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Abstract. The Earth’s land surface and the atmosphere are strongly interlinked through the exchange of energy

and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understand-

ing of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role

of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically

for high-impact heat waves, but individual climate models differ widely in their respective representation of

land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based tempera-

ture (T ) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with

ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures.

First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercom-

parison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with

negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round.

These coincidences (high T , low ET) are closely related to the representation of temperature variability and ex-

tremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the

T –ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour

that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more real-

istic temperature extremes of reduced magnitude in present climate in regions where models show substantial

spread in T –ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simu-

lations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On

the other hand, the differences between projected and present-day climate extremes are affected to a lesser extent

by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1 ◦C – but this remains a

local effect in regions that are highly sensitive to land–atmosphere coupling. In summary, our approach offers

a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce

model biases in simulated and projected extreme temperatures.
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1 Introduction

The exchange of matter and energy between the land sur-

face and the atmosphere is a crucial feature of the Earth’s cli-

mate (Seneviratne et al., 2010b; Bonan, 2015; van den Hurk

et al., 2016). On one hand, the atmosphere exerts a key influ-

ence on land surface processes such as vegetation growth by

supplying light, water, and carbon dioxide (Köppen, 1900).

On the other hand, the land surface feeds back to the atmo-

sphere, for example through the partitioning of energy into

latent and sensible heat fluxes or by modifying land surface

properties, thus implying a direct link to near-surface climate

(Koster et al., 2004; Seneviratne et al., 2010b). Conceptu-

ally, coupling between the atmosphere and the land surface

is often classified into two qualitatively different regimes, a

“energy-limited” and a “water-limited” regime (Seneviratne

et al., 2010b): in the wet (energy-limited) regime, the land

surface is largely controlled by the atmosphere through radi-

ation (see conceptual Fig. 1a and b), implying a positive asso-

ciation between near-surface temperature (T ) and evapotran-

spiration (ET). In contrast, in a dry, water-limited state, land

controls near-surface climate through a lack of soil mois-

ture, and a corresponding reduction in evapotranspiration and

latent cooling (see conceptual Fig. 1a and b) with a nega-

tive association between T and ET. Therefore, the state of

the land surface and land–atmosphere feedbacks modulate

and amplify climatic extreme events such as heat waves in

midlatitude regions (Seneviratne et al., 2006; Fischer et al.,

2007; Hirschi et al., 2011; Whan et al., 2015; Hauser et al.,

2016). An understanding of these feedbacks might yield im-

proved seasonal predictability of extremes (Quesada et al.,

2012) and could help to constrain and better predict model-

simulated present and future climate variability in these re-

gions (Seneviratne et al., 2006, 2013; Lorenz et al., 2012;

Dirmeyer et al., 2013; van den Hurk et al., 2016; Davin et al.,

2016).

However, at present large uncertainties and methodolog-

ical inconsistencies prevail in both understanding and quan-

tification of land–atmosphere coupling on various spatial and

temporal scales, which relate to

i. scarcity of accurate observational products of soil

moisture or evapotranspiration on large spatiotempo-

ral scales and relatively short observational periods

(Seneviratne et al., 2010b),

ii. the metrics and variables used to quantify land–

atmosphere coupling differ widely in the variables they

address (Seneviratne et al., 2010b) and in emphasizing

either the whole distribution (Dirmeyer, 2011; Lorenz

et al., 2012; Miralles et al., 2012) or the tails of relevant

variables (Zscheischler et al., 2015).

As a consequence, uncertainties and methodological incon-

sistencies contribute to a greatly diverging representation of

land–atmosphere coupling in state-of-the-art climate models

(Koster et al., 2004; Boé and Terray, 2008; see also Fig. 1a

and b for a simple conceptual example), and further con-

tribute to uncertainties related to projected increases in sum-

mer temperature variability in the 21st century in midlati-

tude regions (Seneviratne et al., 2006; Dirmeyer et al., 2013).

In this context, it has been noted that accurate simulations

of temperature variability and extremes require a realistic

representation of land–atmosphere interactions (Seneviratne

et al., 2006; Fischer et al., 2012; Bellprat et al., 2013). In

other words, biases in temperature variability and extremes

might in part stem from an unrealistic representation of land–

atmosphere interactions (Fischer et al., 2012; Lorenz et al.,

2012; Davin et al., 2016), likely leading to temperature-

dependent biases in multi-model ensembles (Boberg and

Christensen, 2012; Bellprat et al., 2013).

A model evaluation focus on interpretable land–

atmosphere coupling diagnostics might serve as a comple-

mentary strategy to traditional model validation and testing

(Seneviratne et al., 2010a; Santanello et al., 2010; Mueller

et al., 2011b; Mueller and Seneviratne, 2014). Hence, this

approach is intended towards testing and understanding the

spread and physical consistency in simulated relationships

in state-of-the-art multi-model ensembles (e.g. the Coupled

Model Intercomparison Project, CMIP5; Taylor et al., 2012)

against available observations-based datasets. For example,

in the context of land–atmosphere coupling, earlier stud-

ies used bivariate correlation- or regression-based metrics to

test and evaluate coupling behaviour (Hirschi et al., 2011;

Lorenz et al., 2012). Conceptually, the notion of “diagnostic-

based model evaluation” as discussed here is consistent with

“pattern-oriented model evaluation” (Grimm and Railsback,

2012; Reichstein et al., 2011) – the latter being applied in

the context of evaluating simulated and observed patterns on

multiple scales in a data-driven way (e.g. in the context of

ecosystem carbon turnover times; Carvalhais et al., 2014).

