not two distinct ones must cross is quite involved. It seems 

likely, however, that risk functions of distinct procedures in R must 
a 

either cross or be everywhere the same. 

The family of refined intervals, for a fixed a, can also be generated 

by an acceptance region inversion scheme similar to that used by Blyth and 

Still (1983). It is sometimes the case that the shortest acceptance 

regions are not unique, which is equivalent to our occurrence of coinci-

dental endpoints. The intervals of Blyth and Still are obtained by setting 

the coincidental points equal to the midpoint of their range, and hence are 

contained in Table 1. 

5. Monotone Miniaax Procedures 

All of the procedures in R have the property of minimizing the sum of 
u 

the lengths, so there is no basis for comparison on this measure. In terms 

of expected length, however, there is room for comparison, and a natural 

property to inquire about is minimaxity. 

Definition 5.1: A 1-a confidence procedure C is said to be m~njmax if, for 

any procedure C' satisfying 1-u, 



-13-

In dealing with the binomial distribution, some care must be taken 

when considering minimaxity. For a procedure C • {(~ ,u ], x•O, .•• ,n}, we 
X X 

have 

n 

E 9L(C) • I (u 
x•O x 

(5.1) 

so the intervals corresponding to large values of(:). i.e., those with x 

values near n/2, will receive a larger weight in the sum. Thus, one would 

expect a minimax procedure to have shorter intervals for x near n/2, and 

longer intervals for x near 0 or n. 

This situation is contrary to our intuition since Var X • n8(1-e) is 

largest for e • t and smallest for 9 • 0 or 1, we would expect confidence 

intervals to be longer for x near n/2 (which is evidence that 9 ~ t> than 

for x near 0 or n. However, the minimax procedure will maintain 1-a 

confidence by having wider outer intervals and narrower inner intervals. 

For example, if n•4, 1-a•.S, the (equivariant) minimax procedure has lower 

endpoint ~ 0 -o, ~ 1 a.l59, ~ 2 ·.335, ~ 3 -.soo, ~ 4 z.665 yielding interval lengths 

.335, .341, .330, .341, .335, respectively. Intuitively speaking, if the 

middle intervals are shortened, but the procedure is maintaining a 1-a 

confidence coefficient, it is doing so at the expense of the outer 

intervals. 

There are many situations, however, where it is reasonable to suspect 

that e is a 'middle value,' and the question remains as to how to construct 

optimal expected length intervals for this situation, and not have the 

problem of using intervals that are 'too short.' A solution to this 

problem is to require the confidence procedure to retain a length ordering 

which mimics the variance structure. 
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Definition 5.2: A confidence procedure C • {[~ ,u ), x•O, ••. ,n} is said to 
· X X 

be mono~one if u - ~ is a nondecreasing function of x for x ~ n/2 and is 
X X 

a nonincreasing function of x for x ~ n/2. 

Monotone procedures will not allow the middle intervals to become 

shorter than the outer ones, and from within the class of monotone proce-

dures, we now seek a minimax procedure. 

Determining the monotone minimax procedure is a relatively easy task, 

in direct contrast to the much more difficult problem of determining the 

minimax procedure. For a monotone confidence procedure C it can be shown 

has a maximum at 9 • t. Thus, to minimize the maximum risk 

we only need be concerned with the risk at 9 • t, and the monotone minimax 

procedure is easily found as the solution to a standard linear programming 

problem. 

Since the only variables in R are the coincidental endpoints, we only 
a 

need deal with these points in determining the monotone minimax procedure. 

These endpoints were determined for n • 6,30, and are given in Table 2. It 

should be noted that Lemma 3.2 can be used to show that both the minimax 

and monotone minimax procedures are unique. 

For purposes of comparison, a graph of the expected lengths of the 

monotone minimax procedure, the Blyth-Still, Sterne-Crow, and Clopper-

Pearson, is given in Figure 1. One can see the improvement in risk, for 9 

in the middle, that is realized by using the monotone minimax procedure. 

