AD A 137259

ť,

ADF300571

# **TECHNICAL REPORT ARBRL-TR-02537**

# REFLECTED OVERPRESSURE IMPULSE ON A FINITE STRUCTURE

Charles N. Kingery George A. Coulter



December 1983



FILE COPY

310

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

84 01 23 0 11

Potent Mand Construction Construction

Approved for public release; distribution unlimited.

. NATE OF STREET, STRE ande yna 藼 Destroy this report when it is no longer needed. Do not return it to the originator. الم <u>المحمد المحمد المراجع المحمد المحمد المحمد المحمد محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال</u> \_\_\_\_\_ 2.52  $\cdots \cdots \cdots \cdots$ Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia \*\*\* \*\*\* 22161. <u>ارت ا</u> ner juzzin 125 \_\_\_\_ ai Ai n - Constant -- Constant - Constant -. . . . . . . . 16 an a states car . . .. .. . . . ..... 192 - 293 1 Construction of the second se second sec endere e . . 2020-222 The findings in this report are not to be construed as an official Department of the Army position, unless -----so designated by other authorized documents. the table of the The use of trade names or munufacturers' sames in this report does not constitute inforesment of any commercial product. e sur un - \_ \_ \_ 1 ... 11.92°.1 10 

| UNCLASSIFIED                                          |                                |                                                                |
|-------------------------------------------------------|--------------------------------|----------------------------------------------------------------|
| ECURITY CLASSIFICATION OF THIS PAGE (When Date        | Entered)                       | ······································                         |
| REPORT DOCUMENTATION                                  | PAGE                           | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                    |
| REPORT NUMBER                                         | 2. GOVT ACCESSION NO.          | 3. RECIPIENT'S CATALOG NUMBER                                  |
| TECHNICAL REPORT ARRRITTR-02537                       | AU-A13725                      | •                                                              |
| I. TITLE (and Subtitie)                               |                                | . TYPE OF REPORT & PERIOD COVERED                              |
| REFLECTED OVERPRESSURE IMPULSE ON                     | A FINITE                       |                                                                |
| STRUCTURE                                             |                                | Final                                                          |
|                                                       |                                | 6. PERFORMING ORG. REPORT NUMBER                               |
| AUTHORA                                               |                                | . CONTRACT OR GRANT NUMBER(+)                                  |
| Charles N. Kingery                                    |                                |                                                                |
| George A. Coulter                                     |                                | CE-BRL-82-1                                                    |
|                                                       |                                |                                                                |
| PERFORMING ORGANIZATION NAME AND ADDRESS              |                                | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| US Army Ballistic Research Laborat                    | ory, ARDC                      | 4466 5005 M057                                                 |
| ATTN: DRSMC-BLT (A)                                   |                                | 4A00 5805 M857                                                 |
| ADELGEEN Proving Ground, MD 21005                     |                                | 12. REPORT DATE                                                |
| US Army AMCCOM. ARDC                                  |                                | December 1997                                                  |
| Ballistic Research Laboratory. ATT                    | N: DRSMC-BLA-S (A)             | 13. NUMBER OF PAGES                                            |
| Aberdeen Proving Ground, MD 21005                     |                                | 58                                                             |
| 14. MONITORING AGENCY NAME & ADDRESS(11 dillored      | nt from Controlling Oifice)    | 18. SECURITY CLASS. (of this report)                           |
|                                                       |                                |                                                                |
|                                                       |                                | 154. DECLASSIFICATION/DOWNGRADING                              |
|                                                       |                                | SCHEQULE                                                       |
| 6. DISTRIBUTION STATEMENT (of this Report)            |                                |                                                                |
|                                                       |                                |                                                                |
| 17. DISTRIBUTION STATEMENT (of the abetract entered   | i in Block 20, if different th | om Report)                                                     |
| 18. SUPPLEMENTARY NOTES                               |                                |                                                                |
| This work was performed for and fur<br>Safety Board.  | nded by the Depar              | tment of Defense Explosives                                    |
| 1. KEY WORDS (Continue on reverse elde il necessary a | nd identify by block number    | <i>,</i>                                                       |
| Airblast Re                                           | flective Pressur               | e                                                              |
| Overpressure Re                                       | flected Impulse                |                                                                |
| Impulse An                                            | gle of Incidence               |                                                                |
| Structure Loading                                     |                                |                                                                |
| 0 A BATRACT /Castlane an extens shit If manager a     | d identify by block number     | )                                                              |
| The effect of anole of incidence                      | e of the shock f               | ront on reflected impulse                                      |
| loading on a finite structure is pr                   | csented in this                | report. Impulse reflection                                     |
| factors have been developed for ang                   | les of incidence               | from zero to ninety degrees.                                   |
| Reflected impulse on a finite struc                   | ture is much les               | s than reflected impulse on a                                  |
| infinite plane because of the unloa                   | ding due to rare               | faction waves propagation fro                                  |
| the sides of the structure which lo                   | wers the reflect               | ed overpressure.                                               |
|                                                       |                                |                                                                |
| FORM 1 (77)                                           |                                |                                                                |
| TU 1 JAN 72 14/5 EDITION OF 1 NOV 45 15 0050          | NETE                           |                                                                |

----

----

. , <sup>18</sup>. ,

and the second second

فتشد شنك أسالنا نكريانات والمركز فالتلايا بيويهم

40. U

ýa-

UNCLASSIFIED SECURITY CLASS FICATION OF THIS PAGE (Then Date Entered)

- A CONTRACTOR

# TABLE OF CONTENTS

|      |                                                                                                                                                                       | Page                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|      | LIST OF ILLUSTRATIONS                                                                                                                                                 | 5                    |
|      | LIST OF TABLES                                                                                                                                                        | 7                    |
| I.   | INTRODUCTION                                                                                                                                                          | 9                    |
|      | A. Background<br>B. Objective                                                                                                                                         | 9<br>9               |
| II.  | TEST PROCEDURES                                                                                                                                                       | 9                    |
|      | A. Design of Model<br>B. Test Charges                                                                                                                                 | 9<br>11<br>11        |
|      | <ol> <li>Pressure Transducers</li></ol>                                                                                                                               | 11<br>11<br>11<br>11 |
|      | D. Test Layout<br>E. Test Matrix<br>F. Predictive Approach                                                                                                            | 11<br>15<br>15       |
| 111. | RESULTS                                                                                                                                                               | 19                   |
|      | A. Side on Overpressure and Impulse Measurements                                                                                                                      | 23                   |
|      | versus Angle of Incidence                                                                                                                                             | 23                   |
|      | Angle of Incidence                                                                                                                                                    | 23                   |
| IV.  | DISCUSSION                                                                                                                                                            | 38                   |
|      | <ul> <li>A. Reflected Pressure in the Regular and Mach<br/>Reflection Regions</li> <li>B. Reflected Impulse in the Regular and Mach<br/>Reflection Regions</li> </ul> | 38                   |
|      | Kerlection Regions                                                                                                                                                    | 38                   |
| ۷.   | CONCLUSIONS                                                                                                                                                           | <u>Z4</u>            |
|      | ACKNOWLEDGEMENIS                                                                                                                                                      | <b>4</b> 4           |
|      | LIST OF REFERENCES                                                                                                                                                    | 4/                   |
|      | 3<br>DISTRIBUTION LIST                                                                                                                                                | <b>749</b>           |

# LIST OF ILLUSTRATIONS

÷

Ŧ

Ē

| Figure |                                                                                                                                      | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | The 1/50th Scale Steel Structure Model                                                                                               | 10   |
| 2.     | Concrete Mount with Anchor Bolt                                                                                                      | 10   |
| 3.     | Exploded View of the Model, Mount, and<br>Pressure Transducers                                                                       | 12   |
| 4.     | Instrumentation Block Diagram                                                                                                        | 13   |
| 5.     | Test Layout                                                                                                                          | 14   |
| 6.     | Photograph of Models 2, 1, 4, and 5 with 0 and 90 Degree<br>Orientation                                                              | 16   |
| 7.     | Reflected Pressure versus Incident Overpressure for a Shock<br>Wave Undergoing Regular Reflection on a Rising Slope                  | 20   |
| 8.     | Reflected Pressure versus Incident Overpressure for Shock<br>Waves Undergoing Mach Reflection on a Rising Slope                      | 21   |
| 9.     | Reflection Factors versus Angle of Incidence for Selected<br>Incident Overpressures                                                  | 22   |
| 10.    | Peak Incident Overpressure versus Scaled Distance for a 1 kg<br>Hemispherical Surface Burst                                          | 26   |
| 11.    | Incident Scaled Impulse versus Scaled Distance for a 1 kg<br>Hemispherical Surface Burst                                             | 27   |
| 12.    | Peak Reflected Pressure versus Angle of Incidence for Stations 1 through 8                                                           | 28   |
| 13.    | Scaled Reflected Impulse versus Angle of Incidence for Stations 1 through 8                                                          | 29   |
| 14.    | Reflected Pressure Ratios $(P_r/P_s)$ versus Angle of Incidence<br>for P <sub>s</sub> from 346 kPa to 67.4 kPa                       | 39   |
| 15.    | Reflected Pressure Ratios (P <sub>r</sub> /P <sub>s</sub> ) versus Angle of Incidence<br>for P <sub>s</sub> from 40.8 kPa to 6.2 kPa | 40   |
| 16.    | Reflected Impulse Ratios $(I_r/I_s)$ versus Angle of Incidence                                                                       | 41   |
| 17.    | Reflected Pressure versus Incident Pressure in the<br>Regular Reflection Region                                                      | 42   |

PHECEDING PACE BLANK-NOT FILMED

يوريد مساعلا المر

The second s

# LIST OF ILLUSTRATIONS (CONT)

collition with

| Figure |                                                                                                                                                                     | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18.    | Reflected Pressure (P <sub>r</sub> ) versus Incident Pressure (P <sub>)</sub> in the<br>Mach Reflection Region as a Function of Angle of Incidence                  | 43   |
| 19.    | Scaled Reflected Impulse (I <sub>r</sub> ) versus Scaled Incident<br>Impulse (I <sub>g</sub> ) in the Regular Reflection Region                                     | 45   |
| 20.    | Scaled Reflected Impulse (I <sub>r</sub> ) versus Scaled Incident<br>Impulse (I <sub>g</sub> ) in the Mach Reflection Region as a<br>Function of Angle of Incidence | 46   |

خ عمالتكافل الليَّات

100

3

للنعة بالريادة

. .

# LIST OF TABLES

\_\_\_\_\_

| Table. |                                                                    | Page |
|--------|--------------------------------------------------------------------|------|
| 1.     | Predicted Peak Pressures and Impulses for Test 1                   | 17   |
| 2.     | Model Crientation, Tests 1-12                                      | 18   |
| 3.     | Model Orientation, Tests 13-15                                     | 18   |
| 4.     | Incident Overpressure and Impulse at Free-Field Stations           | 24   |
| 5.     | Reflected Pressure and Impulse Ratios versus Angle of<br>Incldency | 30   |

#### I. INTRODUCTION

#### A. Background

During one of the meetings of the Blast Technology Subcommittee for the Revision of the Protective Structures Manual<sup>1</sup> it was pointed out that there was a data gap with regard to the effect of angle of incidence on reflected impulse impinging on finite structures. The effect of angle of incidence of the shock wave striking an infinite plane on peak reflected pressure and reflected impulse has been documented in many height of burst studies. The latest of these was conducted in Canada and reported in References 2 and 3. After a literature survey there appeared to be little information on the effect of angle of incidence on reflected impulse loading of isolated structures.