In the context of extracting credible and relevant informa-

tion from large (multi-)model ensembles, weighting or se-

lecting models based on observations-based constraints has

become increasingly popular recently (Tebaldi and Knutti,

2007; Knutti, 2010), as a priori model ensembles might be

seen as a somewhat arbitrary collection of model runs (or

“ensembles of opportunity”). For example, empirical and/or

physics-based criteria have been used to constrain snow–

albedo feedbacks (Hall and Qu, 2006), constrain carbon cy-

cle projections (Cox et al., 2013; Wenzel et al., 2014; Mys-

takidis et al., 2016), or in the context of refining precipitation

projections (Orth et al., 2016). Moreover, empirical diagnos-

tics are applied to select models for event attribution analyses

(Perkins et al., 2007; King et al., 2016; Otto et al., 2015) and

analyses of drought projections based on model performance

(Van Huijgevoort et al., 2014) or to resample large initial-

condition ensembles to alleviate biases without distorting the

multivariate structure of climate model output (Sippel et al.,

2016b). In the context of land–atmosphere coupling, Fischer

et al. (2012) and Stegehuis et al. (2013) have constrained a re-
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Figure 1. Illustration of qualitatively contrasting warm season temperature–evapotranspiration (T –ET) coupling in global climate models.

(a, b) Conceptual illustration of T –ET coupling in (a) wet and (b) dry and transitional regimes. In wet regimes T and ET are positively

associated (atmosphere impacts land), while in dry and transitional regimes T and ET are negatively associated due to soil moisture feedbacks

(i.e. land impacts atmosphere via reduced ET and concurrent increases in sensible heat and T ). (c)–(f) Different CMIP5 models show

contrasting T –ET coupling behaviour in a midlatitude region in summer (central Europe, spatial average, JJA, 1989–2005): (c, e) NorESM1-

M produces predominantly wet regimes, i.e. a positive T –ET coupling, while (d, f) ACCESS1-3 produces predominantly dry regimes

(negative T –ET coupling), illustrated as time series (c, d) and in the T –ET plane (e, f). Dark red lines in (c)–(f) indicate upper threshold

(thupper) for T and ET ; dark blue lines indicate lower threshold (thT
lower) (70th and 30th percentile in each individual time series).

www.earth-syst-dynam.net/8/387/2017/ Earth Syst. Dynam., 8, 387–403, 2017
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gional model ensemble over Europe using present-day inter-

annual variability in summer temperature, and observations-

based estimates of summer sensible heat fluxes. However,

these studies came to somewhat conflicting results with re-

spect to the obtained change in warming projections, which

was probably due to the underlying choices of datasets to ob-

tain the constraints (Stegehuis et al., 2013). Hence, care is

needed in that these practices might not necessarily translate

into improved future climate projections or reduced uncer-

tainties. That is because the selection of relevant metrics is

clearly not trivial but subjective and because good model per-

formance with regard to any given metric does not translate

directly into (more) reliable projections (Knutti, 2008).

Therefore, the starting point for the present analysis – in

the sense of being necessary, but not sufficient to ensure the

reliability of future climate projections – is that physically

motivated, observations-based diagnostics might offer

1. a link to identify and interpret relevant processes across

multiple models (i.e. model evaluation) and

2. to reduce biases by focusing the interpretation of multi-

model ensembles on models that are “right for the right

reasons”. Most notably climate impacts, including ex-

tremes, typically depend on the multivariate structure

of climate variables, where simple univariate statistical

bias correction methods are prone to failure (Ehret et al.,

2012; Cannon, 2016).

In this study, we first evaluate land–atmosphere coupling

in state-of-the-art global climate models from the CMIP5

archive and a large ensemble of observations-based ET

datasets (Mueller et al., 2013) that has been compiled to ad-

dress the aforementioned uncertainties in land–atmosphere

coupling. In our analyses a land–atmosphere coupling metric

that is based on coincidences of temperature and evapotran-

spiration anomalies is applied. The idea behind a coincidence

metric as opposed to a traditional univariate evaluation of

model-simulated ET fluxes or temperature is that it is insen-

sitive to biases in the simulated means or variances and thus

focusses only on an abstract property of the data, namely the

bivariate dependence structure of T and ET. Secondly, we

derive a model constraint based on the physically motivated

land-coupling diagnostic and the ensemble of benchmarking

datasets in order to explore the implications of a reduced en-

semble but with land–atmosphere coupling that is within the

range of the benchmarking datasets.