The Blyth-Still procedure should be preferred if there is no prior informa-

tion at all about e, while a Sterne-Crow-type procedure is preferable if 9 

is thought to be near 0 or 1. (By choosing all coincidental lower end-

points to be their minimum value, one obtains a procedure in R with risk 
a 

performance similar to that of the Sterne-Crow procedure.) 
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For n • 14 and a • .05, the minimax procedure was also determined. 

Although the procedure is not monotone, its risk function is and, to three 

places, identical to that of the monotone minimax procedure. In general, 

it is probably true that the minimax procedure will have a risk function 

close to that of the monotone minimax procedure but, in general, compari

sons with the minimax procedure were not done because of the computational 

complexity. 
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Appendix: Proof of Tbeore!B 4.1 

Fix u, and let C • {[~ ,u ], x•O,··· ,n} be a member of R. We must 
X X U 

show that there does not exist a 1-u confidence procedure C' 

{[~~,u~], x•O,·· ·,n} with the property that E 9L(C') ~ E9L(C) for all e, 

with strict inequality for some e. Clearly, we only need consider C'ERu' 

for if there exists C' t R which dominates C, C' is inadmissible and is 
a 

dominated by some C"ER , which also dominates C. 
a 

If C'ER , then C and C' have the same noncoincidental endpoints. 
u 

Thus, any difference in risk need only be examined at the intervals with 

coincidental endpoints. We will only consider the case where C' differs 

from C at one coincidental lower endpoint. 

Suppose ~k is a coincidental endpoint of C and differs from ~kEC'. 

Further, let ~k-um. C and C' differ at no more than four intervals, 

corresponding to x•k, n-k, m, and n-m. Using the fact that ~k-um' and the 

invariance restriction 1-~k-un-k' we can express these four intervals as 

[1-,Lk,u ] 
n-m 

where we note that uk, ~ k' ~ , and u are noncoincidental endpoints. A 
n- m n-m 

similar calculation for C' gives the intervals 
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{1-.J,k' ,u 1 
n-m 

Also, if k and m are conjugate, that is m • n-k, then .J,k • un-k • 1-.J,k, 

which implies .J,k • t. 

Note that when subtracting corresponding interval lengths the non-

coincidental endpoints cancel each other. We then obtain for the differ-

ence in expected lengths 

We now show that for e near 0 ~(9) has a different sign from ~(t), which 

will show that C' cannot dominate C. 

For convenience, define the function rt(e) by 

(A2) 

so we can write 

(A3) 

n-1 
At 9 • t, rk(t) • rm(t) • t , so 

Mt> • 2n:1 [(:)- (:)] (.J,k-.J,k) (A4) 

As 9•0, rt(O) • 0 unless t•O or n, in which case r 0(0) • rn(O) • 1. Hence 

if O<k,m<n, ~(0) • 0, that is C and C' have the same expected length at 0. 

This is the more difficult case to deal with, so we first consider the case 

of 6(0) " 0. 

If ~(0) " 0, it must be the case that either i) k•n, m>O, or 

ii) k<n, m•O. For these cases we have 
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i) a<t>- 2n~1 [1- (:)] (t~-~n) 

a(O) • t'-t 
n n 

ii) Mt> • 2n:1 [(~)- 1] Uk-tk> 

a<o> - -uk-tk> 

(AS) 

In either case a(e) has opposite signs at 9•0 and &•t, so C' cannot 

dominate C. 

Now we consider the case 0 < m < k < n, which implies that ~(0) = 0. 

For this case it will be shown that if a(t) > 0 then ~(e) decreases as 9 

increases from o, while if ~<t> < 0 then ~(e) increases as e increases from 

0. This, once again, will establish that C' does not dominate C. 

First recall the following application of Taylor's theorem: If a 

function f(y) satisfies f'(y0 ) • f"(y0 ) = ••• • f(j-l)(y0 ) • 0, f(j)(y0 ) ~ 

0, then for some e > 0, 

j-1 
<J 1) (y-yo> 

f(y) • f(y0 ) + f - <~> (j-1 )! 

where ~ is some number between y0 and y. Since 

it follows that f(y) increases from f(y0 ) 

f(j)(y0 ) < 0, f(y) decreases from f(y0 ). 