# B. Objective

The objective of this study is to determine experimentally the effect of angle of incidence of the shock front on the reflected impulse loading on an isolated structure. The experiment was conducted with 1/50 scaled nonresponding models of a single structure.

#### II. TEST PROCEDURES

This section will describe the procedure followed in conducting an experimental program to meet the stated objective.

#### A. Design of Model

The model was designed to represent a structure 15.24 metres wide by 15.24 metres long by 22.86 metres high (50 ft x 50 ft x 75 ft). A 1/50th scale produced a model 0.305 m x 0.305 m x 0.457 m (1 ft x 1 ft x 1.5 ft). The model was constructed of a 2.54 cm thick steel plate. A sketch of the model is presented in Figure 1. The four upright walls were welded together with the top bolted on to allow access to the pressure gages. A reinforced concrete mount with an anchor bolt imbedded(as shown in Figure 2) was used to secure the model. The pressure transducers were then

Depuriment of the Army, the Navy, and the Air Force, "Structures to Resist the Effects of Accidental Explosions," June 1969, TM5-1300, NAVFAC P-397, AFM 88-22.

<sup>2</sup> R.E. Reisler, B. Pettit c. L. Kennedy, "Air Blast Data from Height of Burst Studies in Canada, Vol I: HOB 5.4 to 71.9 Feet," BhL Report No. 1950, December 1976 (AD B016344L).

<sup>3</sup> R.E. Reisler, B. Pettit and L. Kennedy, "Air Blast Data from Height of Burst Studies in Canada, Vol. II, HOB 4.5 to 144.5 Feet BRL Report No. 1990, May 1977.

9

PHECEDING PACE BLANK-NOT FILMED



Figure 1. The 1/50th Scale Steel Structure Model.



Figure 2. Concrete Mount with Anchor Bolt.

installed and the top plate was boilted in place. An exploded view of the model, mount, and pressure transducers is shown in Figure 3. The model was held in place by tightening the large nut down against the top plate. By loosening the nut, the model orientation could be changed for each test and then retightened. A total of eight models was constructed. The pressure transducers were placed on the center line of a front and side wall at a height of 0.152 m. The model was rotated to change the angle of incidence of the shock front with the model walls.

#### B. Test Charges

The test charges were cast Pentolite (50 PETN, 50 TNT). The shape was hemispherical and the point of stonation was at the center of the flat side which was placed on the ground surface. The full size charge yield selected for simulation was 125000 kilograms. Therefore, a 1/50 scale model would require (according to cube root scaling) a one-kilogram charge. Onekilogram cast Pentolite charges were used on all of the fifteen tests conducted.

#### C. Test Instrumentation

The instrumentation for this test series consisted of pressure transducers, magnetic tape recorder/playback, and a data reduction system. A block diagram is shown in Figure 4.

1. <u>Pressure Transducers</u>. Piezoelectric pressure transducers were used for this series of tests. The PCB Electronics Inc., Models 112A22, 113A24, and 113A28, with quartz sensing elements and built-in source followers were used extensively.

2. Tape Recorder System. The tape recorder consisted of three basic units, the power supply and voltage calibrator, the amplifiers, and the FM recorder. The FM tape recorder was a Honeywell 7600 having a frequency response of 80 kHz. Once the signal was recorded on the magnetic tape it was played back and recorded on a Honeywell Visicorder. This oscillograph has 5 kHz frequency response and the overpressure versus time recorded at the individual stations can be read directly from the playback records for preliminary data analysis.

3. Data Reduction System. For the final data output, the tape signals were processed through an analog-to-digital converter, to a digital recorder-reproducer, and then to a computer. The computer (TEKTRONIX 4051) was programmed to apply the calibration values and present the data in the proper units for analysis. From the computer, the data is put on a digital tape from which the final form can be plotted or tabulated. The digital tape can be also stored for future analysis.

#### D. Test Layout

The test layout was planned to acquire the maximum amount of data for each test conducted. A total of eight peak overpressure levels was selected and therefore eight models were constructed. Twenty-one angles of incidence were selected with eleven bunched between 37.5 and 62.5 degrees in order to document the transition between regular reflection and Mach reflection. The test layout is shown in Figure 5. The peak overpressure







Figure 4. Instrumentation Rioch Diagram.

13



range of interest for this project was from 345 kPa down to 6.89 kPa. The distances selected to meet the required pressure range were based on the The free-field incident standard TN1 hemispherical surface burst curve." peak overpressure was measured near each structure to provide the input blast parameters. Nomenclature used to identify the gage locations at each station is as follows: Station 1 is the free-field gage, Station 1A is in the front of the model with orientation from 0 to 45 degrees, and Station B is in the side of the model with orientation from 90 to 45 degrees. On Test 1, Station A on all models was at an angle of 0 degrees or normal reflection while Station B on all models was at an angle of 90 degrees or a side-on measurement. The station locations, predicted peak overpressures, and impulses are listed in Table 1 for Test Number 1. The locations of the free-field stations remained the same on all 15 tests. The radial distances for the Stations A and B changed on each shot. A photograph showing Structures 2 (foreground), 1, 4, and 6 for 0 degree and 90 degree orientation with a 1 kg charge in place is presented in Figure 6.

#### E. Test Matrix

Eight model structures were placed at the distances shown in Table 1 to receive the predicted input pressure and impulse. After each test, each model was rotated the same number of degrees in order that the shock front would strike each set of structure walls at the same angles of incidence. The angle of incidence for Tests 1 - 12 is listed in Table 2. On Tests 13, 14, and 15 the structure models were exposed at different angles and at different pressure levels. These exposures are listed in Table 3.

#### F. Predictive Approach

There are many references in which the enhancement of peak overpressure as a function of angle of incidence is reported. One of the more complete treatments is given in Reference 5. Normal reflection or head-on reflection can be predicted for the range of incident overpressures of interest in these tests using the following equation:

$$P_{T} = 2 P_{S} \left( \frac{7 P_{o} + 4 P_{s}}{7 P_{o} + P_{s}} \right)$$
(1)

where  $P_0$  = Ambient atmospheric pressure,  $P_r$  = Normal reflected overpressure, and  $P_g$  = Side-on incident overpressure.

This is valid where the ratio of specific heat (Y) for air is a constant 1.4. The equation is good or " ... predicting the reflected pressure when the models are in the 0-degree orientation, face-on.

<sup>&</sup>lt;sup>4</sup> C.N. Kingery, "Air Blast Parameters versus Distance for Hemispherical Surface Bursts," BRL Report 1344, September 1986 (AD 811673).

<sup>&</sup>lt;sup>5</sup> "Nuclear Weapons Blast Phenomena, Volume II, Blast Wave Interaction," DASA 1200-II, 1 December 1970 (Confidential RD).



Figure 6. Photograph of Models 2, 1, 4, and 6 with 0 and 90 Degree Orientation.

TABLE 1. PREDICTED PEAK PRESSURES AND IMPULSES FOR TEST 1

|           | Distance | Pressure<br>trac | Impulse | 5+ 5+ 4 5 5 | Distance | Pressure<br>LDC | Impulse |
|-----------|----------|------------------|---------|-------------|----------|-----------------|---------|
| DIGITO    | 5        | N C G            |         | DLALIUM     | 3        | R G             |         |
| 1         | 1.82     | 345              | 145     | 2           | 5.75     | 34.5            | 51      |
| <b>IA</b> | 1.74     | 1361             | 430     | SA          | 5.67     | 78.7            | 110     |
| 18        | 1.90     | 340              | 140     | 58          | 5.83     | 33.9            | 50      |
| 2         | 2.26     | 207              | 120     | 9           | 06.7     | 20.7            | 39      |
| 2A        | 2.18     | 695              | 320     | 6A          | 7.82     | 44.9            | 80      |
| 2B        | 2.34     | 190              | 112     | 63          | 7.98     | 20.8            | 38      |
| m         | 2.78     | 138              | 98      | 7           | 10.30    | 13.8            | 90      |
| 3A        | 2.70     | 408              | 250     | 7A          | 10.22    | 29.1            | 59      |
| 38        | 2.86     | 130              | 96      | 7B          | 10.38    | 13.7            | 30      |
| 4         | 3.30     | 68.9             | 74      | æ           | 17.80    | 6.89            | 18      |
| 44        | 3.72     | 164              | 170     | 8A          | 17.72    | 14.7            | 32      |
| 4B        | 3.88     | 66.0             | 72      | 8B          | 17.88    | 6 . 89          | 18      |
|           |          |                  |         |             |          |                 |         |

| 1-12         |
|--------------|
| TESTS        |
| ORIENTATION, |
| MODEL        |
| م            |
| ABLE         |

| Test       | Anel | e of  | Teer<br>T | ~[~~  | y     |
|------------|------|-------|-----------|-------|-------|
| <u>, 0</u> | Inci | dence | No.       | Incld | lence |
|            | A    | æ     |           | V     | ~     |
| T          | 0    | 06    | 7         | 37.5  | 52.5  |
| 2          | 10   | 80    | 80        | 40.5  | 67    |
| Ē          | 16   | 74    | 6         | 42.5  | 47.   |
| 4          | 21   | 69    | 10        | 43.5  | 46.5  |
| Ś          | 27.5 | 62.5  | 11        | 45    | 45    |
| 9          | 34   | 56    | 12        | 0     | 06    |

\*Tests 1 through 12 all models had same orientation

TABLE 3. MODEL ORIENTATION, TESTS 13-15

| Station     |            | 1        |        | 5       |      | e      |        | 4      | -      | 5     | -      | <u>ب</u> |       | ~       | a      |      |
|-------------|------------|----------|--------|---------|------|--------|--------|--------|--------|-------|--------|----------|-------|---------|--------|------|
| Test        | A          | <b>a</b> | 4      | ß       | A    | æ      | ۲      | m      | <      | æ     | A      | R        | <     | 8       | V      | R    |
| 13          | 34         | 56       | 34     | 56      | 40.5 | 49.5   | 40.5   | 49.5   | 37.5   | 52.5  | 37.5   | 52.5     | 37.5  | 52.5    | 37.5   | 52.5 |
| 14          | 37.5       | 52.5     | 40.5   | 49.5    | 46.5 | 43.5   | 42.5   | 47.5   | 40.5   | 49.5  | 43.5   | 46.5     | 0     | 06      | 40.5   | 49.5 |
| 15          | 43.5       | 46.5     | 16     | 74      | 16   | 74     | 21     | 69     | 16     | 74    | 45     | 45       | 21    | 69      | 16     | 74   |
| ** On Tests | \$ 13, 14, | and l    | 5 mode | ls were | orie | nted f | or rep | eat ex | posure | at se | lected | angles   | and j | ressure | e leve | ls.  |

or of a community of the process of a shift a number of the source of t

n adding law of the la

www.chanacture

e editori al e tr

attact file - 21 -

and the set of manual sector and the set flat the sector

adde of a definition of the second of the second to be shown that the second of the

A second source used for predicting the reflected pressure in the regular reflection region for different angles of incidence is Reference 6. This report is based on a theoretical treatment by J. Von Newman. It considers the shock wave reflecting on an infinite plane as in a height of burst study. The reference does not treat impulse.