2 Data and methods

2.1 Datasets for T–ET coupling analysis and model

evaluation

2.1.1 Global temperature and evapotranspiration

datasets

In order to evaluate T –ET coupling in global climate mod-

els, an ensemble of 18 gridded ET estimates, taken from

the LandFlux-EVAL multi-dataset synthesis project (Mueller

et al., 2013), are combined with three different observations-

based and reanalysis-driven temperature datasets, yielding in

total 54 T –ET combinations (see Table 1). T –ET coinci-

dence rates are calculated from each of those 54 combina-

tions to evaluate and constrain the multi-model ensemble of

global climate models (Sect. 3). The ensemble of ET refer-

ence datasets has been generated by combining a wide range

of different ET estimates, consisting of five diagnostic (based

on remote-sensing or in situ observations) products, five land

surface models driven by observed climate forcing, and four

reanalysis products (Mueller et al., 2013). The three tempera-

ture datasets are based on one observational product (Climate

Research Unit dataset, Harris et al., 2014) and two reanalysis

products (ERA-Interim reanalysis (ERAI; Dee et al., 2011),

and Climate Forecast System Reanalysis (CFSR; Saha et al.,

2010); see Table 1 for details). The large number of T –ET

dataset combinations is used in order to take uncertainties in

both T and ET datasets into account. We have tested that the

spread between individual ET datasets is substantially larger

than the spread between individual T datasets (not shown).

This indicates that the largest source of uncertainty stems

from the choice of ET dataset, and therefore we consider only

three different T datasets. Each of the 54 T –ET dataset com-

binations (denoted as “T –ET coupling benchmarks” in the

remainder of the paper) is consistently derived from obser-

vations and thus can be expected to represent relevant fea-

tures in T –ET coupling under different assumptions that un-

derlie diagnostic datasets, reanalyses, and land surface mod-

els. Therefore, these datasets represent a very large spread

of plausible T –ET coupling estimates, and the spread can be

considered as a conservative benchmark for model evaluation

(including observational noise, i.e. allowing a wide range of

T –ET coupling in models). However, it should be empha-

sized that the datasets are not independent realizations. Thus,

we only use the spread of the T –ET coupling benchmarks,

but we do not interpret the probability distribution of dataset

combinations.

For the analysis of historical and future simulations of

the monthly maximum value of daily maximum tempera-

tures (TXx) in Sect. 3.2 we use ERA-Interim (Dee et al.,

2011) as a reference dataset.
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Table 1. Datasets used for model evaluation. LSM: land surface model.

Name of dataset Variable Type/group Provider and reference

LandFlux-EVALa ET Ensemble median Mueller et al. (2013)

LandFlux-EVALa ET Median of reanalyses Mueller et al. (2013)

LandFlux-EVALa ET Median of LSMs Mueller et al. (2013)

LandFlux-EVALa ET Median of diagnostic datasets Mueller et al. (2013)

PRUNIa,b ET Diagnostic Sheffield et al. (2006, 2010)

MPIBGCa,b ET Diagnostic Jung et al. (2011)

CSIROa,b ET Diagnostic Zhang et al. (2010)

GLEAMa,b, V. 1A ET Diagnostic Miralles et al. (2011a, b)

AWBa,b ET Diagnostic Mueller et al. (2011a)

EI-ORCHIDEEa,b ET LSM Krinner et al. (2005)

CRU-ORCHIDEEa,b ET LSM Krinner et al. (2005)

VICa,b ET LSM Sheffield et al. (2006), Sheffield and Wood (2007)

GL-NOAH-PFa,b ET LSM Rodell et al. (2004), Rui and Beaudoing (2016)

MERRA-LANDa,b ET LSM Reichle et al. (2011)

ERA-Interima,b ET Reanalysis Dee et al. (2011)

CFSRa,b ET Reanalysis Saha et al. (2010)

JRA-25a,b ET Reanalysis Onogi et al. (2007)

MERRAa,b ET Reanalysis Bosilovich (2008)

CRU-TS3.2a T Observations Harris et al. (2014)

ERA-Interim reanalysisa T Reanalysis Dee et al. (2011)

CFSR reanalysisa T Reanalysis Saha et al. (2010)

a All T –ET combinations of marked datasets have been used to derive the ET–T constraint. b Original individual datasets that contributed to the LandFlux-EVAL
synthesis project (Mueller et al., 2013).

2.1.2 Multi-model ensemble simulations

The Climate Model Intercomparison Project (CMIP5) has

been designed to allow for multi-model comparison and

evaluation studies (Taylor et al., 2012). Although a large

model spread, biases, and uncertainties remain in the en-

semble projections (Knutti and Sedláček, 2013), for example

with respect to extremes (Sillmann et al., 2013a), the water

(Mueller et al., 2011b; Mueller and Seneviratne, 2014), and

land carbon cycle (Anav et al., 2013), the archive of stan-

dardized scenario-driven model experiments provides one of

the main avenues to study climate variability and change

(e.g. Stocker et al., 2013), including present and future cli-

mate extremes (Sillmann et al., 2013b; Seneviratne et al.,

2016). We use one ensemble member from 37 individual

models or model variants (Table S1 in the Supplement) to

avoid unequal sample sizes in the multi-model ensembles.

Furthermore, this choice is made to assess variability in land–

atmosphere coupling across models because individual en-

semble members from the same model show a comparably

small spread in land–atmosphere coupling and present-day

and future land–atmosphere coupling are highly correlated

(Fig. S1 in the Supplement; metric and definition is pro-

vided below). This indicates that the large spread between

models is dominated by variability across models, and thus

land–atmosphere coupling is a model-inherent feature on cli-

matological timescales (Figs. S1 and S2; see further discus-

sion below). On shorter (e.g. annual or seasonal) timescales,

models do indeed show substantial variability in their land–

atmosphere coupling (Sippel et al., 2016b), which could be

used as a constraint in large single-model ensembles, but this

is beyond the scope of the present study.

