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We study reflected solutions of one-dimensional backward stochastic
differential equations. The “reflection” keeps the solution above a given
stochastic process. We prove uniqueness and existence both by a fixed point
argument and by approximation via penalization. We show that when the
coefficient has a special form, then the solution of our problem is the value
function of a mixed optimal stopping–optimal stochastic control problem.
We finally show that, when put in a Markovian framework, the solution of
our reflected BSDE provides a probabilistic formula for the unique viscosity
solution of an obstacle problem for a parabolic partial differential equation.

1. Introduction. Backward stochastic differential equations, BSDE’s in
short, were first introduced by Pardoux and Peng [17]. It has been since widely
recognized that they provide a useful framework for formulating many prob-
lems in mathematical finance; see in particular [9] and [13]. They also appear
to be useful for problems in stochastic control and differential games (see [13]
and [14]), for constructing �-martingales on manifolds with prescribed lim-
its (see [5]) and providing probabilistic formulas for solutions of systems of
quasi-linear partial differential equations (see [18]).

In this paper, we study the case where the solution is forced to stay above
a given stochastic process, called the obstacle. An increasing process is intro-
duced which pushes the solution upwards, so that it may remain above the
obstacle. The problem is formulated in detail in Section 2. We show that the
solution can be associated with a classical deterministic Skorohod problem.
From this, it is easy to derive that the increasing process of the reflected BSDE
can be expressed as an infimum. Furthermore, we state that the solution of
the BSDE corresponds to the value of an optimal stopping time problem.

In Section 3, we state some estimates of the solutions from which we derive
some integrability properties of the solution. We also give some a priori esti-
mates on the spread of the solutions of two RBSDE’s. In Section 4, we prove a
comparison theorem, similar to that in [13] and [19], for nonreflected BSDE’s.
Then, we give some properties of the increasing process associated with the
RBSDE.
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In Sections 5 and 6, existence is established via two different approximation
schemes. The first one studied in Section 5 is a Picard-type iterative procedure.
The definition of the sequence requires at each step the solution of an optimal
stopping time problem, which is solved with the help of the notion of the
Snell envelope. The second approximation is constructed by penalization of
the constraint in Section 6. In Section 7, we restrict ourselves to concave
coefficients, in which case the solution of the RBSDE is shown to be the value
function of a mixed optimal stopping–optimal stochastic control problem.

Finally, in Section 8, we show that, provided the problem is formulated
within a Markovian framework, the solution of the reflected BSDE provides
a probabilistic representation for the unique viscosity solution of an obstacle
problem for a nonlinear parabolic partial differential equation.

We note that obstacle problems for linear partial derivative equations ap-
pear as Hamilton–Jacobi–Bellman equations for optimal stopping problems;
see, for example, [3]. This interpretation is generalized here to nonlinear
PDE’s.

It has been noticed in [18] that solutions of BSDE’s are naturally connected
with viscosity solutions of possibly degenerate parabolic PDE’s. The notion of
viscosity solution, invented by M. Crandall and P. L. Lions, is a powerful tool
for studying PDE’s without smoothness requirement on the solution. We refer
the reader to the survey paper of Crandall, Ishii and Lions [4], from which we
have borrowed several notions and results. We have also used some techniques
from Barles [1] and Barles and Burdeau [2] for proving the uniqueness result
in Section 8.

Let us mention that the main result of this paper has already been applied
to a financial problem in [12].

2. Reflected BSDE, Skorohod problem and stopping time problem.
Let �Bt� 0 ≤ t ≤ T� be a d-dimensional standard Brownian motion defined
on a probability space ���� �P�. Let ��t� 0 ≤ t ≤ T� be the natural filtration
of �Bt�, where �0 contains all P-null sets of � and let � be the σ-algebra of
predictable subsets of �× �0�T�.

Let us introduce some notation.

L
2 = {

ξ is an �T-measurable random variable s.t. E�
ξ
2� < +∞}
�

H
2 =

{
�ϕt� 0 ≤ t ≤ T� is a predictable process s.t. E

∫ T
0


ϕt
2 dt < +∞
}
�

� 2 =
{
�ϕt� 0 ≤ t ≤ T� is a predictable process s.t. E

(
sup

0≤t≤T

ϕt
2

)
< +∞

}
�

We are given three objects: the first is a terminal value ξ s.t.

(i) ξ ∈ L
2.

The second is a “coefficient” f, which is a map

f� �× �0�T� × R× R
d→ R�
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such that
(ii) ∀ �y� z� ∈ R× R

d� f�·� y� z� ∈ H
2�

(iii) for some K > 0 and all y, y′ ∈ R, z� z′ ∈ R
d, a.s.


f�t� y� z� − f�t� y′� z′�
 ≤K�
y− y′
 + 
z− z′
�
and the third is an “obstacle” �St� 0 ≤ t ≤ T�, which is a continuous progres-
sively measurable real-valued process satisfying

(iv) E
(

sup
0≤t≤T

�S+t �2
)
<∞.

We shall always assume that ST ≤ ξ a.s.
In the last section, in order to get a probabilistic representation for an ob-

stacle problem for PDE’s, we shall assume that ξ, f and S are given functions
of a diffusion process �Xt� 0 ≤ t ≤ T�.

Let us now introduce our reflected BSDE. The solution of our RBSDE is
a triple ��Yt�Zt�Kt�, 0 ≤ t ≤ T� of �t progressively measurable processes
taking values in R, R

d and R+, respectively, and satisfying:

(v) Z ∈ H
2, in particular E

∫ T
0

Zt
2 dt <∞�

(v′) Y ∈ � 2 and KT ∈ L
2;

(vi) Yt = ξ+
∫ T
t
f�s�Ys�Zs�ds+KT −Kt −

∫ T
t
�Zs�dBs�� 0 ≤ t ≤ T�

(vii) Yt ≥ St� 0 ≤ t ≤ T;

(viii) �Kt� is continuous and increasing, K0 = 0 and
∫ T

0
�Yt −St�dKt = 0.

Actually, a general solution of our RBSDE should satisfy assumptions (vi)
to (viii). But we will, above all, consider solutions which satisfy integrability
assumptions, that is, (v) and (v′).

We will see later in Section 3 that (v′) follows from (v) and furthermore (see
Remark 3.2) that, without loss of generality, condition (iv) can be replaced by
E�sup0≤t≤T S2

t � <∞�
Note that from (vi) and (viii) it follows that �Yt� is continuous. Intuitively,

dKt/dt represents the amount of “push upwards” that we add to −�dYt/dt�,
so that the constraint (vii) is satisfied. Condition (viii) says that the push is
minimal, in the sense that we push only when the constraint is saturated, that
is, when Yt = St. Notice that in a deterministic framework, this corresponds
to the Skorohod problem. Consequently, we will be able to apply some well
known properties of the Skorohod problem. Recall the Skorohod lemma (see,
e.g., [11] and [20], page 229).

Lemma 2.1. Let x be a real-valued continuous function on �0�∞� such that
x0 ≥ 0. There exists a unique pair �y�k� of functions on �0�∞� such that
(a) y = x+k, (b) y is positive and (c) �kt� is continuous and increasing, k0 = 0
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and
∫∞

0 yt dkt = 0. The pair �y�k� is said to be the solution of the Skorohod
problem. The function k is moreover given by

kt = sup
s≤t
x−s

Now, our problem involves a Skorohod problem and consequently, the in-
creasing process can be written as a supremum. More precisely, we give the
following proposition.