A newer source, Reference 7, treats both the enhancement of pressure in the regular reflection on rising slopes as well as the enhancement in the Mach reflection region on rising slopes. The reflected pressure versus incident pressure undergoing regular reflection for various rising slopes (Figure 12 from Reference 7) is presented as Figure 7. The reflected pressure versus incident pressure undergoing Mach reflection for various rising slopes (Figure 5 from Reference 7) is presented as Figure 8.

A family of curves from Reference 8 showing the reflection factor or pressure ratio  $P_r/P_s$  for selected input pressures  $(P_s)$  versus angle of incidence are presented in Figure 9. They were used in predicting the reflected pressure,  $P_r$ , expected to load the model. These curves and the other predictive methods will be compared with the field measurements.

#### III. RESULTS

As mentioned in the introduction, the primary objective of this project is to determine the enhancement of overpressure impulse as a function of the angle of incidence of the shock front striking an isolated structure. Presented in Section F of Test Procedures are predictive approaches for determining the peak reflected pressure, but there is a lack of information on predicting the reflected impulse other than normal or head-on. Information that is available is from various height of burst studies, where the reflection process is on an infinite plane.

The results will be presented in the form of reflected pressure compared to side-on pressure or reflected pressure ratios  $(P_r/P_g)$ . This comparison will also be done for impulse where ratios of  $I_r/I_g$  will be developed for angle of incidence and a variety of side-on or free-field impulses.

<sup>6</sup> C.N. Kingery and R.F. Pannill, "Parametric Analysis of Regular Reflection of Air Blast," BRL Report 1249, June 1964 (AD 444997).

<sup>&</sup>lt;sup>7</sup> Kenneth Kaplan, "Effects of Terrain on Blast Prediction Methods and Prediction," BRL Contract Report ARBRL-CR-00355, January 1978 (AD A051350).

<sup>&</sup>lt;sup>8</sup> H. L. Brode, "Height of Burst Effects at High Overpressures," The Rand Corporation, RM-6301, DASA 2506, July 1970.



Figure 7. Reflected **Pressure** versus Incident Overpressure for a Shock Wave Undergoing Regular Reflection on a Rising Slope.

مىيەتىرىيە يەرەر ئورۇرلىغان ئەرەرلەر بەرەر ئەرەر ئە



Figure 8. Reflected Pressure versus Incident Overpressure for Shock Waves Undergoing Mach Reflection on a Rising Slope.





பட்டையும் ஆண்ணும் பொறுத்தும் மருக்கும் பிருத்தும் குறையில் குறுக்கும் குறையில் பிருத்துக்கு குறையில் குறையும் க மற்றும் குறையில் குறை

and the second second

#### A. Side-on Overpressure and Impulse Measurements

In order to determine the pressure reflection and impulse reflection ratios, the side-on or incident overpressures and impulses must be established. Eight pressure transducers were placed at the distances and locations shown in Figure 5 to record the incident overpressure versus time of the blast wave. Records were obtained on each test and the incident peak overpressure and incident overpressure impulses are listed in Table 4 for each station. An average value from the fifteen tests was used to plot a peak overpressure versus distance for a 1 kg hemispherical Pentolite surface burst. Over ninety percent of the average value established at each station. The average peak incident overpressure ( $P_g$ ) versus horizontal distances are plotted in Figure 10. The solid lines in Figures 10 and 11 were established from data presented in Reference 9. The average incident impulses ( $I_g$ ) versus horizontal distances from Table 4 are plotted in Figure 11.

#### B. Reflected Peak Overpressure and Impulse versus Angle of Incidence

The reflected peak overpressure versus angle of incidence is a direct measurement made on the front and side wall of the model. The reflected impulse is obtained from the integration of the overpressure versus time recorded from Stations A and B located on the model.

The reflected pressure recorded on Stations 1A and 1B through 8A and 8B are plotted versus angle of incidence in Figure 12. The lines through the data points are visual fits and were used to establish the values of reflected pressure listed in Table 5.

The reflected impulses versus angle of incidence recorded at Stations IA and IB through 8A and 8B are plotted in Figure 13. The solid lines are visual fits of the data points and were used to determine the values of reflected impulse listed in Table 5.

#### C. Reflected Pressure and Impulse Ratios versus Angle of Incidence

Both the reflected pressure  $(P_r)$  and the reflected impulse  $(I_r)$  will be presented as a function of side-on pressure  $(P_s)$  and side-on impulse  $(I_s)$  in the form of ratios. That is,  $P_r/P_s$  and  $I_r/I_s$  will be presented versus angle of incidence.

The reflected pressure ratios  $P_r/P_s$  were calculated for each angle of incidence at each station and are listed in Table 5. It was noted in the Test Layout Section that Station A and Station B are located at different radial distances ( $\Delta R$ ) but this  $\Delta R$  becomes less as the model is rotated and  $\Delta R = 0$  at 45 degrees angle of incidence. In Table 5 the side-on

(Text continued on pare 38)

<sup>9</sup> Charles Kingery and George Coulter, "INT Equivalency of Fentolite Hemispheres," ARBRL-IR-02456, December 1982 (AD A123340).

and the second second second

TABLE 4. INCIDENT OVERPRESSURE AND IMPULSE AT FREE-FIELD STATIONS

110 Miles

ì

1

•

series and the second second

| 5 <b>n</b> 4 | 3.80     | ls<br>kPa-tas            | 68               | 70  | 69  | 66  | 70  | 67  | 68  | 67  | 69   | 66         | 286 | 63           | 67  | 69  | 11  | 68.2  |
|--------------|----------|--------------------------|------------------|-----|-----|-----|-----|-----|-----|-----|------|------------|-----|--------------|-----|-----|-----|-------|
| Static       | Distance | P <sub>8</sub><br>kPa    | 66               | 70  | 69  | 66  | 74  | 11  | 68  | 69  | 66   | 68,        | 86  | 68           | 11  | 72  | 69  | 1.93  |
| а 3          | 2.78     | Is<br>kPa-ms             | 85               | 88  | 87  | 88  | 86  | 84  | 84  | 84  | 86   | 83         | 87  | 89           | 85  | 16  | 16  | 86.5  |
| Static       | Distance | Р<br>кРа                 | 121*             | 134 | 135 | 127 | 129 | 127 | 129 | 135 | 131  | 138        | 135 | 139          | 139 | 131 | 140 | 133.5 |
| n 2          | 2.26     | l <sub>s</sub><br>kPa_ms | 103              | 105 | 100 | 103 | 103 | 707 | 104 | 102 | 66   | 106        | 100 | 105          | 66  | 108 | 104 | 102.6 |
| Statio       | Distance | Ps<br>kPa                | 169 <sup>*</sup> | 227 | 220 | 209 | 196 | 195 | 206 | 201 | 208. | 172*       | 208 | 190 <b>4</b> | 215 | 20  | 212 | 208.6 |
| ton 1        | e 1.82   | Is<br>kPa_ms             | 110              | 116 | 117 | 113 | 116 | 113 | 117 | 112 | N-1  | N-1        | 115 | 116          | 121 | 114 | 120 | 115.4 |
| Stat         | Distanc  | P<br>k Pa                | 327              | 335 | 332 | 303 | 308 | 307 | 340 | 302 | N-1  | <b>7-7</b> | 321 | 380          | 315 | 324 | 262 | 317   |
|              | Test     | No.                      | -                | - 2 | ŝ   | 4   | Ś   | 9   | 7   | 80  | 6    | 10         | 11  | 12           | 13  | 14  | 15  | AVG   |

4
Questionable value
N-1 - Not instrumented

TABLE 4. INCIDENT OVERPRESSURE AND IMPULSE AT FREE-FIELD STATIONS (CONT)

ومروفاتكم فأطلحهم فحمسا والمرجا حمين فاللغا فالاخلاق والالموج والمحمدان وموافقة وملامتهم ومرير

NAME AND ADDRESS OF A DESCRIPTION OF A D

|      | Sta           | tion 5        | Stat       | ton 6                                   | Station 7       |          | Statl                      | on 8   |
|------|---------------|---------------|------------|-----------------------------------------|-----------------|----------|----------------------------|--------|
| Test | Distan        | ce 5.75       | Distan     | ce 7.90                                 | Distance 10     |          | Distanc                    | e 17.8 |
| . ov | P<br>k Pa     | Is<br>kPa-mus | Ps<br>kPa  | ls<br>kPa-ms                            | Ps I<br>kPa kPa | S<br>198 | 9<br>8<br>8<br>8<br>8<br>7 | k Pama |
| -    | 39            | 57            | 25         | 76                                      | 0 0 0           |          |                            |        |
|      |               |               | 3 3        |                                         | 17 4° C1        | - t      | 0.1                        | 10.01  |
| 2 (  | 40            | 4 ·           | 56         | 35                                      | 14.5 2          | 5.3      | <b>5.9</b>                 | 15.1   |
| m    | 42            | 45            | 26         | 36                                      | 14.1 2          | 5.3      | 6.2                        | 15.1   |
| 4    | 41            | 49            | 25         | 35                                      | 13.1 2          | 5.3      | 7.4                        | 15.4   |
| ŝ    | 41            | 46            | 25         | 35                                      | 13.7 2          | 5.6      |                            | 1 / 8  |
| 9    | 39            | 45            | 25         | 35                                      | 13.6            |          |                            | 0°.1   |
| 7    | 39            | 47            | 25         | 35                                      | 13.0            |          | . r<br>. v                 | 14.7   |
| ŝ    | 39            | 47            | 36         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 |          |                            | 2.01   |
|      |               |               | ( )<br>( ) |                                         | C7 C•C1         | ×.0      | 2.0                        | 15.5   |
| ~    | 40            | 41            | 24         | 34                                      | 14.4 24         | · · ·    | 1-K                        | 1-N    |
| 10   | 38            | 46            | 25         | 35                                      | 13.6 24         | 4.8      | N-1                        | 1 - N  |
| 11   | 40            | 47            | 24         | 36                                      | 14.2 25         | 5.5      | 9,2                        | 15.2   |
| 12   | 41            | 49            | 25         | 35                                      | 14.6 26         | 5.1      | 9                          | 15.8   |
| 13   | <b>3</b> 6    | 47            | 25         | 36                                      | 14.0 26         | 0.       | - <b>0</b> ,               | 15.5   |
| 14   | 41            | 47            | 24         | 36                                      | 14.7 26         |          | 0 9                        | 16.71  |
| 21   | 17            | 6.7           |            |                                         |                 |          |                            | 7.01   |
|      | י<br>ד ד<br>ד | 4             | <b>5</b> 7 | 36                                      | 14.9 25         | 6.0      | 6.7                        | 16.1   |
| AVG  | 40.0          | 46.5          | 24.9       | 35.2                                    | 14.1 25         | 5.4      | 6.27                       | 15.4   |
|      |               |               |            |                                         |                 |          |                            |        |

N-1 - Not instrumented

In L ...