2.1.3 Data processing and analysis

All datasets were remapped to a common 2.5◦ × 2.5◦ spatial

resolution for analysis and before computing T –ET coinci-

dences. For model evaluation (Sect. 3.1), all computations

and analyses are performed on a monthly temporal resolution

and are restricted to the time period 1989–2005 due to data

availability constraints of the ET reference datasets (Mueller

et al., 2013). Thus, the reference period for model evaluation

corresponds to the last 17 years of the “historical” scenario

in CMIP5 models. T –ET coincidences are computed based

on monthly deseasonalized and linearly detrended time series

of T and ET, and coincidence rates are calculated separately

for each individual season. Only land pixels outside of desert

regions following the Köppen–Geiger climate classification

are considered (Kottek et al., 2006). The model evaluation

is conducted based on all individual pixels and additionally

on area averages for IPCC-SREX (Special Report on Man-

aging the Risks of Extreme Events and Disasters to Advance

Climate Change Adaptation) regions (IPCC, 2012).

www.earth-syst-dynam.net/8/387/2017/ Earth Syst. Dynam., 8, 387–403, 2017
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2.2 Diagnostic-based model evaluation using T–ET

coupling

2.2.1 The T–ET link and the Vegetation–Atmosphere

Coupling (VAC) index

An adequate characterization of the coupling between soil

moisture and temperature is key to model evaluation us-

ing observations-based datasets. This coupling is often diag-

nosed by correlation-based metrics such as for example be-

tween T and ET, ρ(T ,ET) (Seneviratne et al., 2006; Lorenz

et al., 2012), or the difference in the covariability in tempera-

ture and sensible heat, where the latter is calculated with and

without accounting for soil moisture deficits (Miralles et al.,

2012). Here, we aim to exploit the T –ET coupling by using

a natural extension of ρ(T ,ET) that focusses on the tails of T –

ET dependencies. Deseasonalized and detrended time series

of ET (xET
i ) and T (xT

i ; i denotes the time step) are par-

titioned into five distinct classes of Vegetation–Atmosphere

Coupling (VAC) following Zscheischler et al. (2015), result-

ing in a time series of discrete events xVAC
i :

xVAC
i =























a, if xT
i < thT

lower and xET
i < thET

lower,

b, if xT
i > thT

upper and xET
i > thET

upper,

c, if xT
i > thT

upper and xET
i < thET

lower,

d, if xT
i < thT

lower and xET
i > thET

upper,

0 otherwise

.

Event thresholds thlower and thupper might be chosen relative

to the variability in each time series by fixing the probabil-

ity p to exceed or fall below a threshold through the choice

of an appropriate quantile:

Pr
[

X > thupper

]

= Pr[X < thlower] = p. (1)

Taking time series length restrictions into account, we

choose the 30th and 70th percentile as lower and

upper thresholds in all time series (i.e. such that

Pr[X < thlower] = Pr[X > thupper] = 0.3). Here, we focus on

coincidences of warm temperature anomalies (“T events”:

xT
i > thT

upper) with anomalies in ET (“ET events”, i.e. either

xET
i > thET

upper for VACb or xET
i < thET

lower for VACc); we derive

coincidence rates rVACb by counting the number of VACb

events (see Quiroga et al., 2002, and Donges et al., 2016,

for earlier formulations of event coincidence analysis and,

e.g., Rammig et al., 2015, and Siegmund et al., 2016, for ap-

plications in an ecological context):

rVACb =
1

N0

N
∑

i=1

1[b]

(

xVAC
i

)

. (2)

Here, 1A(x) is the indicator function, defined as 1A(x) = 1 if

xǫA and 1A(x) = 0 otherwise; N denotes the length of the

time series. Hence, we simply count coincidences of T and

ET in a given category (e.g. positive T and positive ET for

VACb) to get the average coincidence rate (rVACb ). N0 acts as

a normalization constant and is chosen in our study such that

0 ≤ rVACb ≤ 1, i.e. we normalize with the total number of T

events, N0 =
N
∑

i=1

1
[xT >thT

upper]
(xT

i ). Hence, if all (or none) of

the T events in the time series coincided with ET events, then

the average coincidence rates would be given by rVACb = 1

(or rVACb = 0). For independent time series, i.e. no coupling,

rVACb would approximate the occurrence rate of ET events

in the time series (defined for VACb) that is governed by

the chosen threshold, i.e. rVACb = 1
N

N
∑

i=1

1[xET
i >thET

upper]
(xET

i )

(hence, rVACb ≈ 0.3 in our case). Coincidence rates rVACc fol-

low equivalently by replacing VACb with VACc in Eq. (2).

We compute rVACb and rVACc for all seasons but with an

emphasis on the warmest season of the year. In this study,

significance of coincidence rates is established by randomly

permuting one time series with respect to the other 100 times.

Hence, VAC rates from models or observations-based bench-

marks that fall outside the 5th to 95th percentile range of the

VAC rates obtained from randomly permuted time series are

significantly different from independent data at the 0.1 level.