Proposition 2.2. Let ��Yt�Zt�Kt�� 0 ≤ t ≤ T� be a solution of the above
RBSDE satisfying conditions (vi) to (viii). Then for each t ∈ �0�T�,

KT −Kt = sup
t≤u≤T

(
ξ +

∫ T
u
f�s�Ys�Zs�ds−

∫ T
u
�Zs� dBs� −Su

)−
�(1)

Proof. Notice that �YT−t�ω� − ST−t�ω��KT−t�ω� −KT�ω�� 0 ≤ t ≤ T� is
the solution of a Skorohod problem. Applying the Skorohod lemma with

xt =
(
ξ +

∫ T
T−t
f�s�Ys�Zs�ds−

∫ T
T−t

�Zs�dBs� −ST−t
)
�ω��

kt = �KT − KT−t��ω� and yt = �YT−t − ST−t��ω�, we derive the desired
result. ✷

It is not at all clear from (1) that �Kt� will be �t-adapted. The adaptedness
of �Y�K� will come from the adjustment of the process Z. In other words, Z
is the process which has the effect of making �Y�K� adapted.

In the following proposition, we show that the square-integrable solutionYt
of the RBSDE corresponds to the value of an optimal stopping time problem.

Proposition 2.3. Let ��Yt�Zt�Kt��0 ≤ t ≤ T� be a solution of the above
RBSDE satisfying conditions (v) to (viii). Then for each t ∈ �0�T�,

Yt = ess sup
v∈�t
E

[∫ v
t
f�s�Ys�Zs�ds+Sv1�v<T� + ξ1�v=T�
�t

]
(2)

where � is the set of all stopping times dominated by T, and

�t = �v ∈ � � t ≤ v ≤ T��

Proof. Let v ∈ �t. From (v) and (v′), we may take the conditional expec-
tation in (vi) written between times t and v, hence

Yt = E
[∫ v
t
f�s�Ys�Zs�ds+Yv +Kv −Kt
�t

]

≥ E
[∫ v
t
f�s�Ys�Zs�ds+Sv1�v<T� + ξ1�v=T�
�t

]
�
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We now choose an optimal element of �t in order to get the reversed inequality.
Let

Dt = inf�t ≤ u ≤ T� Yu = Su��
with the convention that Dt = T if Yu > Su, t ≤ u ≤ T. Now the condition∫ T

0 �Yt −St�dKt = 0 and the continuity of K imply that

KDt −Kt = 0�

It follows that

Yt = E
[∫ Dt
t
f�s�Ys�Zs�ds+SDt1�Dt<T� + ξ1�Dt=T�
�t

]
Hence, the result follows.

Remark 2.4. Note that in the particular case where f = 0, ST = ξ ≥ 0, it
follows from the previous propositions that

Y0 = E�ξ +KT�
= E

[
ξ + sup

t
�St +MT −Mt − ξ�+

]
Hence, since

ST = ξ�
Y0 = supv∈�0

E�Sv� = E
[
supt�St +MT −Mt�

]
�

whereMt =
∫ t

0�Zs�dBs�. The last identity has already been established in [6]
for a quite general filtration (not necessarily Brownian) and process S (not
even quasi-left-continuous).

3. Some a priori estimates. We will now give some estimates of Y in
order to derive some integrability properties of Y, when Z is supposed to be
square-integrable. In other words, we want to prove that condition (v) implies
condition (v′).

First, we show that Yt is smaller than a square-integrable process solution
of a forward SDE which depends on the processZ and has initial conditionY0.
Second, we show that Yt is greater than a square-integrable process solution
of a backward SDE which depends on the processes Y and Z.

Proposition 3.1. (a) Let ��Yt�Zt�Kt�� 0 ≤ t ≤ T� be the solution of the

above RBSDE satisfying assumptions (vi) to (viii). Let us consider �Yt� 0 ≤ t ≤
T�, the (square-integrable) solution of the forward SDE

Yt = Y0 −
∫ t

0
f�s�Ys�Zs�ds+

∫ t
0
�Zs� dBs��

Then

Yt ≤ Yt� 0 ≤ t ≤ T a.s.



SOLUTIONS OF BACKWARD SDE’S 707

If assumption (v) �Z ∈ H
2� is satisfied (and using the assumption that �0 is

trivial), then Y ∈ � 2 and consequently, Y+ ∈ � 2.
(b) Let ��Yt�Zt�Kt�� 0 ≤ t ≤ T� be the solution of the above RBSDE

satisfying assumptions (vi) to (viii) and assumption (v).
Let βt be the bounded process defined by

βt =
f�t�Yt�Zt� − f�t�0�Zt�

Yt
if Yt �= 0 and βt = 0 otherwise.(3)

Let �Yt�Zt� be the (square-integrable) solution of the classical backward SDE:

− dYt = �βtYt + f�t�0�Zt��dt− �Zt� dBt�� YT = ξ�(4)

Then

Yt ≥ Yt� 0 ≤ t ≤ T a.s.

Proof. Notice that �Yt� 0 ≤ t ≤ T� is solution of the forward SDE given
by

Yt = Y0 −
∫ t

0
f�s�Ys�Zs�ds−Kt +

∫ t
0
�Zs�dBs��

The result follows by applying the comparison theorem for ordinary differen-
tial equations. More precisely, we have

Yt −Yt =
∫ t

0
αs�Ys −Ys�ds+Kt�

where αs = �f�s�Ys�Zs� − f�s�Ys�Zs��/Ys −Ys if Ys �= Ys and 0 otherwise.
From that and from the fact that f is Lipschitz with respect to y, and hence
α is bounded, it follows that Yt −Yt ≥ 0.

Note that when Z is square-integrable, the square-integrability of Yt fol-
lows from the fact that Y0 is deterministic and hence square-integrable.

It remains to show the second estimate. The method will consist in lin-
earizing the equation with respect to Z, and exploiting some techniques used
in [13] for establishing the comparison theorem. First, notice that �Yt�Zt�
satisfies

−dYt = �βtYt + f�t�0�Zt��dt+ dKt − �Zt�dBt��
where βt is the process defined by (3). Notice that, since f is Lipschitz with
respect to y, the process β is bounded.

Define Rt = exp�∫ t0 βs ds�, and introduce the discounted processes: Ỹt =
RtYt; Z̃t = RtZt; K̃t =

∫ t
0 Rs dKs.

Applying Itô’s formula to RtYt, we easily prove that

Ỹt = RTξ +
∫ T
t
Rsf�s�0�Zs�ds+ K̃T − K̃t −

∫ T
t
�Z̃s� dBs��(5)

Consequently,

Ỹt ≥ RTξ +
∫ T
t
Rsf�s�0�Zs�ds−

∫ T
t
�Z̃s� dBs��(6)
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That is, Ỹt is greater than a square-integrable process. Hence, using the esti-
mate (a), it follows that Yt is square-integrable. Thus, by taking conditional
expectation in inequality (6), we prove that Ỹt is greater than the square-
integrable processRtYt, whereYt is solution of BSDE (4). Estimate (b) follows
easily.

Remark 3.2. Furthermore, we have that if ��Yt�Zt�Kt�� 0 ≤ t ≤ T� is
the solution of the above RBSDE satisfying assumptions (vi) to (viii) and the
integrability assumption (v), then, Yt ≥ Y0

t , 0 ≤ t ≤ T, where �Y0�Z0� corre-
sponds to the solution of the BSDE without constraint,

Y0
t = ξ +

∫ T
t
f�s�Y0

s �Z
0
s�ds−

∫ T
t
�Z0
s � dBs��(7)

So, we can replace St by St ∨Y0
t ; consequently, we may assume without loss

of generality that E�sup0≤t≤T S2
t � <∞, that is, that S ∈ � 2.

Furthermore, we have shown that if the processZ is square-integrable, then
Y and K are also square-integrable. More precisely, we state the corollary.