जी मध्य के प्रतय मध्य प्रतय के जात कि विद्युं कि की कई सिहद अभिय के विद्यु देव सिहद हो सी सिहिद हुने 🖕 🖓 🦕 🥵 🦿

as here all where

Figure 10. Peak Incident Overpressure versus Scaled Distance for a 1 kg Hemispherical Surface Burst.



Figure 11. Incident Scaled Impulse versus Scaled Distance for a 1 kg Hemispherical Surface Burst.

to a state of the second s

di kana sa kan





28

and the second secon





TABLE 5. REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE

.....

. . . . .

|                                     | Station                    | la, p <sup>*</sup> = 34          | 6, I <mark>s</mark> = 118   |                                                         |                                     | Station 1                              | B, P <sub>8</sub> = 29                                    | 4, I <sub>s</sub> =113            |                                                         |
|-------------------------------------|----------------------------|----------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
| Angle<br>of<br>Incidence<br>degrees | REFL<br>PRESS<br>Pr<br>kPa | PRESS<br>REFL<br>FACTOR<br>Pr/Ps | REFL<br>IMP<br>kPa-ms/kgl/3 | IMP<br>REFL<br>FACTOR<br>I <sub>r</sub> /I <sub>s</sub> | Angle<br>of<br>Inctdence<br>degrees | REFL<br>PRESS<br>P <sub>r</sub><br>kPa | PRESS<br>REFL<br>FACTOR<br>P <sub>L</sub> /P <sub>S</sub> | REFL<br>IMP<br>Ir<br>kPa-ms/kg1/3 | IMP<br>REFL<br>FACTOR<br>I <sub>T</sub> /I <sub>S</sub> |
| 0                                   | 1367                       | 3.95                             | 331                         | 2.81                                                    | 06                                  | 294                                    | 1.00                                                      | 97                                | 0.86                                                    |
| 10                                  | 1310                       | 3.81                             | 325                         | 2.75                                                    | 80                                  | 310                                    | 1.06                                                      | 114                               | 10.1                                                    |
| 16                                  | 1300                       | 3.79                             | 315                         | 2.67                                                    | 74                                  | 350                                    | 1.14                                                      | 122                               | 1.07                                                    |
| 21                                  | 1280                       | 3.74                             | 291                         | 2.47                                                    | 69                                  | 390                                    | 1.25                                                      | 130                               | 1.14                                                    |
| 27.5                                | 1240                       | 3.66                             | 279                         | 2.38                                                    | 62.5                                | 440                                    | 1.39                                                      | 162                               | 14.1                                                    |
| 34                                  | 1200                       | 3.57                             | 237                         | 2.03                                                    | 56                                  | 500                                    | 1.56                                                      | 180                               | 1.55                                                    |
| 37.5                                | 1130                       | 3.39                             | 256                         | 2.19                                                    | 52.5                                | 570                                    | 1.76                                                      | 177                               | 1.53                                                    |
| 40.5                                | 1050                       | 3.16                             | 213                         | 1.82                                                    | 49.5                                | 650                                    | 1.99                                                      | 200                               | 1.72                                                    |
| 42.5                                | 950                        | 2.88                             | 201                         | 1.72                                                    | 47.5                                | 750                                    | 2.29                                                      | 211                               | 1,82                                                    |
| 43 - 5                              | 006                        | 2.73                             | 221                         | 1.89                                                    | 46.5                                | 812                                    | 2.48                                                      | 212                               | 1.83                                                    |
| 45                                  | 850                        | 2.58                             | 215                         | 1.85                                                    | 45                                  | 850                                    | 2.58                                                      | 215                               | 1.85                                                    |
| 4                                   | at - ko                    | a                                |                             |                                                         |                                     |                                        |                                                           |                                   |                                                         |
| ۰ ب<br>-                            | unit - kD                  | 5 C                              |                             |                                                         |                                     |                                        |                                                           |                                   |                                                         |
| Ts<br>T                             | ALL & ALL                  | Q==2                             |                             |                                                         |                                     |                                        |                                                           |                                   |                                                         |

TABLE 5. REFLECTED PRESSURE AND INFULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT)

والمتعادية والمتعادية والمتعادية والمتعادين والمتعالية

|                         | IMP<br>REFL<br>FACTOR<br>I <sub>T</sub> /I <sub>B</sub>   | 0.94 | 1.03  | 1.09 | 1.14 | 1.26 | 1.36 | 1.45 | 1.48 | 1.47 | 1.59 | 1.68 |
|-------------------------|-----------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|------|
| 4, I <sub>6</sub> = 100 | REFL<br>IMP<br>I <sub>T</sub><br>kPa-us/kg <sup>1/3</sup> | 94   | 104   | 110  | 116  | 129  | 140  | 149  | 152  | 151  | 164  | 173  |
| B, Pg = 19.             | PRESS<br>REFL<br>Factor<br>P <sub>r</sub> /P <sub>b</sub> | 1.00 | 1.03  | 11.1 | 1.18 | 1.34 | 1.55 | 1.75 | 1.93 | 2.02 | 2.16 | 2.25 |
| Station 2               | REPL<br>PRESS<br>Pr<br>kPa                                | 194  | 205   | 224  | 240  | 277  | 325  | 370  | 410  | 430  | 460  | 480  |
|                         | Angle<br>of<br>Incidence<br>degrees                       | 06   | 80    | 74   | 69   | 62.5 | 56   | 52.5 | 49.5 | 47.5 | 46.5 | 45   |
|                         | IMP<br>REFL<br>FACTOR<br>Ir/Is                            | 2.29 | 2.21  | 2.19 | 2.10 | 2.02 | 1.88 | 1.85 | 1.76 | 1.08 | 1.65 | 1.68 |
| 3, I <sub>S</sub> = 105 | REFL<br>IMP<br>kPa-ms/kg1/3                               | 240  | 232   | 230  | 220  | 210  | 195  | 192  | 183  | 175  | 170  | 173  |
| A, P <sub>s</sub> = 22  | PRESS<br>REFL<br>FACTOR<br>P <sub>L</sub> /P <sub>B</sub> | 3.41 | 3 .09 | 2.93 | 2.94 | 2.95 | 2.94 | 2.86 | 2.59 | 2.42 | 2.33 | 2.25 |
| Station 2               | REFL<br>Press<br>Pr<br>kpa                                | 760  | 690   | 650  | 650  | 650  | 640  | 620  | 510  | 520  | 520  | 480  |
|                         | Angle<br>of<br>Incidence<br>degrees                       | 0    | 10    | 16   | 21   | 27.5 | 34   | 37.5 | 40.5 | 42.5 | 43.5 | 45   |

t a state of a contractive difference in the measure of the poly of the second se

restantes districtions of a filler of the state of a first state of the state of the

colline, with the

1000

TABLE 5. REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT)

FACTOR  $I_r/I_s$ 96.0 1.11 1.13 1.13 1.30 1.36 I MP REFL 1.46 1.46 1.59 1.41 1.51 REFL IMP Ir kPa-ws/kg<sup>1/3</sup> Station 3B, P<sub>S</sub> = 126, I<sub>S</sub> = 84 112 118 123 127 127 138 131 96 94 81 5 PRESS REFL FACTOR P<sub>r</sub>/P<sub>s</sub> 1.00 1.25 1.40 2.05 1.77 2.26 2.43 2.56 1.57 2.66 2.87 REFL PRESS 160 126 184 206 235 275 330 Pr kPa 305 348 390 352 Incidence degrees Angle of 62.5 52.3 49.5 47.5 46.5 90 80 56 74 69 45 IMP REFL FACTOR I<sub>r</sub>/I<sub>s</sub> 1.95 1.88 1.85 1.76 1.59 1.52 1.81 1.54 1.59 1.51 1.56 REFL IMP kPa-ms/kgl/3 Station 3A,  $P_{S} = 141$ ,  $I_{S} = 88$ 172 165 163 159 155 140 134 134 131 136 138 PRESS REFL FACTOR P<sub>r</sub>/P<sub>s</sub> 3.07 3.06 2.98 2.89 2.81 2.61 2.64 2.77 2.77 2.81 2.87 REFL PRESS Pr kPa kPa ¢33 431 420 405 390 360 365 380 380 385 390 Incidence degrees Angle of 27.5 40.5 37.5 42.5 43.5 2 16 34 0 21 45

32

. . REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT) TABLE 5.

مىرىغى ئىمىكەرلىمۇلۇرۇرىكۈرىي<mark>ۇر.</mark>

.

•

÷

FACTOR I<sub>r</sub>/I<sub>b</sub> 0.96 1.00 1.00 I MP kepl 1.03 1.06 1.19 1.16 1.07 1.21 1.29 1.17 Lr kPa-ms/kg<sup>1/3</sup> Station 4B, P<sub>s</sub> = 67.4, I<sub>s</sub> = 67 REFL IMP 64 68 20 67 72 74 82 83 80 31 89 FACTOR P<sub>r</sub>/P<sub>s</sub> PRESS REFL 1.25 1.02 1.35 1.50 1.99 2.26 2.36 1.77 2.47 2.48 2.71 REFL PRESS 103 122 138 157 164 172 173 189 Р<mark>г</mark> кРа \$9 84 92 Incidence degrees Angle of 62.5 52.5 49.5 47.5 46.5 6 80 74 69 56 45 IMP REFL FACTOR Ir/Is 1.55 1.58 1.54 1.49 1.46 1.39 1.41 1.33 1.32 1.30 1.29 Lr kPa-ms/kg<sup>1/3</sup> Station 4A,  $P_{s} = 70.8$ ,  $I_{s} = 69$ REFL IMP 107 109 106 103 101 96 92 90 89 97 5 FACTOR P<sub>T</sub>/P<sub>s</sub> PRESS Refl 2.50 2.48 2.52 2.38 2.52 2.44 2.52 2.55 2.61 2.61 2.71 REFL PRESS Pr k Pa 177 175 178 178 172 176 161 178 183 183 189 Incidence degree s Angle of 27.5 37.5 40.5 42.5 43.5 10 16 34 21 45 0 33