In other words, rVACb gives the fraction of the highest 30 %

of temperatures that coincide with the highest 30 % of ET

(i.e. occurrence rate of energy-limited regimes), while rVACc

denotes the fraction of the highest 30 % temperatures that

correspond with the lowest 30 % ET (i.e. occurrence rate of

water-limited regimes). Figure 1c and d show a simple ex-

ample of monthly time series of T and ET simulated from

two CMIP5 models and occurrences of VACb and VACc are

highlighted, and Fig. 1e and f show the correlation of T

and ET. Note that for the same region (area average over

central Europe, CEU) and time of the year (monthly data

for June, July, and August), one model produces predom-

inantly energy-limited regimes (VACb; Fig. 1c and e and

compare to conceptual illustration in Fig. 1a), whereas the

other model produces predominantly water-limited regimes

(VACc; Fig. 1d and f and concept in Fig. 1b).

We abbreviate the average occurrence rates rVACb and

rVACc as VACb and VACc for convenience in the remain-

der of the paper. In comparison to more traditional cou-

pling metrics, such as e.g. ρ(T ,ET), VAC might be expected

to yield similar results on very long timescales, whereas on

shorter timescales the VAC index picks up non-linearities

in the tails (e.g. during warm temperature anomalies). On

the monthly timescale (as used in this study), VACb and

VACc detect distinct non-linearities in models and observa-

tions in summer T –ET coupling, e.g. in CEU: Fig. S3 shows

that, by correlating VACb with VACc derived from individ-

ual models, observations-based benchmarks, and from a two-

dimensional Gaussian distribution, VACb and VACc rates

in models and observations-based benchmarks exceed those

that would be expected in random data. This deviation indi-

cates that the warm tail is indeed different from the remain-

der of the distribution (we observe no such deviation for the

cold tail; Fig. S3), and hence an evaluation metric that fo-

Earth Syst. Dynam., 8, 387–403, 2017 www.earth-syst-dynam.net/8/387/2017/
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cuses on the tail such as the VAC index is indeed useful for

our present purpose. In addition to the main text, the model

evaluation is presented for ρ(T ,ET) to demonstrate robustness

to the chosen methodological approach (Fig. S4) and for the

VAC index using a 90th percentile threshold (Fig. S4). Both

alternatives show qualitatively similar results (see Sect. 3).

2.2.2 A constraint on T–ET coupling in multi-model

ensembles

In general, a constraint links an observations-based diagnos-

tic with a key model output variable across multiple mod-

els (Cox et al., 2013) and thus can be used to reduce model

uncertainties and spread. Here, we derive a T –ET coupling

constraint as the uncertainty range from the 54 combina-

tions of T –ET benchmarking datasets. A Gaussian kernel

with reliable data-based bandwidth selection (Sheather and

Jones, 1991) is fitted over all 54 1989–2005 coincidence

rates (rVACc ) for each meteorological season and pixel (and

each SREX region average). Throughout this paper, the 5th to

95th percentile range of the fitted Gaussian kernels is taken

as the plausible range of observations, and the reduced (con-

strained) ensemble of CMIP5 simulations is obtained by re-

taining only those CMIP5 models that simulate T –ET coinci-

dences that fall within this range of observational uncertainty.

3 Results and discussion

In this section, we first evaluate land coupling in CMIP5

models explicitly against an observations-based ensemble of

T –ET combinations and explore the link to temperature vari-

ability and extremes (Sect. 3.1). All model evaluation re-

sults are presented globally and exemplarily for central Eu-

rope (CEU) as a region where global models and observa-

tions differ widely. Subsequently, we constrain the ensem-

ble of CMIP5 models using each model’s land coupling as

diagnosed through the VACc index and discuss implications

for biases in simulated present-day temperature extremes and

warming projections (Sect. 3.2).

3.1 Evaluation of land–atmosphere coupling in CMIP5

models and the link to temperature variability and

extremes

3.1.1 Evaluation of T–ET coupling in CMIP5 models

Models and observations-based datasets show a relatively

large spread in their representation of T –ET coupling, as ex-

pressed exemplarily in CEU through both VACb and VACc

across various seasons (Fig. 2a and b) or diagnosed through

more traditional coupling metrics such as ρ(T ,ET) (Fig. S4).

Individual models indicate pronounced qualitative differ-

ences in the warm season, where some models point to

energy-limited conditions, whereas others indicate predomi-

nantly water-limited ones (Figs. 2a and b and 1, for an illus-

trative example). Observations-based T –ET datasets agree

qualitatively, i.e. indicating energy-limited to neutral condi-

tions in the CEU example, thus implying an overestimation

of water-limited regimes in CEU in roughly 50 % of CMIP5

models (Fig. 2).