(A6) 

To apply this result, we must determine the first nonzero derivative 

of a(e) at 9•0. The function rt(e), defined in (A2), can be written as 

n-t t 
r (9) - r (n-t)(-l)iet+i + L (t)(-1)i9n-t+i (A7) 

t i•O i i•O i 

a polynomial of degree n with minimum exponent equal to min(t,n-t). It 

then follows from (A3) that the first nonzero derivative of ~(9) at 9•0 

will be (dj*/dej*)~(9), where j* • min{k,n-k,m,n-m}. We must consider two 

cases: 
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Case 1: k ~ n- k 

Since k > m, it then follows that n-m > n-k ~ k > m, so j* • m and, 

moreover, (~) > (:)· The coefficient of em in r (9) is 1, (dm/dem)em • ml 
m 

and, from (A3), 

(A8) 

Since (~) > (:). we see from (A4) that ~(t) and (A8) have opposite signs, 

showing that C' does not dominate C. 

Case 2: k > n - k 

This case must be split further: we must consider k+m < n and k+m > n 

separately. If k+m < m, it can again be deduced that j* • m and (~) > (:). 

so the proof proceeds as in Case 1. If k+m > n and then j* • n-k and 

(~) < (:)· We then have 

(A9) 

and comparison with M t) shows that (A9) and M t) have opposite signs. 

Hence the theorem is established. 



Table L Values of the Lower Endpoints of the Complete Class Rex for ex= . 05 (Left Column) and ex= . 01 

(Right Column) . The Upper Endpoints are Obtained from the Identity u = 1- I., • 
x n-x 

In All Cases ;,0 = 0 and un = L 

X n=6 n=7 n=8 n=9 n=lO 

1 .009 .002 • O(f( .001 .006 .001 .oo6 .001 .005 .001 
2 .o63 .027 .053 .023 .046 .020 .041 .017 .037 .016 

3 .153 .085 .129 .(ffl .111 .o61 .098 .053 .087 .o47 
4 .271 .173 .225 .142 .193 .121 .169 .105 .150 .093 
5 .406±.012 .295 .341 .237 .289 .198 .251 .171 .222 .150 
6 1-L .465 .446 . 357 ·356±.044 .293 .314±.031 .250 .281±.022 .218 

0 

7 .623 .517 • 500 .410 .442 .343 .381 .297 
8 1-1.,6 .550 • 557 .428±.027 .444±.049 . 379±· 009 
9 1-1.,6 1-.ta l-1.,8 .488 

10 1-1.,6 1-1.,8 

X n=ll n=12 n=13 n=14 n=l5 

1 .005 .001 .004 .001 .004 .001 .004 .001 .003 .001 I 

2 .033 .014 .030 .013 .028 .012 .026 .on .• 024 .. 010 
1\) 

0 

.043 .066 .036 .o61 .057 
I 

3 .CJ79 .CJ72 .039 .033 .031 
4 .135 .084 .123 .076 .113 .069 .104 .o64 .097 .059 
5 .200 .134 .181 .122 .166 .111 .153 .102 .142 .094 
6 .255±.016 .194 .233±.012 .174 .224 .159 .206 .146 .191 .135 
7 ·333 .263 .294 .235 .261 .213 .235±.028 .195 .217±.025 .179 
8 .400±.036 ·339 .365±.026 .302 .336±.019 .273 .311±.014 .249 .294 .229 
9 . 500 .408 .455:::.017 .348±.029 .413 .319±.020 . 371 .294±.013 ·333 .273±.009 

10 1-.ta .500 1-.£"' .451±.011 .480 .4o6 .423±.037 .363 ·393±.029 .328 
11 1-t_ .641 1-i~ 1-~0 .566 .477 .500 .416±.027 . 465±.025 . 385±.017 c 

12 l-..e2 1-1.,9 1-1.,8 . 571 1-.tl 0 . 500 1-.tll .462±.009 
13 .775 l-1.,9 l-.t8 1-~l 1-.tl 0 1-ll:a 
14 1-.t? 1-i .698 1-.tll 

? 
15 1-1.,7 1-.t 9 



Table 1 (Cont.) 