فصالاطيانها غرشت فليشد

واللمطالية تباته ليعمق ببالم

1

يد كماديا بكولاتها كالألما سمانه

ملينة طالله فينبد

Les en la completie de la

of \$700.00 in suddividual (the later

A CONTRACTOR OF A CONTRACTOR

ર હેર્ધવાનના સિંહ આવેલી સ્વાહિતી પ્રાણ

tin the second secon

TABLE 5. REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT)

| 5          | IMP<br>REFL<br>FACTOI<br>kgl/3 I <sub>r</sub> /I <sub>s</sub> | 16-0 | 96-0 | 0.96 | 1.00 | 1.04 | 1 .04 | 1.06 | 1.06 | 1.04 | 1.06 | 1.15 |
|------------|---------------------------------------------------------------|------|------|------|------|------|-------|------|------|------|------|------|
| S          | REFL<br>IMP<br>I<br>kPa-ms/                                   | 42   | 77   | 44   | 41   | 48   | 49    | 50   | 50   | 64   | 50   | 54   |
| S I C      | PRESS<br>REFL<br>FACTOR<br>P <sub>T</sub> /P <sub>S</sub>     | 1.02 | 1.21 | 1.31 | 1.50 | 1.83 | 2.06  | 2.26 | 2.34 | 2.31 | 2.25 | 2.18 |
| 31.0 L L U | REFL<br>PRESS<br>Pr<br>kPa                                    | 40   | 48   | 52   | 60   | 73   | 83    | 16   | 94   | 63   | 16   | 88   |
|            | Angle<br>of<br>Incidence<br>degrees                           | 06   | 80   | 14   | 69   | 62.5 | 56    | 52.5 | 49.5 | 47.5 | 46.5 | 45   |
|            | IMP<br>REFL<br>FACTOR<br>I <sub>r</sub> /I <sub>s</sub>       | 1.34 | 1.32 | 1.32 | 1.32 | 1.28 | 1.25  | 1.25 | 1.25 | 1.17 | 1.19 | 1.15 |
| S.         | REFL<br>IMP<br>Lr<br>kPa-ms/kgl/3                             | 63   | 62   | 62   | 62   | 60   | 59    | 59   | 59   | 55   | 56   | 54   |
| vs<br>-    | PRESS<br>REFL<br>FACTOR<br>P <sub>r</sub> /P <sub>s</sub>     | 2.28 | 2.18 | 2.16 | 2.14 | 2.16 | 2.07  | 2.10 | 2.15 | 2.13 | 2.10 | 2.18 |
|            | REFL<br>PRESS<br>Pr<br>k Pa                                   | 63   | 89   | 88   | 87   | 88   | 84    | 85   | 87   | 86   | 85   | 88   |
|            | Angle<br>of<br>Incidence<br>degrees                           | 0    | 10   | 16   | 21   | 27.5 | 34    | 37.5 | 40.5 | 42.5 | 43.5 | 45   |

TABLE 5. REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT)

IMP REFL FACTOR I<sub>r</sub>/I<sub>s</sub> 1.09 0.91 0.94 1.03 1.06 1.06 1.09 1.09 1.11 1.09 0.97 IMP Ir kPa-ms/kg<sup>1/3</sup> Station 68,  $P_{g} = 24.6$ ,  $I_{s} = 35$ REFL 38 32 33 34 36 37 38 38 39 38 37 PRESS REFL FACTOR P<sub>L</sub>/P<sub>B</sub> 1.30 1.93 2.09 2.12 2.08 2.08 1.02 1.53 2.17 2.04 1.17 REFL Press P**r** kP**a** 25 29 32 38 43 23 52 52 52 54 51 Incidence degrees Angle of 52.5 47.5 46.5 62.5 **:.6**; 90 56 45 80 74 69 IMP REFL FACTOR I<sub>T</sub>/I<sub>S</sub> 1.09 1.03 1.03 1.09 1.11 1.09 1.09 1.09 1.06 1.06 1.11 Lr kPa-ms/kg<sup>1/3</sup> Station 6A, P<sub>s</sub> = 25.2, I<sub>s</sub> = 35 REFL IMP 39 39 38 36 36 38 8 38 38 3 3 PRESS REFL FACTOR P<sub>T</sub>/P<sub>S</sub> 2.009 2.00 2.00 2.08 2.22 2.22 2.06 1.98 2.03 2.07 2.07 REFL PRESS k Pa 201 56 26 22 3 22 22 20 3 25 3 Incidence degrees Angle of 27.5 37.5 40.5 42.5 43.5 10 45 16 35 21 0

35

2.1

 $11 + \cdots + 11$ 

سألك المستعانية والالالي والأسفاق والمستعادة

well when

x + subjection

and statistical solutions around

and shares a

| (CONT)    |
|-----------|
| INCIDENCE |
| OF        |
| ANGLE     |
| VERSUS    |
| RAT10S    |
| IMPULSE   |
| AND       |
| PRESSURE  |
| REFLECTED |
| 5.        |
| TABLE     |

|                         | IMP<br>REFL<br>FACTOR<br>I <sub>r</sub> /I <sub>b</sub>   | 1.00 | 1.00 | 1.04 | 1.08 | 1.00 | 1.04 | 1.0% | 1.04        | 1.04 | 1.08 | 1.12   |
|-------------------------|-----------------------------------------------------------|------|------|------|------|------|------|------|-------------|------|------|--------|
| .0, I <sub>8</sub> = 25 | REFL<br>IMP<br>I <sub>T</sub><br>kPa-ms/kg <sup>1/3</sup> | 25.0 | 25.0 | 26.0 | 27.0 | 25.0 | 26.0 | 26.0 | 26.0        | 26.0 | 27.0 | 28 . Ņ |
| B, P <sub>S</sub> = 14  | PRESS<br>REFL<br>FACTOR<br>P <sub>T</sub> /P <sub>8</sub> | 1.00 | 1.14 | 1.43 | 1.57 | 1.79 | 1.84 | 1.84 | 1.84        | 1.84 | 1.80 | 1.80   |
| Station 7               | RSFL<br>Press<br>Pr<br>kPa                                | 14   | 15   | 20   | 22   | 25   | 26   | 26   | 26          | 97.  | 25   | 25     |
|                         | Angle<br>of<br>Incidence<br>degrees                       | 06   | 80   | 74   | 69   | 62.5 | 56   | 52.5 | <b>69.5</b> | 47.5 | 46.5 | 45     |
|                         | IMP<br>REFL<br>FACTOR<br>I <sub>T</sub> /I <sub>S</sub>   | 1.15 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.10        | 1.10 | 1.12 | 1.12   |
| .2, I <sub>s</sub> = 25 | REFL<br>IMP<br>I<br>kPa-ms/kg1/3                          | 28.7 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 27.5        | 27.5 | 28.0 | 28.0   |
| A, P <sub>S</sub> = 14  | PRESS<br>REFL<br>FACTOR<br>P <sub>r</sub> /P <sub>a</sub> | 2.11 | 2.04 | 2.04 | 2.04 | 1.83 | 1.77 | 1.84 | 1.77        | 1.77 | 1.17 | 1.80   |
| Station 7.              | REFL<br>Press<br>Pr<br>kPa                                | 30   | 59   | 29   | 29   | 56   | 25   | 26   | 25          | 25   | 25   | 25     |
|                         | Angle<br>of<br>Incidence<br>degrees                       | 0    | 10   | 16   | 21   | 27.5 | 34   | 37.5 | 40.5        | 42.5 | 43.5 | 45     |

36

يغير

TABLE 5. REFLECTED PRESSURE AND IMPULSE RATIOS VERSUS ANGLE OF INCIDENCE (CONT)

= 15.5 + 6.32. . ۵ Station 8A,

" 1 l ۵ gg Station

|                              |                             | s                                                         | S. C.                                   |                                                         |                                     | STALLOU D                  | , rs = 0.                                                 | 4°CI - SI 47.               |                                                         |
|------------------------------|-----------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------|-----------------------------------------------------------|-----------------------------|---------------------------------------------------------|
| igle<br>of<br>dence<br>gre`s | REFL<br>PRESS<br>Pr<br>k Pa | PRESS<br>REFL<br>FACTOR<br>P <sub>L</sub> /P <sub>S</sub> | REFL<br>IMP<br>kPa-ms/kg <sup>1/3</sup> | IMP<br>REFL<br>FACTOR<br>I <sub>r</sub> /I <sub>s</sub> | Angle<br>of<br>Incidence<br>degrees | REFL<br>PRESS<br>Pr<br>kPa | PRESS<br>REFL<br>FACTOR<br>P <sub>r</sub> /P <sub>s</sub> | REFL<br>IMP<br>kPa-ms/kg1/3 | IMP<br>REFL<br>FACTOR<br>I <sub>r</sub> /I <sub>g</sub> |
|                              | 13.2                        | 2.09                                                      | 14.2                                    | 0.92                                                    | 06                                  | 7.2                        | 1.16                                                      | 12.6                        | 0.82                                                    |
| 0                            | 13.5                        | 2.14                                                      | 14.2                                    | 0.92                                                    | 80                                  | 8 • 2                      | 1.31                                                      | 12.2                        | 0.79                                                    |
| ۶                            | 14.0                        | 2.21                                                      | 14.8                                    | 0.95                                                    | 74                                  | 6.6                        | 1.58                                                      | 13.2                        | 0.86                                                    |
| -                            | 14.0                        | 2.21                                                      | 15.6                                    | 10.1                                                    | 69                                  | 11.0                       | 1.76                                                      | 13.1                        | 0.85                                                    |
| 7.5                          | 12.4                        | 1.97                                                      | 14.6                                    | 76.0                                                    | 62.5                                | 10.9                       | 1.74                                                      | 13.1                        | 0.85                                                    |
|                              | 11.2                        | 1.77                                                      | 14.5                                    | 94.0                                                    | 56                                  | 10.5                       | 1.67                                                      | 13.1                        | 0.85                                                    |
| .5                           | 11.3                        | 1.79                                                      | 14.5                                    | 0.94                                                    | 52.5                                | 10.9                       | 1.74                                                      | 13.0                        | 0.84                                                    |
| ۲ <b>.</b> (                 | 11.3                        | 1.79                                                      | 14.4                                    | 0.93                                                    | 49.5                                | 11.0                       | 1.75                                                      | 14.0                        | 16.0                                                    |
|                              | 1.11                        | 1.76                                                      | 13.9                                    | 06.0                                                    | 47.5                                | 11.0                       | 1.75                                                      | 13.5                        | 0.88                                                    |
| .5                           | 10.8                        | 1.72                                                      | 13.8                                    | 0.89                                                    | 46.5                                | 0.11                       | 1.75                                                      | 13.5                        | 0.88                                                    |
|                              | 11.4                        | 1.81                                                      | 14.3                                    | 0.93                                                    | 45                                  | 11.4                       | 1.81                                                      | 14.3                        | 0.93                                                    |

Acresteres

pressure  $(P_g)$  for a  $\Theta$  of 0 degrees is listed for Station A and the  $P_g$  for 90 degrees is listed for Station B. The  $P_g$  for each radial distance from  $\Theta = 0$  degree through  $\Theta = 90$  degrees was calculated to insure that the correct  $P_g$  for each angle was used in determining the ratio  $P_r/P_g$ . The values listed in Table 5 are plotted in Figures 14 and 15.