This pattern holds across most regions of the globe, as

many CMIP5 models consistently overestimate occurrences

of VACc regimes (and correspondingly underestimate VACb

occurrences) in the warm season of the year (Fig. 2c and d;

see Fig. S5 for a definition of the warm season in each

pixel). In midlatitude and several tropical regions (e.g. cen-

tral North America, central Europe, the Amazon, India, parts

of Africa), more than 25 % and up to 50 % of CMIP5 models

lie outside the observational range (Fig. 2d). These discrep-

ancies hold also if metrics that emphasize the whole distri-

bution (ρ(T ,ET)) or more extreme parts of the tail (VAC based

on a 90th percentile threshold) are used for model evalua-

tion (Fig. S4; results for individual seasons are presented for

VACc and VACb in Figs. S6 and S7, respectively). Moreover,

the spread between the individual models’ representation

of land–atmosphere coupling strongly exceeds the spread

in observational datasets, although different diagnostic, re-

analyses, and land surface model datasets are included in

the observations-based ensemble (Fig. 2e for CMIP5 model

spread and Fig. 2f for spread in observations-based bench-

mark datasets).

Furthermore, the models’ land–atmosphere coupling, as

diagnosed here through the VAC index, is a highly model-

inherent feature, as different model variants or ensemble

members from the same model generally lie relatively close

to each other (Figs. S1 and S2). However, model-specific

signatures of model output are not unusual, as diagnosed

before for spatial patterns of temperature and precipitation

(Knutti et al., 2013) or the statistical information content in

carbon fluxes (Sippel et al., 2016a). Furthermore, present-

day land–atmosphere coupling is strongly related to future

land–atmosphere coupling in the individual models (Fig. S1).

A detailed overview of VACc coupling in individual models

and ensemble members relative to the benchmark datasets

for central Europe and central North America is presented in

Figs. S1 and S2. Despite regionally pronounced qualitative

discrepancies, it should be noted that on a global scale, the

distribution of water-limited and energy-limited patterns in

models and observations agrees qualitatively (Fig. S8). Like-

wise, the findings of climatologically too pronounced water-

limited regimes in individual models with regard to obser-

vations does not exclude the possibility of future changes

in the coupling strength in transitional regions (Seneviratne

et al., 2006) or of strong water limitations during extreme

events in the real world (Miralles et al., 2012; Whan et al.,

2015). To this end, an evaluation of the year-to-year vari-

ability in the coupling behaviour in larger ensembles of in-

dividual models, including very rare events, could consti-

tute a topic for further study, as this study was restricted

to relatively moderate events in a 16-year period (70th per-
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Figure 2. Evaluation of T –ET coupling in global climate models. (a, b) VACb and VACc coupling in the CMIP5 climate model ensemble

and observations-based benchmarking datasets in central Europe (CEU, 1989–2005, area average) with systematic warm season differences

(circles, diamonds, and triangles indicate diagnostic, land surface models, and reanalyses reference datasets, respectively). Randomness

indicates the 5th to 95th percentile range obtained by randomly permutating both time series with respect to the other (N = 100 times) to

obtain independent data. (c) Difference in the VACc median of the CMIP5 ensemble and benchmarking datasets. (d) Fraction of CMIP5

models that are inside the 5th-95th percentile spread of the benchmarking datasets. (e, f) Range of VACc occurrences (5th to 95th percentile

range) in CMIP5 models (e) and in the ensemble of observations (f).
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Figure 3. (a, b) Relationship between model-specific T –ET coupling (expressed through VACc) and model-simulated variability in monthly

temperature anomalies (JJA) in central Europe (a) and globally (b). (c, d) Relationship betweeen VACc coupling and mean (c) and standard

deviation (d) of simulated monthly maximum value of daily maximum temperature (TXx) in summer (JJA).

centile threshold for the computation of the VAC index) and

one ensemble member per model. Moreover, we also note

that observations-based benchmark datasets show system-

atic (albeit smaller) differences in the representation of land–

atmosphere coupling: diagnostic datasets indicate more fre-

quent energy-limited regimes (see, e.g., Fig. 2) and thus dif-

fer consistently to generally drier land surface models and re-

analysis products, consistent with earlier findings (Santanello

et al., 2015).

3.1.2 T–ET coincidences and the link to temperature

variability and extremes

The representation of T –ET coupling as diagnosed through

the VAC index largely determines the variability in tem-

peratures on monthly and interannual timescales across the

CMIP5 multi-model ensemble in CEU (Fig. 3a) and in

most regions of the globe except in some subarctic climates

(Fig. 3b). Therefore, this relationship is indicative of the

strong influence of land–atmosphere coupling on surface cli-

mate. This is consistent with previous findings in Europe

in models with and without land–atmosphere interactions

(Seneviratne et al., 2006; Fischer and Schär, 2009; Fischer

et al., 2012). An important result is that models that pro-

duce VACc indices within the range of benchmark datasets

also produce a realistic near-surface temperature variability,

whereas models that fall too frequently into water-limited

regimes also overestimate summer temperature variability

(Fig. 3a). Moreover, in midlatitude and tropical regions,

the state of the land surface is strongly associated with the

mean and variability in temperature extremes on the daily

timescale in the warmest season (TXx; Fig. 3c and d). The

link between the representation of land–atmosphere coupling

and simulated temperature extremes and variability in global

climate models is consistent with earlier studies, which has

been demonstrated for Europe in individual models (Senevi-

ratne et al., 2006; Lorenz et al., 2012; Davin et al., 2016) and

in ensembles of regional models (Fischer et al., 2012; Bell-

prat et al., 2013). Therefore, the relationship between T –ET

coincidence rates and temperature extremes might offer an

avenue to derive an explicit land–atmosphere coupling con-
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straint (the likely root cause of biases) to alleviate biases

in temperature variability and extremes in the multi-model

CMIP5 ensemble.