Corollary 3.3. Let ��Yt�Zt�Kt�, 0 ≤ t ≤ T� be a solution of the above
RBSDE satisfying assumptions (vi) to (viii) and the integrability assumption
(v) on Z. Then condition (v′) is satisfied; that is,

�α� E
[

sup
0≤t≤T

Y2
t +K2

T

]
<∞� that is, Y ∈ H

2� KT ∈ L
2�

�β�
{∫ t

0
�YsZs�dBs�� 0 ≤ t ≤ T

}
is a uniformly integrable martingale.

Proof. Let us prove the second claim

E

[(∫ T
0
Y2
t 
Zt
2 dt

)1/2]
≤ E

[
sup

0≤t≤T

Yt


(∫ T
0

Zt
2 dt

)1/2]

≤ 1
2E

(
sup

0≤t≤T
Y2
t

)
+ 1

2E
∫ T

0

Zt
2 dt

and �β� follows from the Davis–Burkholder–Gundy inequality for the first
moment of the supremum of a martingale.

Remark 3.4. Recall that the square-integrability of Yt in Proposition 3.1
was established by using the fact that the σ-algebra �0 is trivial, which implies
that Y0 is deterministic and hence square-integrable.

Another proof of Corollary 3.3 can be given which does not use the fact that
Y0 is deterministic. We have just showed that �Ỹt� Z̃t� K̃t� is a solution of
equation (5); more precisely, �Ỹt� Z̃t� K̃t� is a solution of the reflected BSDE
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associated with the coefficient Rtf�t�0�Zt�, the terminal condition RTξ and
the obstacle S̃t = RtSt. Then, applying Proposition 2.2, we have

K̃T = sup
0≤u≤T

(
RTξ +

∫ T
u
Rsf�s�0�Zs�ds−

∫ T
u
�Z̃s� dBs� − S̃u

)−

and hence

K̃T ≤ RT
ξ
 +
∫ T

0
Rs
f�s�0�Zs�
ds+ sup

0≤u≤T

∣∣∣∣∫ T
u
�Z̃s� dBs�

∣∣∣∣+ sup
0≤u≤T

S̃+u �

Using the Burkolder–Davis–Gundy inequality, it is easy to prove thatE�K2
T� <

+∞. Furthermore, by equation (5), we conclude thatE�sup0≤t≤T Y2
t � < +∞� ✷

We now give a more precise a priori estimate on the norm of the solution.

Proposition 3.5. Let ��Yt�Zt�Kt�, 0 ≤ t ≤ T� be a solution of the above
RBSDE. Then there exists a constant C such that

E

(
sup

0≤t≤T
Y2
t +

∫ T
0

Zt
2 dt+K2

T

)
≤ CE

(
ξ2 +

∫ T
0
f2�t�0�0�dt+ sup

0≤t≤T
�S+t �2

)
�

Proof. Applying Itô’s formula to the process Yt and the function y→ y2

yields

Y2
t +

∫ T
t

Zs
2 ds = ξ2 + 2

∫ T
t
Ysf�s�Ys�Zs�ds

+ 2
∫ T
t
Ys dKs − 2

∫ T
t
Ys�Zs� dBs�

= ξ2 + 2
∫ T
t
Ysf�s�Ys�Zs�ds

+ 2
∫ T
t
Ss dKs − 2

∫ T
t
Ys�Zs� dBs��

where we have used the identity
∫ T

0 �Yt −St�dKt = 0.
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Using Corollary 2.2 and the Lipschitz property of f, we have that, with
c = 1+ 2K+ 2K2,

E

(
Y2
t +

∫ T
t

Zs
2 ds

)

= E
[
ξ2 + 2

∫ T
t
Ysf�s�Ys�Zs�ds+ 2

∫ T
t
Ss dKs

]

≤ E
[
ξ2 + 2

∫ T
t
Ysf�s�0�0�ds

+ 2K
∫ T
t
�
Ys
2 + 
Ys
 
Zs
�ds+ 2

∫ T
t
Ss dKs

]

≤ E
[
ξ2 +

∫ T
t
f�s�0�0�2 ds+ 2

∫ T
t
Ss dKs + c

∫ T
t
Y2
s ds+ 1

2

∫ T
t

Z2
s 
ds

]
�

Gronwall’s lemma applied to Y gives:

E�Y2
t � ≤ CE

[
ξ2 +

∫ T
t
f�s�0�0�2 ds+ 2

∫ T
t
Ss dKs

]
�(8)

It follows that

E
∫ T

0

Z2
s 
ds ≤ C′E

[
ξ2 +

∫ T
0
f�s�0�0�2 ds+ 2

∫ T
0
Ss dKs

]
�(9)

We now give an estimate of E�K2
T�. From the equation

KT = Y0 − ξ −
∫ T

0
f�t�Yt�Zt�dt+

∫ T
0
�Zt�dBt��

and estimates (8) and (9), we show the following inequalities:

E�K2
T� ≤ CE

[
ξ2 +

∫ T
0
f�s�0�0�2 ds+ 2

∫ T
0
Ss dKs

]

≤ CE
[
ξ2 +

∫ T
0
f�s�0�0�2 ds

]
+ 2C2E

[
sup

0≤s≤T
�S+s �2

]
+ 1

2E�K2
T��

Consequently,

E�K2
T� ≤ CE

[
ξ2 +

∫ T
0
f2�s�0�0�ds+ sup

0≤s≤T
�S+s �2

]
�

It follows easily that for each t ∈ �0�T�,

E

(
Y2
t +

∫ T
0

Zt
2 dt+K2

T

)
≤ CE

(
ξ2 +

∫ T
0
f2�t�0�0�dt+ sup

0≤t≤T
�S+t �2

)
�

The result then follows easily from Burkholder’s inequality. ✷

We can now estimate the variation in the solution induced by a variation
in the data.



SOLUTIONS OF BACKWARD SDE’S 711

Proposition 3.6. Let �ξ� f�S� and �ξ′� f′� S′� be two triplets satisfying the
above assumptions, in particular (i), (ii), (iii) and (iv).

Suppose �Y�Z�K� is a solution of the RBSDE �ξ� f�S� and �Y′�Z′�K′� is
a solution of the RBSDE �ξ′� f′� S′�. Define

&ξ = ξ − ξ′� &f = f− f′� &S = S−S′�
&Y = Y−Y′� &Z = Z−Z′� &K =K−K′�

Then there exists a constant c such that

E

(
sup

0≤t≤T

&Yt
2 +

∫ T
0

&Zt
2 dt+ 
&KT
2

)

≤ cE
(

&ξ
2 +

∫ T
0

&f�t�Yt�Zt�
2 dt

)

+ c
[
E
(

sup
0≤t≤T


&St
2
)]1/2
'

1/2
T �

where

'T=E
[
ξ2+

∫ T
0
f2�t�0�0�dt+ sup

0≤t≤T
�S+t �2+ξ′2+

∫ T
0
f′2�t�0�0�dt+ sup

0≤t≤T
�S′+t �2

]
�

Proof. The computations are similar to those in the previous proof, so we
shall only sketch the argument. Since

∫ T
t �&Ys − &Ss�d�&Ks� ≤ 0,

E
&Yt
2 +E
∫ T
t

&Zs
2 ds ≤ E
&ξ
2 + 2

∫ T
t
&f�s�Ys�Zs�&Ys ds

+ 2E
∫ T
t
�f′�s�Ys�Zs� − f′�s�Y′

s�Z
′
s��&Ys ds

+ 2E
∫ T
t
&Ss d�&Ks��

Arguments already used in the previous proof lead to

E�&Yt�2 + 1
2E

∫ T
t

&Zs
2 ds ≤ cE

[

&ξ
2 +

∫ T
t

&f�s�Ys�Zs�
2

+
∫ T
t

&Ys
2 ds+

(
sup

0≤t≤T

&St


)
�KT+K′

T�
]
�

It remains to use Gronwall’s lemma, Proposition 2.3 and the Burkholder–
Davis–Gundy inequality. ✷

We deduce immediately the following uniqueness result from the Proposi-
tion 3.6 with ξ′ = ξ, f′ = f and S′ = S.