The reflected impulse ratios listed in Table 5 are based on the reflected impulse curves plotted in Figure 13 and the side-on impulse listed in Table 4 adjusted for the R distance between Station A and B. The range of side-on impulses is listed for each station in Table 5. The values of reflected impulse  $I_r$  divided by the side-on impulse  $I_s$  listed in Table 5 are plotted in Figure 16.

#### IV. DISCUSSION

The data tables and plotted curves presented in the Results section show trends of the effects on reflected pressure and impulse, of the angle of incidence of the shock front striking an isolated structure. Some of these trends follow theory and predictions as presented in the Predictive Approach of the Test Procedures section while other results are different.

#### A. koflected Pressure in the Regular and Mach Reflection Regions

The curve showing reflective pressure  $(P_r)$  as a function of incident pressure  $'P_s$ ) for all angles of incidence in the regular reflection region is shown in Figure 17. This curve is quite similar to the family of curves presented in Figure 7. Note in Figure 7 the slope angles are identified rather than the angle of incidence. The spread of data is indicated by the band at each station location. This means that when a particular station receives the same incident pressure  $(P_s)$  and as the model is rotated to change the angle of incidence the reflected pressure  $(P_r)$  does not change greatly in the regular reflection region. This is shown graphically in Figure 12.

The family of curves presented in Figure 18 show a trend similar to that presented in Figure 8 for pressure enhancement in the Mach reflection region. The quantitative values are higher in Figure 8 than measured experimentally in Figure 18. This difference is because the measured values from this series did not record the enhancement at the transition zone from the regular reflection region to the Mach reflection region as shown in Figure 9. The enhancement shown in Figure 9 is of very short duration and would have little effect on impulse in the blast wave.

#### B. Reflected Impulse in the Regular and Mach Reflection Regions

The reflected impulse versus incident impulse and angle of incidence is presented in Figure 13. A variation of this presentation is made in Figure 19 where the data is plotted for reflected impulse  $I_r$  as a function of incident impulse  $(I_g)$  in the regular reflection region. The two solid lines show the variation in reflected impulse measured on an isolated structure when the angle of incidence is in the regular reflection region.

. . . . . . .



् जे जनमे है

ų.

- Ps = 346 294
   Ps = 223 144
  - Δ Ps = 141 126
- **D** Ps = 70.8 67.4



Ľ



Se in the second









Figure 18. Reflected Pressure  $(P_{T})$  versus Incident Pressure  $(P_{T})$  in the Mach Reflection Region as a Function of Angle of Incidence.

The dashed line presented in Figure 19 is to show the difference in the zero degree or head-on reflected impulse on an infinite plane and that recorded on a finite model. The lower values recorded on the model are because the arrival of the rarefaction waves from the sides of the structure causes an increase in the rate of decay of the reflection pressure which produces a lower reflected impulse.

The reflected impulse recorded in the Mach reflection region is plotted in Figure 13 and presented in a different manner in Figure 20. In this figure the enhancement of reflected impulse becomes less as the angle of incidence approaches 90 degrees, or side-on conditions. The vortex from the front corner of the structure causes a lowering of the overpressure during the passage of the blast wave and the reflected impulse becomes less than the side-c impulse at an angle of incidence of 90 degrees. This is also true at some of the values measured at an 80 degree angle of incidence.

#### V. CONCLUSIONS

The results presented in this report are based on one size structure and one charge mass. Therefore it cannot be applied in general to all size structures and all charge masses. The model was  $0.3048m \ge 0.3048m \ge 0.4572m$ exposed to a 1 kg charge mass. This means the results could be applied to structures where the size is increased by the cube root of the charge mass, for example, a 1000 kg charge mass and a 3.048 metre structure or a 125000 kg charge and a 15.24 metre structure or a 512000 kg charge mass and a 24.38 metre structure 36.58 metreshigh. Care would have to be exercised in applying the results to other combinations of charge mass and structure dimensions. If a charge mass is held constant and the structure size increased, the reflected impulse values in the regular reflection region would approach the infinite plane case.

#### ACKNOWLEDGEMENTS

The authors wish to acknowledge the outstanding work of Mr. S. Dunbar, the electrical engineer in charge of the instrumentation facility, who was responsible for recording all of the overpressure versus time data. He also processed the analog magnetic data tape through the data conversion computers to produce the information in digital form for plotting and analysis.

The authors also wish to acknowledge the work of Mr. K. Holbrook, technician and explosive handler for the excellent job done in site preparation, blast line installation, and model instrumentation and placement.









#### LIST OF REFERENCES

1. Department of the Army, the Navy, and the Air Force. "Structures to Resist the Effects of Accidental Explosions," June 1969, TMS-1300, NAVFAC P-397, AFM 88-22.

2. R.E. Reisler, B. Pettit and L. Kennedy, "Air Blast Data from Height of Burst Studies in Canada, Vol I: HOB 5.4 to 71.9 Feet," BRL Report No. 1950, December 1976 (AD B016344L).

3. R.E. Reisler, B. Pattit and L. Kennedy, "Air Blast Data from Height of Burst Studies in Cauada, Vol II: HOB 4.5 to 144.5 Feet," BRL Report No. 1990, May 1977.

4. C.N. Kingery, "Air Blast Parameters versus Distance for Hemispherical Surface Bursts," BRL Report 1344, September 1966 (AD 811673).

5. "Nuclear Weapons Blast Phenomena, Vol.II, Blast Wave Interaction," DASA 1200-II, I December 1970 (Confidential RD).

6. C.N. Kingery and B.F. Pannill, "Parametric Analysis of Regular Reflection of Air Blast," BRL Report 1249, June 1964 (AD 444997).

7. Kenneth Kaplan, "Effects of Terrain on Blast Prediction Methods and Prediction," BRL Contract Report ARBRL-CR-00355, January 1978 (AD A051350).

8. H.L. Brode, "Height of Burst Effects at High Overpressures," The Rand Corporation, RM-6301, DASA 2506, July 1970.

9. Charles Kingery and George Coulter, "TNT Equivalency of Pentolite Hemispheres," ARBRL-TR-02456, December 1982 (AD A123340).

### No. of Copies Organization

#### No. of Copies

#### es Organization

- 12 Administrator Defense Technical Information Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314
  - 1 Office Secretary of Defense ADUSDRE (R/AT) (ET) ATTN: Mr. J. Persh, Staff Specialist, Materials and Structures Washington, DC 20301
  - Under Secretary of Defense for Research and Engineering Department of Defense Washington, DC 20301
  - Director of Defense Research and Engineering Washington, DC 20301
  - 1 Assistant Secretary of Defense (MRA&L) ATTN: EO&SP Washington, DC 20301
  - Assistant Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301
  - Director
     Defense Advanced Research
     Projects Agency
     1400 Wilson Boulevard
     Arlington, VA 22209
  - 1 Director Defense Intelligence Agency ATTN: DT-18, Dr. J. Vorona Washington, DC 20301

5 Chairman DOD Explosives Safety Board Room 856-C, Hoffman Bldg. I 2461 Eisenhower Avenue Alexandria, VA 22331 and the second states of the second state with

- 1 Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35898
- Director
   Institute for Defense Analysis
   ATTN: Dr. H. Menkes
   Dr. J. Bengston
   Tech Info Ofc
   1801 Beauregard St.
   Alexandria, VA 22311
- 2 Chairman Joint Chiefs of Staff ATTN: J-3, Operations J-5, Plans & Policy (R&D Division) Washington, DC 20301
- 1 Director Defense Communications Agency ATTN: NNCSSC (Code 510) 8th St. and S. Courthouse Rd. Washington, DC 20305
- 4 Director
   Defense Nuclear Agency
   ATTN: SPTD, Mr. T.E. Kennedy
   DDST (E), Dr. E. Sevin
   OALG, Mr. T.P. Jeffers
   LEEE, Mr. J. Eddy
   Washington, DC 20305
- 1 Commander US Army Missile Command ATTN: DRSMI-RR, Mr. L. Lively Redstone Arsenal, AL 35898

49

PHECEDENG PACE BLANK-NOT FILDED

فغنيت

I which is a first of the

allağında ili sinerin cozm

- North California Andre

and the second second second second second

ा एत्यान् हीतिहाल्ली द्वाव्यातेल

en. V adhile IGA e

「キャンシャー

 downate we do inductional and second and set of all distribution where we consider the second se 

Marth Company

ŝ

BUND B

| No. of<br>Copies | Organization                                                                                                    | No. of<br>Copies | Organization                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1                | DNA Information and Analysis<br>Center<br>Kaman Tempo<br>ATTN: DASIAC                                           | 1                | AFFDL (FBE)<br>Wright-Patterson AFB<br>OH 45433                                                                                     |
|                  | 816 State Street<br>P.O. Drawer QQ                                                                              | 1                | AFLC (MMWM/CPT D. Rideout)<br>Wright-Patterson AFB, OH 45433                                                                        |
| ,                | Santa Darbara, Ch. 55102                                                                                        | 1                | AFLC (IGYE/K. Shopker)<br>Wright-Patterson AFB, OH 45433                                                                            |
| Ţ                | Air Force Armament Laboratory<br>ATTN: DLYV, Mr. R.L. McGuire                                                   | 1                | AFML (LLN, Dr. T. Nicholas<br>Wright-Patterson AFB, OH 45433                                                                        |
| 1                | Eglin AFB, FL 32342<br>Ogden ALC/MMWRE                                                                          | 1                | AFML (MAS)<br>Wright-Patterson AFB, OH 45433                                                                                        |
|                  | ATTN: (Mr. Ted E. Comins)<br>Hill AFB, UT 84406                                                                 | 1                | FTD (ETD)<br>Wright-Patterson AFB                                                                                                   |
| 4                | AFWL/SUL, NTES, NTE, NTES<br>Kirtland AFB, NM 87117                                                             |                  | OH 45433                                                                                                                            |
| 1                | AFML (MBC/D. Schmidt)<br>Wright-Patterson AFB, OH 45433                                                         | 1                | Mr. Richard W. Watson<br>Director, Pittsburgh Mining<br>& Safety Research Center                                                    |
| 1                | Director of Aerospace Safety<br>HQ, USAF<br>ATTN: JGD/AFISC (SEVV),<br>COL J.E. McQueen<br>Norton AFB, CA 92409 |                  | Bureau of Mines, Dept of the<br>Interior<br>4800 Forbes Avenue<br>Pittsburgh, PA 15213                                              |
| 2                | HQ, USAF<br>ATTN: IDG/AFISC,<br>(SEW)W.F. Gavitt, Jr.<br>(SEV)Mr. K.R. Shopher<br>Norton AFB, CA 92409          | 1                | Headquarters<br>Energy Research and<br>Development Administration<br>Department of Military<br>Applications<br>Washington, DC 20545 |
| 2                | Director<br>Joint Strategic Target<br>Planning Staff<br>ATTN: JLTW; TPTP<br>Offutt AFB<br>Ometer NB 68113       | 1                | Director<br>Office of Operational and<br>Environmental Safety<br>US Department of Energy<br>Washington, DC 20545                    |
| 1                | HQ AFESC/RDL<br>RDC Walter Buckholtz<br>Tyndal AFB, FL 32403                                                    | 1                | Commander<br>US Army Armament Hateriel<br>Readiness Command<br>ATTN: DRSAR-LEP-L<br>Rock Laland II 61299                            |
| 1                | AFCEC (DE-LTC Walkup)<br>Tyndall AFB, FL 32403                                                                  |                  | NUCK LOADING, IN UIC//                                                                                                              |