0 

X n=l6 n=l7 n=l8 n=12 n=20 

1 .003 .001 .003 .001 .003 .001 .003 .001 .003 .001 
2 .023 .010 ,021 .009 .020· .oo8 .019 .oo8 .018 .oo8 
3 .053 .029 .050 .027 .047 .025 .044 .024 .042 .023 
4 .090 .055 .085 .052 .oao .049 .075 .046 .071 .044 

5 .132 .088 .124 .082 .116 .077 .110 .073 .104 .069 
6 .178 .125 .166 .117 .156 .109 .148 .103 .139 .og-r 
7 .2o8±.024 .166 .189±.022 .155 .178±.02l .145 .168±.019 .137 .158±.018 .129 
8 .272 .210 .253 .1CJ7 .236 .185 .222 .174 .209 .163 
9 .303±.030 .258 .282±.028 .242 .264±.027 .227 .250±.024 .213 .237±.021 .200 

10 .367±.024 .296 .J45±.019 .266±.023 .325±.015 .24g±.021 .312 .235±.019 .293 .222±.016 
11 .434±.017 ·359±.010 .406 ·339 ·375 .314 .345 .292 .320±.026 .274 
12 .502 .421 .456 .381 .411±.035 .343±.026 .389±.029 .323±.021 .369±.025 .306±.017 
13 1-~l .474 • 511 .433±,023 .470±.029 .407.:1:.015 .445±.025 .384±.010 .422:!:.020 .363 
14 1-.t1 0 0 549 .583 0 500 1-~3 .469±.011 0 500 .436 .474±.018 ·399 
15 1-"'s 1-.tll 1-L10 1-L13 1-Lla 1-~ 4. 1-L13 .485 1-.eu .444±.023 
16 1-t., ·735 1-L9 .655 1-LlO 1-L13 1-~ .544 1-.t13 .500 
17 1-.t, 1-.tl 0 1-.1,9 1-Lla .6 a 1-tl3 1-Lu 1-~5 
18 1-L, 1-.tlO 1-L9 1-Ll.a 1-.t11 .624 
19 1-.t, 1-.t10 1-.t 1-.t1a 9 
20 1-t, 1-.l,.o 

I 
[\) 

X n=21 n=22. n=23 n=24 n=25 I-' 
I 

1 .002 .ooo .002 .000 .002 .ooo ,002 .ooo .002 .000 
2 .017 .007 .016 .007 .016 .007 .015 .006 .014 .oo6 
3 .040 .022 .038 .020 .037 .020 .035 .019 .034 .018 
4 .068 .041 .o65 .039 .062 .038 .059 .036 .057 .034 
5 .099 .065 .094 .062 .090 .059 .086 .057 .082 .054 
6 .132 .092 .126 .088 .120 .084 .115 .080 .110 .IY(7 
7 .151:!:.018 .122 .144±.016 .116 .138=.015 .111 .132:!:.014 .106 .• 126±.013 .101 
8 .197 .155 .187 .147 .178 .140 .169 .133 .161 .127 
9 .226±.019 .189 .215±.017 .179 .206±.016 .171 .1CJ7±.014 .162 .189:!::.013 .155 