Corollary 3.7. Under the assumptions (i), (ii), (iii) and (iv), there exists
at most one progressively measurable triple ��Yt�Zt�Kt�, 0 ≤ t ≤ T�, which
satisfies (v), (vi), (vii) and (viii).
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Remark 3.8. Instead of saying that a triple ��Yt�Zt�Kt�� 0 ≤ t ≤ T� of
R × R

d × R+-valued progressively measurable processes is a solution of our
RBSDE, we could say that a pair ��Yt�Zt�� 0 ≤ t ≤ T� of R × R

d-valued
progressively measurable processes satisfying (v) and (vii) is a solution of our
RBSDE, meaning that, if �Kt� 0 ≤ t ≤ T� is defined by (vi), then the pair
�Y�K� also satisfies (viii).

In that sense, it follows from Corollary 3.7 that there exists at most one
pair ��Yt�Zt�� 0 ≤ t ≤ T� of progressively measurable processes which solves
the RBSDE.

4. Comparison theorem and properties of the increasing process.
We next prove a comparison theorem, similar to that of [19] and [13] for non-
reflected BSDE’s.

Theorem 4.1. Let �ξ� f�S� and �ξ′� f′� S′� be two sets of data, each one
satisfying all the assumptions (i), (ii), (iii) and (iv) [with the exception that the
Lipschitz condition (iii) could be satisfied by either f or f′ only], and suppose
in addition the following:

(i) ξ ≤ ξ′ a.s.,
(ii) f�t� y� z� ≤ f′�t� y� z�dP× dt a.e., ∀ �y� z� ∈ R× R

d,
(iii) St ≤ S′t, 0 ≤ t ≤ T, a.s.

Let �Y�Z�K� be a solution of the RBSDE with data �ξ� f�S� and �Y′�Z′�K′�
a solution of the RBSDE with data �ξ′� f′� S′�. Then

Yt ≤ Y′
t� 0 ≤ t ≤ T a.s.

Proof. Applying Itô’s formula to 
�Yt−Y′
t�+
2, and taking the expectation

(see Corollary 3.3), we have:

E
�Yt −Y′
t�+
2 +E

∫ T
t

1�Ys>Y′
s�
Zs −Z′

s
2 ds

≤ 2E
∫ T
t
�Ys −Y′

s�+�f�s�Ys�Zs� − f′�s�Y′
s�Z

′
s��ds

+ 2E
∫ T
t
�Ys −Y′

s�+�dKs − dK′
s��

Since on �Yt > Y′
t�, Yt > S′t ≥ St, we have

∫ T
t
�Ys −Y′

s�+�dKs − dK′
s� = −

∫ T
t
�Ys −Y′

s�+ dK′
s

≤ 0�
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Assume now that the Lipschitz condition in the statement applies to f. Then

E
�Yt −Y′
t�+
2 +E

∫ T
t

1�Ys>Y′
s�
Zs −Z′

s
2 ds

≤ 2E
∫ T
t
�Ys −Y′

s�+�f�s�Ys�Zs� − f�s�Y′
s�Z

′
s��ds

≤ 2KE
∫ T
t
�Ys −Y′

s�+�
Ys −Y′
s
 + 
Zs −Z′

s
�ds

≤ E
∫ T
t

1�Ys>Y′
s�
Zs −Z′

s
2 ds+KE
∫ T
t

�Ys −Y′

s�+
2 ds�

Hence

E
�Yt −Y′
t�+
2 ≤KE

∫ T
t

�Ys −Y′

s�+
2 ds�

and from Gronwall’s lemma, �Yt −Y′
t�+ = 0, 0 ≤ t ≤ T. ✷

We note that our notion of RBSDE has much similarity with the classical
notion of reflected (forward) SDE. However, we shall give a proposition and
proof exhibiting the main difference between the two notions: at least in case
of a regular obstacle, the increasing process is absolutely continuous.

Proposition 4.2. Assume the conditions (i)–(iv) on the data, and moreover
that �St� is a semimartingale of the form

St = S0 +
∫ t

0
Us ds+

∫ t
0
�Vs�dBs��

where �Ut� and �Vt� are, respectively, R and R
d-valued �t progressively mea-

surable processes satisfying∫ T
0
�
Ut
 + 
Vt
2�dt <∞ a.s.

Let �Y�Z�K� be a solution of the RBSDE. Then

Zt = Vt� dP× dt a.e. on the set �Yt = St�(10)

and

0 ≤ dKt ≤ 1�Yt=St��f�t�St�Vt� +Ut�− dt�(11)

Proof. It follows from (vi) and the assumption that

d�Yt −St� = −�f�t�Yt�Zt� +Ut�dt− dKt + �Zt −Vt�dBt��
If we denote by �Lt� 0 ≤ t ≤ T� the local time at 0 of the continuous semi-
martingale �Yt −St�, it follows from the Itô–Tanaka formula that

d�Yt −St�+ = −1�Yt>St��f�t�Yt�Zt� +Ut�dt
+ 1�Yt>St��Zt −Vt�dBt� + 1

2 dLt�
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But �Yt−St�+ ≡ Yt−St, from (vii). Hence the two above differentials coincide,
and so do the martingale and bounded variation parts. Consequently,

1�Yt=St��Zt −Vt�dBt� = 0�

from which the first statement follows, and

dKt + 1
2 dLt = −1�Yt=St��f�t�Yt�Zt� +Ut�dt

= −1�Yt=St��f�t�St�Vt� +Ut�dt�
(12)

Hence

dKt + 1
2 dLt = 1�Yt=St��f�t�St�Vt� +Ut�− dt�(13)

The second result follows from the fact that �Kt� is increasing. Note that we
have proved that the local time at 0 of �Yt −St� is absolutely continuous.

Remark 4.3. This property can be generalized easily to an obstacle St
which is a more general semimartingale.

St = S0 +
∫ t

0
Us ds+At +

∫ t
0
�Vs�dBs��

where A is a continuous process of integrable variation such that the mea-
sure dAt is singular with respect to dt and which admits as a decomposition
At = A+

t − A−
t , where A+

t and A−
t are increasing processes. Also, �Ut� and

�Vt� are, respectively, R and R
d-valued �t progressively measurable processes

satisfying: ∫ T
0
�
Ut
dt+ 
Vt
2 dt� +A+

T +A−
T <∞ a.s.

The first equality (10) is still satisfied and the second estimate (11) or, more
precisely, equation (12) is replaced by

dKt + 1
2 dLt = −1�Yt=St��f�t�St�Vt�dt+Ut dt+ dAt�

= 1�Yt=St���f�t� St� Vt� +Ut�− dt+ dA−
t ��

It follows that there exists a predictable process �αt� 0 ≤ t ≤ T� such that
0 ≤ αt ≤ 1 and

dKt = αt1�Yt=St���f�t�St�Vt� +Ut�− dt+ dA−
t ��

Remark 4.4. The local time Lt at 0 of Yt −St is not always identically
equal to zero. That is, the process αt is not always equal to 1 as is shown by
a counterexample given by Jacka [15].

Let �Bt� t ≥ 0� be a Brownian motion on the filtered space ��� ��t��P� with
�t = σ�Bs� s ≤ t�. Let lbt be the local time at b ofB. DefineSt = 
Bt−a
−
Bt+a

for some fixed a > 0.
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Notice that by Tanaka’s formula, the semimartingale �St� t ≥ 0� admits
the following Doob–Meyer decomposition:

St = S0 +At +
∫ t

0
sgn�Bs − a�dBs −

∫ t
0

sgn�Bs + a�dBs�

where the finite variation process At is given by At = lat − l−at .
In this example, the coefficient f is taken to be equal to 0 and the terminal

condition ξ is equal to ST. From Proposition 2.3, the process �Yt� 0 ≤ t ≤ T�
associated with the RBSDE corresponding to those parameters is the Snell
envelope of St; that is,

Yt = ess sup
v∈�t
E�Sv/�t�

with the decomposition

−dYt = αt1�Yt=St� dl−at − �Zt�dWt�� YT = ST�

Notice that the function x → 
x − a
 − 
x + a
 is bounded above by 2a and
achieves its maximum at any x ≤ a.