3.2 Analysis of constrained multi-model ensemble and

implications for future climate projections

3.2.1 A constraint on land–atmosphere coupling in the

CMIP5 ensemble

The association between T and ET in the constrained ensem-

ble resembles the observations-based benchmarking datasets

in T –ET coupling very well (shown as a bivariate density

estimate in Fig. 4a and b for CEU and CNA (central North

America), respectively), whereas the unconstrained CMIP5

ensemble produces too many occurrences of VACc condi-

tions in both CEU and CNA. Due to the intimate link be-

tween land–atmosphere coupling and temperature variabil-

ity and extremes (see previous section), we expect that the

improvement in the representation of land–atmosphere cou-

pling in the constrained ensembles yields a corresponding

improvement in the representation of temperature extremes

on the daily timescale in coupling-sensitive regions.

Coupling-sensitive regions are prone to warm season bi-

ases in climate models (Christensen and Boberg, 2012; Bell-

prat et al., 2013). In the present analysis, high biases in tem-

perature extremes are indeed prevalent in the original (uncon-

strained) CMIP5 ensemble in these regions (Fig. 4c and e).

For example, the ensemble mean warm season TXx is over-

estimated by up to 5 ◦C, and higher biases are detected in

the 90th percentile of TXx in CNA, CEU, and the Ama-

zon (all biases in daily variables relative to ERA-Interim;

see Fig. 4c and e). In a CMIP5 ensemble constrained by

the land–atmosphere coupling metric VACc, the representa-

tion of temperature extremes is improved in regions prone to

coupling-induced biases (Fig. 4d and f); i.e. both mean TXx

and the 90th percentile of TXx are significantly reduced. The

ensemble mean of present-day temperature extremes in other

regions remains unchanged. Moreover, projected future tem-

perature extremes are reduced in the constrained ensemble

(Fig. 5), similarly to present-day reductions in regions prone

to present-day biases in land–atmosphere coupling. This is

illustrated in Fig. 5a for TXx (monthly area averages in sum-

mer) in CEU, where the hot end of the original model ensem-

ble is in fact never realized in observed temperatures. The

application of the constraint thus not only affects mean TXx

but also reduces the spread of the model ensemble (Fig. 5a

and b). The reduction in ensemble mean and ensemble spread

is retained for the entire 21st century (Fig. 5a and b). Hence,

this result reinforces that coupling-related biases are model-

inherent features, i.e. models that simulate too many VACc

occurrences today (and associated high biases in extreme

temperatures) are very likely to do so in the future. How-

ever, one should keep in mind that the reduction in ensemble

mean and spread is confined to coupling-sensitive regions

in CEU, CNA, and to some degree in the Amazon region

(Fig. 5c and d).

Our results imply that an accurate representation of land

surface processes is crucially relevant for a correct simula-

tion of temperature extremes and more generally for simu-

lated near-surface climate variability. Land–atmosphere cou-

pling is thus an important source of bias in state-of-the-art

global climate model simulations. By using an observations-

based land–atmosphere coupling diagnostic to constrain the

multi-model CMIP5 ensemble, we have shown that biases in

extremes in the large ensemble can be alleviated to a cer-

tain degree. As bias correction methodologies that take the

physical causes of biases into account are still widely lack-

ing (Ehret et al., 2012; Bellprat et al., 2013) and multivari-

ate bias correction methods are currently in development

(Cannon, 2016), the identification of models with a phys-

ically plausible representation of near-surface climate and

land–atmosphere interactions on the regional scale might be

crucial to extract accurate and relevant information about

climate extremes in the context of climatic changes in the

21st century (Mitchell et al., 2016b; Schleussner et al., 2016;

Seneviratne et al., 2016). For example, model selection for

event attribution studies or a quantification of changes in uni-

variate climate extremes is often based on a statistical perfor-

mance criterion (Perkins et al., 2007; King et al., 2016; Otto

et al., 2015). Our results indicate that these procedures could

be further refined through incorporating observations-based

diagnostics or constraints in order to analyse model simula-

tions that are indeed right for the right reasons (at least given

physics-guided and observations-based relationships). More-

over, the impacts of climate and its extremes, e.g. on human

health or ecosystems (Mitchell et al., 2016a; Frank et al.,

2015), are often inherently related to multiple climate vari-

ables (Ehret et al., 2012; Leonard et al., 2014). Therefore,

simple constraints as suggested for instance in the present

study might complement more conventional bias correction

procedures (e.g. Hempel et al., 2013) to derive physically

consistent estimates of climate impacts. This approach ap-

pears promising because biases within climate models (i.e. in

different variables) and across climate model ensembles are

often correlated (e.g. Knutti, 2010; Mueller and Seneviratne,

2014; Sippel et al., 2016b). Hence, beyond soil moisture con-

trol on simulated temperature extremes as the present study’s

focus, related biases in other variables such as warm season

precipitation or ET might be similarly relevant in this con-

text. For example, VACc occurrences across the CMIP5 en-

semble are negatively associated with precipitation and ET

in the warm season in midlatitude regions (Fig. S9) – both

crucial variables in the water cycle that show pronounced

summer low biases in CMIP5 models (Mueller and Senevi-

ratne, 2014). Therefore, a constrained model ensemble with

improved land–atmosphere coupling, a likely root cause of

biases (Lorenz et al., 2012), might not only improve temper-

ature extremes and variability but additionally might reduce

biases in associated variables such as ET or precipitation.
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Figure 4. (a, b) Contour lines of bivariate kernel density estimates of T –ET relationship in the benchmarking datasets and the original and

constraint CMIP5 ensemble for (a) central Europe and (b) central North America (1989–2005, area average). (c, e) Biases in warm season