10 .276 .211±.014 .260 .201±.012 .247 .192±.011 .234 .184±.009 .222 .171±.oo8 
11 .303:!:.025 .258 .286±.025 .242 .273±.023 .229 .261±.021 .217 .250±.019 .205 
12 ·351±.021 .291±.014 ·334±.018 .277±.011 .319=.016 .264±.009 .306±.014 .258 .296 .245 
13 .401±.016 .340 .382 .317 ·360 .298 -339 .28o .317 .259±.022 
14 .449 .368±.024 .417 ·350±.019 ·390±.029 ·334±.016 .369±.027 .319±.013 0 354±.024 .306±.010 
15 .494 .421±.017 .452±.032 .401±.012 .432±.028 .384 .413±.024 .362 ·396±.021 .342 
16 .545 .474±.014 .500 .450 .475±.024 .419 .457±.022 .387±.023 .438±.018 ·369±.020 
17 1-~3 1-"t 6 1-1.15 .495 1-~6 .452±.025 .500 .432±.020 .479±.017 .413±.015 
18 1-~a 1-~s .611 .546 1-.tl.S 0 500 1-1.16 .477±.017 1-~, .457±.012 
19 1--'1,1 1-.tl.., . 1-.tu 1-~s 1-.t14 1-L17 1-.t1 5 1-.tlB 1-1.16 0 504 
20 1-.t9 1-.tu 1-.tu 1-.e14. 1-.t12 .614 1-1.14 1-1.17 1-.tl5 1-.tlB 
21 1-.t.,. 1-.t, l'l 1-.to 1-.t,,. 1-~1 1-.R.l .. 1-.t1 .. 1-.tlS 1-.t • .., 1-.tl.,. 
22 1-.R., 1-.tlO 1-.t 1-.t13 1-~l 1-.2.14 ..696 1-Ll 8 ·9 
23 1-.t? 1-1.10 1-.tg .741 1-.tll 1-.tu 
24 1-.t? 1-.l,.o 1-.tg 1-.Lu . 
25 1-.t7 1-~o 



··' 

Table 1 (Cont.) 

-
X n=26 n=27 n=28 n=29 n=30 

1 .002 .000 .002 .000 .002 .000 .002 .oo .002 .000 
2 .014 .oo6 .013 .oo6 .013 .005 .012 .005 .012 .005 
3 .032 .017 .031 .017 .030 .016 .029 .015 .022 .015 
4 .054 .033 .052 .032 .050 .031 .049 .030 .047 .028 

5 ·079 .052 .076 .050 .073 .048 .071 .046 · .o66 .045 
6 .106 .073 .101 .071 .098 .068 .094 .065 .091 .o63 
7 .121:1:.012 .097 .117:1:.012 .093 .113±.011 .089 .109±.010 .o86 .105±.010 .083 
8 .154 .122 .148 .117 .142 .112 .136 .108 .131 .104 
9 .182:1:.012 .149 .175:.011 .142 .169±.010 .137 .163±.009 .132 .157±.009 .127 

10 .212 .170±.007 .202 .163±.006 .192 .163 .184 .156 .175 .151 
11 .241:1:.018 .194 . 232±.016 .184 .223±-015 .175 .215=.01~ .170:1:.013 .20&:.013 .163±.011 
12 .282 .234 .269 .224 .257 .214 .246 .205 .236 .198 

.304:.021 .251::.016 .240it.015 .279=· 021 .231:l:.016 .268::.021 .222:1:.014 .25~.020 
I 

13 .29l::t.021 • 215:1:. 013 1\) 

14 .340:1:.022 .294=.008 .327:1:.020 .284 . 315=.018 .272 • 304.;:. 016 .260 .294:i:.Ol4 
1\) 

.• 250 I 

15 .381:1:.018 .322 .366:!:.015 .303lti.018 ·355 .290:l:.017 ·339 .278±.017 .321J. .268±.016 
16 .421:1:.015 ·351¢.017 .402 .341:!:.014 .381 .328:1:.012 .362±.022 .316:1:.009 .344:!:.025 .308 
17 .458 ·397:!:.011 .430 .383 .4Q7:i:.025 .364 ·393:1:.025 .347 ·379:1:.022 .329 
18 .494 .437 .461:!:.029 .413 .444±.026 .386:l:.021 .429±.023 ·370:1:.019 .414±.020 . 357:1:.017 
19 .535 .474 .500 • 440:1:.023 .47&:.021 .423:1:.019 .464.;:.021 .408::.015 .448:1:.018 • 393:1:. 012 
20 1-.el. 6 • 514 1-.e~ 8 .479:1:.020 1-~9 .462±.017 .500 .44:;:. 013 .~82:2:. 017 • 42 9::1:. 009 
21 1-~5 ·558 . 5 5 1-.e2o 1-.tl" • 500 1-f.lc .482:1:.012 1-£2 ~ .462 
22 1-i.1 4 1-i.l7 1-£.15 1-i.1 1-..l.- 1-£, 1-il~ 1-£21 1-£1 ? .494 