If Bt > −a, let us introduce D∗
t = inf�s ≥ t/Bs ≤ −a� ∧ T. Recall that

Dt = inf�s ≥ t/Yt = St�∧T is the optimal time stopping for YT. Let us show
that D∗

t = Dt. It is sufficient to show that �Bt ≤ −a� = �Yt = St�. First, it is
clear that �Bt ≤ −a� ⊆ �Yt = St�. Let us show the inverse inclusion: suppose
that Bt > −a, then, Yt −St ≥ E�laD∗

t
− lat − �l−aD∗

t
− l−at � 
�t�.

Now, it is clear that l−aD∗
t
− l−at = 0. Furthermore, E�laD∗

t
− lat � > 0 since

there is a positive probability that la will increase on �t�D∗
t �. It follows that

Yt − St > 0. Consequently, �Bt ≤ −a� = �Yt = St� and hence D∗
t = Dt. We

have

Y0 = E
[
laT − l−aT +

∫ T
0
αt1�Yt=St� dl

−a
t

]

= E
[
laT −

∫ T
0
�1− αt�1�Yt=St� dl−at

]

Since Y0 = E�laD∗
0
�, we have

E
[
laT − laD∗

0

] = E[∫ T
0
�1− αt�1�Yt=St� dl−at

]

Now, E�laT − laD∗
0
� > 0 and hence, the process αt is not identically equal to 1.

Jacka [15] has computed αt explicitly:

αt = 2φ�2a/�T− t�1/2� − 1�

where φ is the standard normal distribution function.
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5. Existence of a solution of the RBSDE by Picard iteration. One
approach to the solution of (forward) reflected SDE’s is to use the solution of
the Skorohod problem for constructing a Picard-type iterative approximation
to the reflected equation, see, for example, [11]. We shall use the same ap-
proach here for our RBSDE. Note that in the forward case the solution of the
Skorohod problem is given explicitly. Here, the Skorohod problem is replaced
by a more complicated problem which involves optimal stopping and which
we shall call the backward reflection problem, BRP in short. It is as follows.
Suppose that f does not depend on �y� z�; that is, it is a given �t progressively
measurable process satisfying

�ii′� E
∫ T

0
f�t�2 dt <∞�

A solution to the BRP is a triple �Y�Z�K� which satisfies (v), (vii), (viii) and

(vi′) Yt = ξ +
∫ T
t
f�s�ds+KT −Kt −

∫ T
t
�Zs�dBs�� 0 ≤ t ≤ T�

Assuming w.l.o.g. that K0 = 0, we deduce that

Yt +
∫ t

0
f�s�ds = Y0 −Kt +

∫ t
0
�Zs�dBs�� 0 ≤ t ≤ T�

Hence �Yt +
∫ t

0 f�s�ds� 0 ≤ t ≤ T� is a supermartingale, which from (vii)
dominates the process �St +

∫ t
0 f�s�ds� 0 ≤ t ≤ T�.

We now establish the following proposition.

Proposition 5.1. Under the assumptions (i), (ii) and (iv), the BRP (v), (vi′),
(vii) and (viii), has a unique solution ��Yt�Zt�Kt�� 0 ≤ t ≤ T�.

Proof. Uniqueness follows from Corollary 3.7. We now prove existence.
From Proposition 2.3, let us introduce the process �Yt� 0 ≤ t ≤ T� defined by

Yt = ess sup
v∈�t
E

[∫ v
t
f�s�ds+Sv1�v<T� + ξ1�v=T�
�t

]
� 0 ≤ t ≤ T�

The process Yt +
∫ t

0 f�s�ds is the value function of an optimal stopping time
problem with payoff:

Ht =
∫ t

0
f�s�ds+St1�t<T� + ξ1�t=T��

By the theory of Snell envelopes (cf. [10] and [16]), it is also the smallest con-
tinuous supermartingale which dominates Ht. The continuity of �Yt� follows
from that of �Ht� on the interval �0�T�, and the assumption that the jump of
H at time T is positive.

We have moreover that


Yt
 ≤ E
[

ξ
 +

∫ T
0

f�t�
dt+ sup

0≤t≤T

St

�t

]
�
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Hence, by Burkholder’s inequality,

E
(

sup
0≤t≤T

Y2
t

)
≤ cE

(
ξ2 +

∫ T
0
f2�t�dt+ sup

0≤t≤T
S2
t

)
�

Denote by Dt the stopping time

Dt = inf�t ≤ u ≤ T� Yu ≤ Su� ∧T�
Then Dt is optimal, in the sense that

Yt = E
[∫ Dt
t
f�s�ds+SDt1�Dt<T� + ξ1�Dt=T�
�t

]
� 0 ≤ t ≤ T�(14)

Let us now introduce the Doob–Meyer decomposition of the continuous su-
permartingale Yt +

∫ t
0 f�s�ds. There exists an adapted increasing continuous

process �Kt� and a continuous uniformly integrable martingale �Mt� such
that

Yt =Mt −
∫ t

0
f�s�ds−Kt�

K0 = 0 and Kt =KDt . Indeed, by condition (vi), we have that

Yt = E
[∫ Dt
t
f�s�ds+SDt1�Dt<T� + ξ1�Dt=T� +KDt −Kt
�t

]
� 0 ≤ t ≤ T�

It then follows from (14) that E�KDt −Kt
�t� = 0 and hence KDt = Kt, or

equivalently
∫ T

0 �Yt −St�dKt = 0.
It remains to prove some integrability results. Since{

Yt +
∫ t

0
f�s�ds� 0 ≤ t ≤ T

}

is a square-integrable supermartingale which dominates the square-integrable
martingale {

E

(∫ T
0
f�s�ds+ ξ
�t

)
� 0 ≤ t ≤ T

}
�

it follows from Theorem VII.8 in Delacherie and Meyer [8] that KT is square-
integrable. Hence the martingale

Mt = E�MT
�t� = E
(
ξ +

∫ T
0
f�s�ds−KT
�t

)

is also square-integrable. Finally, since �t is a Brownian filtration, Mt =∫ t
0 Zs dBs, where E

∫ T
0 
Zt
2 dt <∞.

Actually, we can show directly that E
∫ T

0 
Zt
2 dt <∞, which is equivalent
to E�K2

T� < ∞. Indeed, let v ≤ T be a stopping time such that E�K2
v� < ∞.
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We have

E�K2
v� = 2E

∫ v
0
�Kv −Kt�dKt

= 2E
∫ v

0
E�Kv −Kt
�t�dKt

= 2E
∫ v

0
E

(
Yt −Yv −

∫ v
t
f�s�ds
�t

)
dKt

≤ 2E
[(

2 sup
0≤t≤T


Yt
 +
∫ T

0

f�s�
ds

)
Kv

]

≤ 2
[
E

(
2 sup

0≤t≤T

Yt
 +

∫ T
0

f�s�
ds

)2]1/2

�EK2
v�1/2�

Taking the limit as v ↑ T, the result follows. ✷

We can now establish the following theorem.

Theorem 5.2. Under the above assumptions, in particular (i), (ii), (iii) and
(iv), the RBSDE with (v), (vi), (vii), (viii) has a unique solution �Y�Z�K�.