\_ -

| No. of |             |            |        |
|--------|-------------|------------|--------|
| Copies | Organ       | nization   |        |
| 1      | Albuquerque | Operations | Office |

-----

- US Department of Energy ATTN: Div of Operational Safety P.O. Box 5400 Albuquerque, NM 87115
- Commander
   US Army Aviation Research and Development Command
   ATTN: DRDAV-E
   4300 Goodfellow Blvd
   St. Louis, M0 63120
- Director
   US Army Air Nobility Research and Development Laboratory
   Ames Research Center
   Noffett Field, CA 94035
- 2 Director Lewis Directorate US Army Air Mobility Research and Development Laboratory Lewis Research Center ATTN: Mail Stop 77-5 21000 Brookpark Road Cleveland, OH 44135
- 2 Commander US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA DRSEL-ATDD Fort Monmouth, NJ 07703
- 1 Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703

### No. of Copies

 Commander US Army Harry Diamond Labs ATTN: DELHD-TI 2800 Powder Mill Road Adelphi, MD 20793

Organization

とうない ふいごう アンデュモ

-----

- 1 Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35898
- Commander US Army Missile Command ATTN: DRSMI-RX, Mr. V. Thomas Redstone Arsenal, AL 35898
- Commander
   US Army Mobility Equipment Research & Development Command
   ATTN: DRDFB-ND, Mr. R.L. Brooke
   Fort Belvoir, VA 22060
- Commander
   US Army Natick Research and
   Development Command
   ATTN: DRDNA-D, Dr. D. Seiling
   Natick, MA 01762
- 3 Commander US Army Tank Automotive Command ATTN: DRSTA-TSL DRSTA-TL DRSTA-UL Warren, MI 48090
- 1 Commander Dugway Proving Ground ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022

| No. of |                             | No. of |                               |
|--------|-----------------------------|--------|-------------------------------|
| Copies | Organization                | Copies | Organization                  |
| 1      | Commander                   | 1      | Commander                     |
|        | US Army Foreign Science and |        | US Army Rock Island Arsenal   |
|        | Technology Center           |        | Rock Island, IL 61299         |
|        | ATTN: RSCH & Data Branch    |        | •                             |
|        | Federal Office Building     | 1      | Director                      |
|        | 220-7th Street, NE          |        | US Army ARRADCOM              |
|        | Charlottesville, VA 22901   |        | Benet Weapons Laboratory      |
|        |                             |        | ATTN: DRDAR-LCB-TL            |
| 1      | Commander                   |        | Watervliet, NY 12189          |
|        | US Army Materials and       |        | •                             |
|        | Mechanics Research Center   | 2      | Commandant                    |
|        | ATTN: DRXMR-ATL             |        | US Army Infantry School       |
|        | Watertown, MA 02172         |        | ATTN: ATSH-CD-CSO-OR          |
|        |                             |        | Fort Benning, GA 31905        |
| 1      | Director                    |        |                               |
|        | DARCOM, ITC                 | 1      | Commander                     |
|        | ATTN: Dr. Chiang            |        | Cornhusker Army Ammunition    |
|        | Red River Depot             |        | Plant                         |
|        | Texarkana, TX 75501         |        | Grand Island, NE 68801        |
| 1      | Commander                   | 1      | Commander                     |
|        | US Army Armament Research   |        | Towa Army Ammunition Plant    |
|        | and Development Command     |        | Burlington, IA 52502          |
|        | ATTN: DRDAR-LCN-SP          |        | ·                             |
|        | Dover, NJ 07801             | 1      | Commander                     |
|        |                             |        | Indiana Army Ammunition Plant |
| 2      | Commander                   |        | Charlestown, IN 47111         |
|        | US Army Armament Material   |        | •                             |

Readiness Command

Rock Island, IL 61299

US Army Armament Research

DRDAR-TDC

and Development Command

Commander

Commander

ATTN: DRDAR-TSS

Dover, NJ 07801

Pine Bluff Arsenal Pine Bluff, AR 71601

3

1

ATTN: Joint Army-Navy-Air

GP/El Jordan

Force Conventional

Ammunition Prof Coord

1 Commander Joliet Army Ammunition Plant Joliet, IL 60436 are and example a contract and a solution of the second seco

- 1 Commander Kansas Army Ammunition Plant Parsons, KS 67357
- Commander
   Lone Star Army Ammuntion Plant
   Texarkana, TX 75502
- 1 Commander Longhorn Army Ammuntion Plant Marshall, TX 75671
- 1 Commander Louisiana Army Ammunition Plant Shreveport, LA 71102

ou oblighte hills

uille i

-----

| No. of<br>Copies | Organization                                                                    | No. of<br>Copies | Organization                                                                                                |
|------------------|---------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------|
| 1                | Commander<br>Milan Army Ammunition Plant<br>Milan, TN 38358                     | 1                | HQDA (DAEN-ECE-T/Mr.R.L.<br>Wright)<br>Washington, DC 20310                                                 |
| 1                | Commander<br>Radford Army Ammunition<br>Plant<br>Radford, VA 24141              | 1                | Director<br>US Army BMD Advanced<br>Technology Center<br>ATTN: M. Whitfield<br>P.O. Box 1500                |
| 1                | Commander<br>Ravenna Army Ammuntion Plant<br>Ravenna, OH 44266                  | 1                | Huntsville, AL 35807<br>Commander<br>US Army allistic Missile                                               |
| 1                | Commander<br>Field Command<br>Defense Nuclear Agency<br>ATTN: Tech Lib, FCWS-SC |                  | Defense Systems Command<br>ATTN: J. Veeneman<br>P.O. Box 1500<br>Huntsville, AL 35807                       |
| 1                | Kirtland AFB, NM 87115<br>HQDA (DAMA-CSM-CA)<br>Washington, DC 20310            | 1                | Commander<br>US Army Engineer Waterways<br>Experiment Station<br>ATTN: WESNP                                |
| 1                | HQDA (DAMA-AR; NCL Div)<br>Washington, DC 20310                                 |                  | P.O. Box 631<br>Vicksburg, MS 39181                                                                         |
| 1                | HQDA (PAMA-NCC,<br>COL R.D. Orton)<br>Washington, DC 20310                      | 1                | Commander<br>US Army Materiel Development<br>and Readiness Command<br>ATTN: DRCSF<br>5001 Eisenhower Avenue |
| L                | Washington, DC 20310                                                            |                  | Alexandria, VA 22333                                                                                        |
| 1                | HQDA (DAEN-RD2-A,<br>Dr. Choromokos)<br>Washington, DC 20310                    | I                | US Army Materiel Development<br>and Readiness Command<br>ATTN: DRCDMD-ST<br>SOOL Freebourg Average          |
| 1                | Commander<br>US Army Europe<br>ATTN; AEACA-BE, Mr. P. Morgan                    | 1                | Alexandría, VA 22333<br>Director                                                                            |
| 1                | APO New York, NY 09801<br>HQDA (DAPE-HRS)<br>Washington, DC 20310               |                  | DARCOM Field Safety Activity<br>ATTN: DRXOSOES<br>Charlestown, IN 47111                                     |

53

HQDA (DAEN-NCC-D/Mr. L. Foley)

Washington, DC 20310

1

ستختص فالالالة الم

| No. of<br>Copies | Organization                                                                                          | No. of<br><u>Copies</u> | Organization                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1                | Office of the Inspector<br>General<br>Department of the Army<br>ATTN: DAIG-SD<br>Washington, DC 20310 | 1                       | Chief of Research,<br>Development, and A<br>Department of the Ar<br>ATTN: DAMA-CSN-CA,<br>LTC V. F. B<br>Washington, DC 20310 |
| 1                | US Army Engineer Div. Europe<br>ATTN: EUDED. Mr. N. Howard                                            | 1                       | Assistant Secretary                                                                                                           |

Commander US Army Research Office P.O. Box 12211 Research Triangle Park NC 27709

1

APO New York, NY 09757

- 1 Director US Army TRADOC Systems Analysis Activity ATTN: ATTA-SL White Sands Missile Range NM 88002
- 1 Division Engineer US Army Engineer Division Fort Belvoir, VA 22060
- 1 US Army Engineer Division ATTN; Mr. Cher P.O. Box 1600 Huntsville, AL 35809
- 1 Commandant US Army Engineer School ATTN: ATSE-CD Fort Belvoir, VA 22060
- Commander 1 US Army Construction Engineering Research Lab P.O. Box 4005 Champaign, IL 61820

- cquisition ωy urrell
- of the Navy (Rsch & Dev) Navy Development Washington, DC 20350
- 2 Chief of Naval Operation ATTN: OP-411, C. Ferraro, Jr. OP-41B, CAPT V.E. Strickland Washington, DC 20350
- 1 Commander Naval Air Systems Command ATTN: AIR-532 Washington, DC 20360
- 3 Commander Naval Sea Systems Command ATTN: SEA-62R, SEA-62Y, SEA-9961 Washington, DC 20360
- 1 Commander US Army Missile Command ATTN: DRSMI-RSS, Mr. Bob Cobb Redstone Arsenal, AL 35898
- 1 Commander Naval Facilities Engineering Command ATTN: Code 045 200 Stoval Street Alexandria, VA 22332

## No. of Copies Organization

- 2 Commander David W. Taylor Naval Ship Research & Development Center ATTN: Mr. A. Wilner, CODE 1747 Mr. W.W. Murray, CODE 17 Bethesda, MD 20084
- 3 Commander Naval Surface Weapons Center ATTN: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huang Silver Spring, MD 20910
- Commander Naval Surface Weapons Center White Oak Laboratory ATTN: R-15, Mr. M.M. Swisdak Silver Spring, MD 20910
- Commander Naval Surface Weapons Center Dahlgren Laboratory ATTN: E-23, Mr. J.J. Walsh Dahlgren, VA 22448
- 1 Commander Naval Weapons Center ATTN: Code 0632, Mr. G. Ostermann China Lake, CA 93555
- 1 Commander Naval Ship Research and Development Center Facility ATTN: Mr. Lowell T. Butt Underwater Explosions Research Division Portsmouth, VA 23709
- 1 Commanding Officer Naval Weapons Support Center Crane, IN 47522