.616 
.;.7 ao 

23 1-~3 1-~6 1-£1 4 .643 1-1.1 9 1-£.17 1-.eao 1-£.12 .531 
24 1-~1 1-.e1 4 1-.tl3 1-~6 1-~4 1-~8 1-.eu; 1-.el9 1-.el.., 1-.e-:ao 
25 1-1,9 1-£.13 1-.ell 1-~5 1-~3 1-irs 1-.eu 1-ir8 1-ira 1-.e1 9 
26 1-.e., 1-.tlo 1-.e9 1-.el3 1-.tll 1-,el5 1-~3 1-.el 6 1-~4 1-.tls 
27 1-~ l-..e1 0 1-..e? • l-,el3 1-~1 1-~5 1-.tr3 .690 
28 1-.e.:, • 837 1-..e9 1-.tr3 1-~: 1-.el5 
29 1-.e7 1-~1 1-..e, 1-.t13 
30 1-,e; 1-.ell 



Table 2. Values of the Coincidental Lower Endpoints for the Monotone Minimax·Procedure 

for a=.05 (left column) and a•.01 (right column) 

n 

~ 6 7 8 9 10 11 12 13 14 15 16 17 

---
5 .418 
6 -- -- -- -- .400 -- .345 -- • 303 -- .268 -- • 237 
7 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .262 -- .230 -- .227 -- .212 
8 -- -- -- -- -- -- -- .455 • 485 • 388 .436 -- • 378 -- .355 -- • 318 
9 -- -- -- -- -- -- -- -- -- -- -- -- .472 • 377 -- • 339 -- • 307 -- .282 .334 -- . 310 

10 -- -- -- -- -- -- -- -- -- -- -- -- -- .462 -- -- .457 -- .422 -- .391 -- .361 .290 
11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .443 .480 .402 . 451 . 369 
12 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- . 471 
13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .456 
14 

I 
r0 
w 

n I 

~ 18 19 20 21 22 23 24 25 26 27 28 29 30 

7 .199 -- .188 -- .177 -- .169 -- .160 -- .148 -- .146 -- .139 -- .133 -- .129 -- .124 -- .112 -- .l15 
8 

9 .286 -- .255 -- .258 -- .244 -- .222 -- .222 -- . 211 -- .200 -- .190 -- .182 -- .174 -- .163 -- .166 
10 .337 .270 -- .253 -- .236 -- .225 -- .210 -- .203 -- .193 -- .185 -- .177 -- .169 
11 -- -- -- -- • 344 -- • 321 -- .292 -- .288 -- .282 -- .269 -- .259 -- .230 -- .238 -- .228 .184 .218 .175 
12 .441 .369 .418 .344 • 394 • 323 • 369 .305 • 344 • 286 .319 .272 • 310 
13 .482 .422 • 462 • 394 .442 -- .417 -- -- -- -- -- -- -- -- .296 .300 .260 .293 .255 .283 .241 .272 .235 .279 .228 
14 -- .480 -- -- .482 -- -- .392 -- .369 .412 .350 • 392 • 331 .369 .316 .362 .286 .342 -- • 319 -- • 320 -- .308 
15 -- -- -- -- -- .467 -- .438 • 466 • 413 • 456 -- .421 -- • 417 -- .389 -- • 366 . 315 -- .298 -- .292 -- .279 
16 -- -- -- -- -- -- -- .488 -- -- .486 -- .463 .410 .450 .389 .436 .371 -- .355 -- .325 .385 .316 • 358 
17 -- -- -- -- -- -- -- -- -- -- -- .475 -- .451 • 488 • 428 -- .408 -- -- .420 -- • 411 -- .387 
18 -- -- -- -- -- -- -- -- -- -- -- -- -- .488 -- .469 -- -- -- -- .466 .407 .429 .389 .430 .374 
19 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .463 .484 .442 .473 .415 .448 .405 
20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .489 -- .477 -- .451 .491 .438 
21 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .489 
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Figure 1. Expected Lengths, for n•l4, l-a•.95, of the Clapper-Pearson 

(long dashes), Sterne-Crow (dotted), Blyth-Still (short dashes), and 

Montone Minimax (solid line) Procedures. 