Proof. Denote by � the space of progressively measurable ��Yt� Zt�� 0 ≤
t ≤ T� with values in R× R

d which satisfy (v) and (vii).
We define a mapping 2 from � into itself as follows. Given �U�V� ∈ 2, let

�Y�Z� = 2�U�V� be the unique element of � which is such that, if we define
the process

Kt = Yt −Y0 −
∫ t

0
f�s�Us�Vs�ds+

∫ t
0
�Zs�dBs�� 0 ≤ t ≤ T�

then the triple �Y�Z�K� solves the BRP associated with f�s� = f�s�Us�Vs�.
In other words, the pair �Y�Z� is the unique solution of the same BRP, in the
sense of Remark 3.8.

Let �U′�V′� be another element of � , and define �Y′�Z′� = 2�U′�V′�,

U = U−U′� V = V−V′� Y = Y−Y′� Z = Z−Z′�

It follows from arguments similar to those in the proofs of Propositions 3.5
and 3.6 that for any β > 0,

eβtE�Y2
t � +E

∫ T
t
eβs

[
βY

2
s + 
Zs
2

]
ds

= 2E
∫ T
t
eβsYs�f�s�Us�Vs� − f�s�U′

s�V
′
s��ds

≤ 4K2E
∫ T
t
eβsY

2
s ds+ 1

2E
∫ T
t
eβs

[
U

2
s + 
Vs
2

]
ds�
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so that if we choose β = 4K2 + 1, we deduce

E
∫ T

0
eβt

[
Y

2
t + 
Zt
2

]
dt ≤ 1

2E
∫ T

0
eβt

[
U

2
t + 
Vt
2

]
dt�

Hence the mapping 2 is a strict contraction on � equipped with the norm

��Y�Z��β =
(
E

∫ T
0
eβt�Y2

t + 
Zt
2�dt
)1/2

�

and it has a unique fixed point, which is the unique solution of the RBSDE
(in the sense of Remark 3.8).

6. Existence of a solution of the RBSDE: approximation via penal-
ization. In this section, we will give another proof of Theorem 5.2, based
on approximation via penalization. The result of this section will be useful in
Section 8. In the following, c will denote a constant whose value can vary from
line to line.

For each n ∈ N, let ��Ynt �Znt �� 0 ≤ t ≤ T� denote the unique pair of �t
progressively measurable processes with values in R× R

d satisfying

E
∫ T

0

Znt 
2 dt <∞

and

Ynt = ξ +
∫ T
t
f�s�Yns �Zns �ds+ n

∫ T
t
�Yns −Ss�− ds−

∫ T
t
�Zns � dBs��(15)

where ξ and f satisfy the assumptions stated in Section 2. We define

Knt = n
∫ t

0
�Yns −Ss�− ds� 0 ≤ t ≤ T�

It follows from the theory of (unconstrained) BSDE’s that for each n,

E
(

sup
0≤t≤T


Ynt 
2
)
<∞�

We now establish a priori estimates, uniform in n, on the sequence
�Yn�Zn�Kn�.

E
Ynt 
2 +E
∫ T
t

Zns 
2 ds

= E
ξ
2 + 2E
∫ T
t
f�s�Yns �Zns �Yns ds+ 2E

∫ T
t
Yns dK

n
s

≤ E
ξ
2 + 2E
∫ T
t
�f�s�0�0� +K
Yns 
 +K
Zns 
�
Yns 
ds+ 2E

∫ T
t
Ss dK

n
s

≤ c
(

1+E
∫ T
t

Yns 
2 ds

)
+ 1

3
E

∫ T
t

Zns 
2 ds

+ 1
α
E
[

sup
0≤t≤T

�S+t �2
]
+ αE��KnT −Knt �2��
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but

KnT −Knt = Ynt − ξ −
∫ T
t
f�s�Yns �Zns �ds+

∫ T
t
�Zns � dBs��

Hence

E��KnT −Knt �2� ≤ c
{
E�
Ynt 
2� +E�ξ2� + 1+

∫ T
t
�
Yns 
2 + 
Zns 
2�ds

}
�

Choosing α = �1/3c�, we have

2
3E�
Ynt 
2� + 1

3E
∫ T
t

Zns 
2 ds ≤ c

(
1+E

∫ T
t

Yns 
2 ds

)
�

It then follows from Gronwall’s lemma that

sup
0≤t≤T

E�
Ynt 
2� +E
∫ T

0

Znt 
2 dt+E��KnT�2� ≤ c� n ∈ N�

Using again equation (15) and the Burkholder–Davis–Gundy inequality, we
deduce that

E

(
sup

0≤t≤T

Ynt 
2 +

∫ T
0

Znt 
2 dt+ �KnT�2

)
≤ c� n ∈ N�(16)

Note that if we define

fn�t� y� z� = f�t� y� z� + n�y−St�−�

fn�t� y� z� ≤ fn+1�t� y� z��

and it follows from the comparison Theorem 4.1 (in fact its version for nonre-
flected BSDE’s, from [19] or [13], is sufficient for our purpose) that Ynt ≤ Yn+1

t ,
0 ≤ t ≤ T, a.s. Hence

Ynt ↑ Yt� 0 ≤ t ≤ T a.s.

and from (16) and Fatou’s lemma,

E
(

sup
0≤t≤T

Y2
t

)
≤ c�

It then follows by dominated convergence that

E
∫ T

0
�Yt −Ynt �2 dt→ 0 as n→∞�(17)
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Now it follows from Itô’s formula that

E�
Ynt −Ypt 
2� +E
∫ T
t

Zns −Zps 
2 ds

= 2E
∫ T
t
�f�Yns �Zns � − f�Yps �Zps ���Yns −Yps �ds

+ 2E
∫ T
t
�Yns −Yps �d�Kns −Kps �

≤ 2KE
∫ T
t
�
Yns −Yps 
2 + 
Yns −Yps 
 × 
Zns −Zps 
�ds

+ 2E
∫ T
t
�Yns −Ss�−dKps + 2E

∫ T
t
�Yps −Ss�− dKns

from which one deduces the existence of a constant c such that

E
∫ T
t

Zns −Zps 
2 ds ≤ cE

∫ T
t

Yns −Yps 
2 ds+ 4E

∫ T
t
�Yns −Ss�− dKps

+ 4E
∫ T
t
�Yps −Ss�− dKns

(18)

Let us admit for a moment the following lemma.

Lemma 6.1.

E
(

sup
0≤t≤T


�Ynt −St�−
2
)
→ 0 as n→∞�

We can now conclude. Indeed, (16) and Lemma 6.1 imply that

E
∫ T

0
�Ynt −St�− dKpt +E

∫ T
t
�Ypt −St�− dKnt → 0 as n�p→∞�

hence from (17) and (18):

E
∫ T

0
�
Ynt −Ypt 
2 + 
Znt −Zpt 
2�dt→ 0 as n�p→∞�

Moreover,


Ynt −Ypt 
2 +
∫ T
t

Zns −Zps 
2 ds

= 2
∫ T
t
�f�Yns �Zns � − f�Yps �Zps ���Yns −Yps �ds

+ 2
∫ T
t
�Yns −Yps �d�Kns −Kps �

− 2
∫ T
t
�Yns −Yps ��Zns −Zps �dBs�
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and

sup
0≤t≤T


Ynt −Ypt 
2 ≤ 2
∫ T
t

f�Yns �Zns � − f�Yps �Zps �
 × 
Yns −Yps 
ds

+ 2
∫ T

0
�Yns −Ss�− dKps + 2

∫ T
0
�Yps −Ss�− dKns

+ 2 sup
0≤t≤T

∣∣∣∣∫ T
t
�Yns −Yps ��Zns −Zps �dBs

∣∣∣∣�
and from the Burkholder–Davis–Gundy inequality,

E
(

sup
0≤t≤T


Ynt −Ypt 
2
)
≤ cE

∫ T
0

(
Ynt −Ypt 
2 + 
Znt −Zpt 
2
)
ds

+ 2E
∫ T

0
�Ynt −St�− dKpt + 2E

∫ T
0
�Ypt −St�− dKnt

+ 1
2E

(
sup

0≤t≤T

Ynt −Ypt 
2

)
+ cE

∫ T
0

Znt −Zpt 
2 ds�

Hence E�supt 
Ynt −Ypt 
2� → 0, as n and p→∞, and consequently from (15),

E
(

sup
0≤t≤T


Knt −Kpt 
2
)
→ 0 as n�p→∞�(19)

Consequently there exists a pair �Z�K� of progressively measurable processes
with values in R

d × R such that

E

(∫ T
0

Zt −Znt 
2 dt+ sup

0≤t≤T

Kt −Knt 
2

)
→ 0�

as n→ ∞, and (v) and (vi) are satisfied by the triple �Y�Z�K�; (vii) follows
from Lemma 6.1. It remains to check (viii).