# No. of

1

# Copies Organization

- Officer in Charge Naval EOD Facility ATTN: Code D, Mr. L. Dickenson Indian Head, MD 20640
- 1 Commander Naval Weapons Evaluation Facility ATTN: Document Control Kirtland AFB Albuquerque, NM 87117
- 1 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Washington, DC 20375
- 1 Officer in Charge (Code L31) Civil Engineering Lab ATTN: Code L51, Mr. W.A. Keenan Naval Construction Battalion Center Port Hueneme, CA 93041
- 2 Superintendent Naval Postgraduate School ATTN: Tech Reports Sec. Code 57, Prof. R. Ball Monterey, CA 93940
- Commander Bureau of Naval Weapons Department of the Navy Washington, DC 20360
- 1 HQ USAF (AFNIE-CA) Washington, DC 20330
- 3 HQ USAF (AFRIDO; AFRODXM; AFRDPM) Washington, DC 20330
- 1 AFTAWC (OA) Eglin AFB, FL 32542

| No. of | 0                                                                                                                                           | No. of | E                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| copies | Organization                                                                                                                                | Copie  | e Organization                                                                                                                                        |
| 1      | Air Force Systems Command /SDOA<br>ATTN: IGFG<br>Andrews AFB, MD 20334                                                                      | 1      | Director<br>National Aeronautics and Space<br>Administration<br>Marshall Space Flight Center                                                          |
| 1      | AFRPL<br>Edwards AFB, CA 93523                                                                                                              | 2      | Huntsville, AL 35812<br>Director<br>National Aeronautics and Space                                                                                    |
| 1      | ADTC (DLODL, Tech Lib)<br>Eglin AFB, FL 3254?                                                                                               |        | Administration<br>Aerospace Safety Research and<br>Data Institute                                                                                     |
| 1      | ADTC<br>Eglin AFB, FL 32542                                                                                                                 |        | AIIR: Mr. S. Weiss,<br>Mail Stop 6-2<br>Mr. R. Kemp,                                                                                                  |
| 1      | Institute of Makerr of<br>Explosives<br>ATTN: Mr. Harry Hampton<br>Graybar Buildings, Rm 2449<br>420 Lexington Avenue<br>New York, NY 10017 | 1      | Mail Stop 6-2<br>Lewis Research Center<br>21000 Brookpark Road<br>Cleveland, OH 44135<br>Director<br>National Aeronautics and Space<br>Administration |
| 1      | Institute of Makers of<br>Explosives<br>ATTN: Mr. F.P. Smith, Jr.,<br>Executive Director<br>1575 Eye St., N.W.<br>Washington, DC 20005      |        | Scientific and Technical<br>Information Facility<br>P.O. Box 8757<br>Baltimore/Washington<br>International Airport<br>MD 21240                        |
| 1      | Director<br>Lawrence Livermore Laboratory<br>Technical Information Division<br>P.O. Box 808<br>Livermore, CA 94550                          | 1      | National Academy of Science<br>ATTN: Mr. D.G. Groves<br>2101 Constitution Avenue, NW<br>Washington, DC 20419                                          |
| 1      | Director<br>Los Alamos Scientific Lab<br>ATTN: Dr. J. Taylor<br>P.O. Box 1663<br>Los Alamos, NM 87545                                       | I      | Associates of Princeton,<br>Inc.<br>ATTN: Dr. C. Donaldson<br>50 Washington Road, PO Box 2229<br>Princeton, NJ 08540                                  |
| 2 1    | Director<br>Sandia Laboratories<br>NTN: Info Dist Div<br>Dr. W.A. von Riesemann                                                             | 1      | Aerospace Corporation<br>P.O. Box 92957<br>Los Angeles, CA 90009                                                                                      |
| l      | Vouquerque, NM 87115                                                                                                                        | 1      | Aghabian Associates<br>ATTN: Dr.D.P.Reddy<br>250 N.Nash Street<br>El Segundo, CA 90245                                                                |

56

AND IN THE REAL PROPERTY OF THE PARTY OF T

E

ľ

ويحتفظها فاحتمدها والمراجعا والقارب والمقاولة والرجميم منتجا للطالي ومحمد وأوجاهم والارتباط والمراجع والمتعادية

| No. of<br>Coples | Organization                   | No. of<br>Copies | Organization         |
|------------------|--------------------------------|------------------|----------------------|
| <u> </u>         |                                |                  | <u>organización</u>  |
| 2                | AVCO Systems Division          | 1                | J.G. Engineering Re  |
|                  | Structures and Mechanics Dept. |                  | Associates           |
|                  | ATTN: Dr. William Broding      |                  | 3831 Menlo Drive     |
|                  | Dr. J. Gilmore                 |                  | Baltimore MD 212     |
|                  | 201 Lowell Street              |                  |                      |
|                  | Wilmington, MA 0.887           | 3                | Kaman-Nuclear        |
|                  |                                | 5                | ATTN Dr FH Ch        |
| 2                | Battelle Memorial Institute    |                  |                      |
|                  | ATTN: Dr. L.E. Hulbert         |                  |                      |
|                  | Mr. J.E. Backofen, Jr.         |                  | 1500 Condon of the   |
|                  | 505 King Avenue                |                  | Colorado Santas      |
|                  | Columbus, 0H 43201             |                  | colorado springs, i  |
|                  |                                | 1                | Kaalla Advanta D     |
| 1                | Black & Vetach Congulting      | 1                | Knolis Atomic Power  |
| •                | Engineers                      |                  | ATTN: Dr. R.A. Por   |
|                  | ATTN: Me HI Callaban           |                  | Schenectady, NY 12   |
|                  | 1500 Meeden Lake Diskuss       | -                |                      |
|                  | Kongan City MD (11)            | 1                | Lovelace Research    |
|                  | Kansas City, MJ 64114          |                  | ATTN: Dr. E.R. Flo   |
| •                | The Decker Course              |                  | P.O. Box 5890        |
| 2                | ine boeing company             |                  | Albuquerque, NM 8    |
|                  | Aerospace Group                |                  |                      |
|                  | Alla: Dr. Peter Grafton        | 2                | Martin Marietta Cor  |
|                  | Dr. D. Strome                  |                  | ATTN: Dr. P.F. Jon   |
|                  | Mail Stop 8C-68                |                  | Mr. R. Goldr         |
|                  | F.O. BOX 3707                  |                  | 1450 S. Rolling Roa  |
|                  | Seattle, WA 98124              |                  | Baltimore, MD 2123   |
| 1                | General American               |                  |                      |
|                  | Transportation Corp.           | 1                | Mason & Hanger-Sila  |
|                  | General American Research Div. |                  | Co., Inc.            |
|                  | ATTN: Dr. J.C. Shang           |                  | Pantex Plant         |
|                  | 7449 N. Natchez Avenue         |                  | ATTN: Director of    |
|                  | Niles, IL 60548                |                  | P.O. Box 647         |
|                  |                                |                  | Amarillo, TX 79117   |
| 1                | Hercules, Inc.                 |                  |                      |
|                  | ATTN: Billings Brown           | 1                | McDunnell Douglas /  |
|                  | Box 93                         | -                | Western Division     |
|                  | Magna, UT 84044                |                  | ATTN: Dr. Les Cobe   |
|                  | -                              |                  | 5301 Boles Avenue    |
| 2                | Kaman~AviDyne                  |                  | Buntington Reach     |
|                  | ATTN: Dr. N.P. Hobbs           |                  | nuntrington beach, t |
|                  | Mr. S. Criscione               | 1                | Monanata Basanah (   |
|                  | Northwest Industrial Park      | L                | Mound Laboraters     |
|                  | 83 Second Avenue               |                  | ATTN: Emails N CC    |
|                  | Burlington, MA (1803           |                  | Mandahura OU (7)     |
|                  |                                |                  | ruamisourg, OH 453   |
|                  |                                |                  |                      |

Research 215

A.F.++# 

-----

···· • • • • • • • • • • • • The second and the second s

helton hs fe e Gods Road CO 80907

- er Laboratory owell 12309
- Institute letcher 87115
- poration ordan dman oad 227
- las Mason f Development 17
- Astronautics hen CA 92647
- Corporation 5342

#### No. of Organization Copies 1 Physics International 2700 Merced Street San Leandro, CA 94577 1 **R&D** Associates

- ATTN: Mr. John Lewis P.O. Box 9695 Marina del Rey, CA 90291
- 1 Science Applications, Inc. 8th Floor 2361 Jefferson Davis Highway Arlington, VA 22202
- 1 Brown University Division of Engineering ATTN: Prof. R. Clifton Providence, RI 02912
- 1 Florida Atlantic University Dept. of Ocean Engineering ATTN: Prof. K.K. Stevens Boca Raton, FL 33432
- Georgia Institute of Tech 1 ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332
- 1 **IIT Research Institute** ATTN: Mrs. H. Napadensky 10 West 35 Street Chicago, IL 60616
- 1 Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E.A. Witmar 77 Massachusetts Avenue Cambri'ge, MA 02139
- 3 Southwest Research Institute ATTN: Dr. H.N. Abramson Dr. W.E. Baker Dr. U.S. Lindholm 8500 Culebra Road San Antonio, TX 78228

# No. of

1

#### Copies

- Organization
  - Ammann & Whitney
- ATTN: Mr. N. Dobbs Suite 1700 Two World Trade Center New York, NY 10048
- Texas A&M University 1 Department of Aerospace Engineering ATTN: Dr. James A. Stricklin College Station, TX 77843
- University of Alabama 1 ATTN: Dr. T.L. Cost P.O. Box 2908 University, AL 35486
- 1 University of Delaware Department of Mechanical and Aerospace Engineering ATTN: Prof J.R. Vinson Newark, DE 19711

Aberdeen Proving Ground

Dir, USAMSAA ATTN: DP.XSY-D DRXSY-G, Mr. R.Norman DRXSY-MP, H. Cohen

Cdr, USATECOM ATIN: DRSTE-TO-F

Cdr, USATHAMA ATTN: DRXTH-TE

Dir, USACSL ATTN: DRDAR-CLB-PA DRDAR-CLN DRDAR-CLJ-L

#### USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet. fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

| Name:                 |  |
|-----------------------|--|
| Telephone Number:     |  |
| Organization Address: |  |
|                       |  |
|                       |  |
|                       |  |

| Director<br>US Army Ballistic Research<br>ATTN: DRSMC-BLA-S (A)<br>Aberdeen Proving Ground, MD                   | FOLD HERE                          |                                                                                    | NO POSTALE<br>NECESSARY<br>IF MAILED<br>IN THE<br>UNITED STATES                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFFICIAL BUSINESS<br>PENALTY FOR PRIVATE JBE. \$300                                                              | BUSINESS REPLY A                   | MAIL<br>Ashington, DC                                                              | بر المترجية التيكيني<br>جمير الراكية والمثل                                                                                                                                                                                        |
|                                                                                                                  | POSTAGE WILL BE PAID BY DEPARTMENT | OF THE ARMY                                                                        | ي منه مين المركز مين المركز المركز<br>المركز المركز |
| Director<br>US Army Ballistic Research Laboratory<br>ATTN: DR SMC-BLA-S (A)<br>Aberdeen Proving Ground, MD 21005 |                                    | د بالاستان بالمتنز بالستان<br>الاستان بالمتنز بالمتنز<br>المترين المتنز بالمتنز با |                                                                                                                                                                                                                                    |

1.

FOLD HERE -----

\_ .....

-