(c) TXx mean and (e) 90th percentile of TXx in the original CMIP5 ensemble and (d, f) reduction in (d) TXx mean and (f) 90th percentile

TXx through the application of the land-coupling constraint. Regions with a significant reduction in (d) TXx mean and (f) the across-model

average in the 90th percentile of TXx according to a permutation significance test are stippled.
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Figure 5. Application of land-coupling constraint to CMIP5 ensemble. (a, b) Ensemble prediction of original and constrained multi-model

ensemble for (a) future absolute TXx and (b) range of TXx anomalies relative to global mean temperature anomalies in each model, following

Seneviratne et al. (2016). Envelopes indicate 5th to 95th percentile. (c, d) Global maps of projected changes in simulated (c) mean TXx and

(d) 90th percentile of TXx in the VACc-constrained CMIP5 ensemble.

3.2.2 Is there a link between present-day

land–atmosphere coupling and warming

projections?

We investigate whether the representation of land–

atmosphere coupling in climate models affects the magnitude

of 21st-century warming (e.g. Fischer et al., 2012; Stegehuis

et al., 2013). We first note that regions sensitive to land–

atmosphere coupling in the CMIP5 model ensemble also

show relatively strong warming in daily-scale temperature

extremes (TXx), for example central America or southern

and central Europe (Fig. 6a and b). More importantly,

however, models that produce frequent VACc occurrences

(water-limited regimes) tend to be associated with larger

rates of warming in TXx, although it should be emphasized

that this relationship is not simple or linear (Fig. 6c and d;

see also Fischer et al., 2012). Conversely, this pattern

reverses in boreal regions, where strongly energy-limited

models (i.e. very few VACc occurrences) tend to produce

larger warming. However, in boreal regions this apparent

relationship likely stems from a spurious correlation with the

individual models’ background warming (i.e. warming in

annual averages), as the correlation in fact disappears if the

background warming is subtracted from summer warming

(Fig. S10). In contrast, in midlatitude regions warm season

warming that exceeds annual average warming remains

confined to the warm season. A multi-model projection con-

strained by a plausible representation of land–atmosphere

coupling reduces differences in TXx estimates in a future

climate relative to the present in coupling-sensitive regions

such as central Europe and central North America locally by

around 0.5 to 1 ◦C, but this remains a regional effect (Fig. 6e

and f). These results are consistent with earlier studies that

used an ensemble of regional models over Europe that

used the standard deviation of temperatures as a constraint

(Fischer et al., 2012).
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Figure 6. (a, b) Projected warming in warm season (a) mean temperature and (b) TXx across the CMIP5 ensemble (RCP8.5 scenario, 2071–

2100 relative to 1981–2010). (c, d) Correlation between VACc in the warm season and the projected warming in (c) mean temperature and

(d) TXx. Stippling indicates significant correlations. (e, f) Relative change in (e) mean warming and (f) TXx warming due to the application

of the land–atmosphere coupling constraint; warming defined as 2071–2100 relative to 1981–2100.

4 Conclusions

In the present study, we have evaluated land–atmosphere

coupling in state-of-the-art climate models with an ensem-

ble of observations using a diagnostic based on coincidences

of T and ET anomalies (the VAC index). While observa-

tions and models broadly agree on spatial patterns of land–

atmosphere coupling, our results reveal that models differ

widely in coupling-sensitive regions in the midlatitudes and

the tropics. Several models exhibit systematically too fre-

quent coincidences of high temperature anomalies with neg-

ative ET anomalies (water-limited regimes) in midlatitude
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regions in the warm season and in several tropical regions

year-round.

Across the multi-model ensemble, we found a strong as-

sociation of land–atmosphere coupling with simulated tem-

perature variability and extremes. The spread between mod-

els largely explains differences in simulated monthly tem-

perature variability and daily extremes. We applied a land–

atmosphere coupling constraint to the multi-model ensem-

ble, which considerably improves the representation of land–

atmosphere coupling in the ensemble and reduces biases in

temperature variability and extremes in present-day simula-

tions in a physically consistent manner (Fig. 4). Furthermore,

the constraint leads to reduced variability and lower extreme

temperatures in future projections. However, the overall pro-

jected changes in temperature extremes are not as strongly

affected (reduction by around 0.5–1.0 ◦C locally in regions

that are sensitive to land–atmosphere coupling) because the

models with overestimated land–atmosphere coupling dis-

play similar anomalies from the multi-ensemble mean in the

present and future. In conclusion, we selected models with

a physically plausible representation of land surface pro-

cesses (and near-surface climate) using observations-based

constraints that are guided by physical considerations. This

approach complements more traditional bias correction ap-

proaches and offers new avenues to obtain improved esti-

mates of future climate impacts.
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