Clearly, �Kt� is increasing. Moreover, we have just seen that �Yn�Kn� tends
to �Y�K� uniformly in t in probability. Then the measure dKn tends to dK
weakly in probability,∫ T

0
�Ynt −St�dKnt →

∫ T
0
�Yt −St�dKt

in probability, as n→∞. We deduce from the same argument and Lemma 6.1
that ∫ T

0
�Yt −St�dKt ≥ 0�

On the other hand, ∫ T
0
�Ynt −St�dKnt ≤ 0� n ∈ N�

Hence ∫ T
0
�Yt −St�dKt = 0 a.s.

and we have proved that �Y�Z�K� solves the RBSDE. We finally turn to the
proof.
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Proof of Lemma 6.1. SinceYnt ≥ Y0
t , we can w.l.o.g. replace St by St∨Y0

t ;
that is, we may assume that E�sup0≤t≤T S2

t � < ∞. We first want to compare
a.s. Yt and St for all t ∈ �0�T�, while we do not know yet that Y is a.s.
continuous. From the comparison theorem for BSDE’s, we have that a.s. Ynt ≥
Ỹnt � 0 ≤ t ≤ T� n ∈ N, where ��Ỹnt � Z̃nt �� 0 ≤ t ≤ T� is the unique solution of
the BSDE

Ỹnt = ξ +
∫ T
t
f�Yns �Zns �ds+ n

∫ T
t
�Ss − Ỹns �ds−

∫ T
t
Z̃ns dBs�

Let v be a stopping time such that 0 ≤ v ≤ T. Then

Ỹnv = E�v

[
e−n�T−v�ξ +

∫ T
v
e−n�s−v�f�Yns �Zns �ds+ n

∫ T
v
e−n�s−v�Ss ds

]
�

It is easily seen that

e−n�T−v�ξ + n
∫ T
v
e−n�s−v�Ss ds→ ξ1�v=T� +Sv1�v<T�

a.s. and in L2���, and the conditional expectation converges also in L2���.
Moreover, ∣∣∣∣∫ T

v
e−n�s−v�f�Yns �Zns �ds

∣∣∣∣ ≤ 1√
2n

(∫ T
0
f2�Yns �Zns �ds

)1/2

�

hence E�v
∫ T
v e

−n�s−v�f�Yns �Zns �ds→ 0 in L2���, as n→∞.
Consequently Ỹnv → ξ1�v=T� + Sv1�v<T� in mean square, and Yv ≥ Sv a.s.

From this and the section theorem in Dellacherie and Meyer [7], page 220, it
follows that a.s.

Yt ≥ St� 0 ≤ t ≤ T�
Hence �Ynt −St�− ↓ 0, 0 ≤ t ≤ T, a.s., and from Dini’s theorem the convergence
is uniform in t. The result finally follows by dominated convergence, since
�Ynt −St�− ≤ �St −Y0

t �+ ≤ 
St
 + 
Y0
t 
. ✷

7. Reflected backward stochastic differential equation and optimal
stopping time–control problems. It is clear from Proposition 5.1 that in
the case where f is a given stochastic process, the solution �Yt� 0 ≤ t ≤ T� of
the RBSDE (which we called BRP in that particular case) is the value function
of an optimal stopping time problem. We shall now see how this fact can be
generalized, first to the case where f�t� y� z� is a linear function of �y� z�,
and second to the case where f is a concave (or convex) function of �y� z�. In
the latter case, �Yt� 0 ≤ t ≤ T� will be the value function of a mixture of
an optimal stopping time problem and a “classical” optimal stochastic control
problem. We shall interpret those results in the “Markovian case.” Note that in
that case we shall make explicit the corresponding Hamilton–Jacobi–Bellman
equation in the next section. We start with a proposition.
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Proposition 7.1. Suppose that f is affine in y� z; that is, it takes the form

f�t� y� z� = δt + βty+ !γt� z"�
where �δt� βt� γt� 0 ≤ t ≤ T� are progressively measurable processes with val-

ues in R×R×R
d, such that E

∫ T
O δ

2
t dt <∞, 
βt
 + 
γt
 ≤ C a.s., 0 ≤ t ≤ T. Let

��t� 0 ≤ t ≤ T� denote the R-valued solution of the linear SDE

d�t = �t�βt dt+ �γt� dBt���
�0 = 1�

Then the unique solution �Yt�Zt�Kt� 0 ≤ t ≤ T� of the BSDE with coefficient
f satisfies, for each 0 ≤ t ≤ T,

�tYt = ess sup
v∈�t
E

[
�vξ1�v=T� + �vSv1�v<T� +

∫ u
t
�sδs ds
�t

]
�

Proof. It follows from Itô’s formula that

Yt�t = ξ�T +
∫ T
t
�sδs ds+

∫ T
t
�s dKs −

∫ T
t
�s�Zs +Ysγs� dBs��

Let �Y′
t�Z

′
t�K

′
t� = �Yt�t� �t�Zt + Ytγt��

∫ t
0 �s dKs�, 0 ≤ t ≤ T. This triplet

solves the BRP with final condition ξ�T and coefficient ��tδt� 0 ≤ t ≤ T�,
without condition (v).

Also we only have that

E

[
�ξ�T�2−ε +

∫ T
0
�δt�t�2−ε dt

]
<∞

for each ε > 0, and not for ε = 0; the argument leading to (2) in Proposition 2.3
is still valid here. Hence

Yt�t = ess sup
v∈�t
E

[
�Tξ1�v=T� + �vSv1�v<T� +

∫ v
t
�sδs ds
�t

]

from which the result follows. ✷

We now suppose that for each fixed �ω� t�, f�t� y� z� is a concave function
of �y� z� ∈ R × R

d. We define the conjugate function F�t� β� γ� as follows. For
each �ω� t� β� γ� ∈ �× �0�T� × R× R

d,

F�ω� t� β� γ� = sup
�y� z�

�f�ω� t� y� z� − βy− !γ� z"��

DFt �ω� = ��β� γ� ∈ R× R
d� F�ω� t� β� γ� <∞��

It follows from well-known results (see, e.g., [13]) that

f�t� y� z� = inf
�β�γ�∈DFt

�F�t� β� γ� + βy+ !γ� z"��

the infimum is achieved, and the set DFt is a.s. bounded.
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Let us now denote by � the set of bounded progressively measurable R×R
d-

valued processes ��βt� γt�� 0 ≤ t ≤ T� which are such that

E
∫ T

0
F�t� βt� γt�2 dt <∞�

To each �β� γ� ∈ � we associate the unique solution ��Yβ�γt �Zβ�γt �Kβ�γt �� 0 ≤
t ≤ T� of the RBSDE with the affine coefficient fβ�γ�t� y� z� = F�t� βt� γt� +
βty+ !γt� z". We shall denote ��Yt�Zt�Kt�� 0 ≤ t ≤ T� the unique solution of
the RBSDE with coefficient f�t� y� z�. It follows from a section theorem in [7],
page 220, that there exists �β∗� γ∗� ∈ � such that

f�t�Yt�Zt� = F�t� β∗t � γ∗t � + β∗tYt + !γ∗t �Zt"dt× dP a.e.

Hence

�Yt�Zt�Kt� = �Yβ∗� γ∗t �Z
β∗� γ∗
t �K

β∗� γ∗
t �� 0 ≤ t ≤ T a.s.

We can now deduce an interpretation of Yβ�γt and Yt = Yβ
∗� γ∗
t as value func-

tions of optimization problems.

Theorem 7.2. For each �β� γ� ∈ � ,

Y
β�γ
t = ess sup

v∈�t
E�2�t� v� β� γ�
�t��

where

2�t� v� β� γ� = �β�γt� v �Sv1�v<T� + ξ1�v=T�� +
∫ v
t
�
β� γ
t�s F�s� βs� γs�ds

and for each 0 ≤ t ≤ T, ��β�γt�s � t ≤ s ≤ T� is the unique solution of the linear
SDE

d�t� s = �t� s�βs ds+ �γs� dBs��� �t� t = 1�

Moreover,

Yt = ess inf
�β� γ�∈�

Y
β�γ
t

= ess inf
�β� γ�∈�

ess sup
v∈�t
E�2�t� v� β� γ�
�t�

= ess sup
v∈�t

ess inf
�β� γ�∈�

E�2�t� v� β� γ�
�t��

In other words, Yt is the value function of a minimax control problem, and the
triple �β∗� γ∗�Dt�, where Dt = inf�t ≤ s ≤ T� Ys = Ss� is optimal.

Proof. The first part of the statement follows from Proposition 7.1. More-
over, from the comparison Theorem 4.1,

Yt ≤ Yβ�γt ∀ �β� γ� ∈ � �
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On the other hand,

Yt = Yβ
∗� γ∗
t

≥ inf
�β� γ�∈�

Y
β�γ
t �

and consequently

Yt = ess inf
�β� γ�∈�

ess sup
v∈�t
E�2�t� v� β� γ�
�t��

and the fact that Dt is optimal follows from an argument given in the proof of
Proposition 5.1. We finally prove that ess inf and ess sup can be interchanged.
We certainly have

Yt = ess inf
�β� γ�∈�

ess sup
v∈�t
E�2�t� v� β� γ�
�t�

≥ ess sup
v∈�t

ess inf
�β� γ�∈�

E�2�t� v� β� γ�
�t��

On the other hand,

Yt = ess inf
�β� γ�∈�

E�2�t�Dβ�γt � β� γ�
�t�

≤ ess sup
v∈�t

ess inf
�β� γ�∈�

E�2�t� v� β� γ�
�t��

where Dβ�γt = inf�t ≤ s ≤ T� Yβ�γs = Ss�. ✷

We finally note that one has a similar representation of Yt in case
f is a convex function of �y� z�, with ess inf �β� γ� ess supv�·� replaced by
ess sup�β� γ� ess supv�·�.

8. Relation between a RBSDE and an obstacle problem for a nonlin-
ear parabolic PDE. In this section, we will show that the reflected BSDE
studied in the previous sections allows us to give a probabilistic representa-
tion of solutions of some obstacle problems for PDE’s. For that purpose, we
will put the RBSDE in a Markovian framework.

Let b� �0�T� × R
d → R

d and σ = �0�T� × R
d → R

d×d be continuous map-
pings, which are Lipschitz with respect to their second variable, uniformly
with respect to t ∈ �0�T�. For each �t� x� ∈ �0�T� × R

d, let �Xt�xs � t ≤ s ≤ T�
be the unique R

d-valued solution of the SDE:

Xt�xs = x+
∫ s
t
b�r�Xt�xr �dr+

∫ s
t
σ�r�Xt�xr �dBr�

We suppose now that the data �ξ� f�S� of the RBSDE take the following form:

ξ = g�Xt�xT ��
f�s� y� z� = f�s�Xt�xs � y� z��

Ss = h�s�Xt�xs ��
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where g, f and h are as follows. First, g ∈ C�Rd� and has at most polynomial
growth at infinity. Second,

f� �0�T� × R
d × R× R

d→ R

is jointly continuous and for some K > 0, p ∈ N, satisfies


f�t� x�0�0�
 ≤K�1+ 
x
p��(20)


f�t� x� y� z� − f�t� x� y′� z′�
 ≤K�
y− y′
 + 
z− z′
��(21)

for t ∈ �0�T�, x� z� z′ ∈ R
d� y� y′ ∈ R� Finally,

h� �0�T� × R
d→ R

is jointly continuous in t and x and satisfies

h�t� x� ≤K�1+ 
x
p�� t ∈ �0�T�� x ∈ R
d�(22)

We assume moreover that h�T�x� ≤ g�x�� x ∈ R
d�

For each t > 0, we denote by �� ts � t ≤ s ≤ T� the natural filtration of the
Brownian motion �Bs −Bt� t ≤ s ≤ T�, argumented by the P-null sets of � .

It follows from the results of the above sections that for each �t� x�, there
exists a unique triple �Yt�x�Zt�x�Kt�x� of �� ts � progressively measurable pro-
cesses, which solves the following RBSDE:

(i) E
∫ T
t
�
Yt�xs 
2 + 
Zt�xs 
2�ds <∞�

(ii) Yt�xs = g�Xt�xT � +
∫ T
s
f�r�Xt�xr �Yt�xr �Zt�xr �dr+Kt�xT −Kt�xs

−
∫ T
s
�Zt�xr � dBr�� t ≤ s ≤ T�

(iii) Yt�xs ≥ h�s�Xt�xs �� t < s ≤ T�
(iv) �Kt�xs � is increasing and continuous, and∫ T

t
�Yt�xs − h�s�Xt�xs ��dKt�xs = 0�

(23)

We now consider the related obstacle problem for a parabolic PDE. Roughly
speaking, a solution of the obstacle problem is a function u� �0�T� × R

d → R

which satisfies:

min
(
u�t� x� − h�t� x��

− ∂u
∂t
�t� x� −Ltu�t� x� − f�t� x� u�t� x�� �∇uσ��t� x��

)
= 0�

�t� x� ∈ �0�T� × R
d�

u�T�x� = g�x�� x ∈ R
d�

(24)
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where

Lt =
1
2

d∑
i�j=1

�σσ∗�t� x��i� j
∂2

∂xi∂xj
+
d∑
i=1

bi�t� x�
∂

∂xi
�

More precisely, we shall consider solutions of (24) in the viscosity sense. It
will be convenient for the sequel to define the notion of viscosity solution in
the language of sub- and super-jets; see [4]. Below, S�d� will denote the set of
d× d symmetric nonnegative matrices.

Definition 8.1. Let u ∈ C��0�T� × R
d� and �t� x� ∈ �0�T� × R

d. We de-
note by � 2�+u�t� x� [the “parabolic superjet” of u at �t� x�] the set of triples
�p�q�X� ∈ R× R

d ×S�d� which are such that

u�s� y� ≤ u�t� x� + p�s− t� + !q�y− x"
+ 1

2!X�y− x�� y− x" + o�
s− t
 + 
y− x
2��

Similarly, we denote by � 2�−u�t� x� [the “parabolic subjet” of u at �t� x�] the
set of triples �p�q�X� ∈ R× R

d ×S�d� which are such that

u�s� y� ≥ u�t� x� + p�s− t� + !q�y− x"
+ 1

2!X�y− x�� y− x" + o�
s− t
 + 
y− x
2��

Example 8.2. Suppose that ϕ ∈ C1�2��0�T� × R
d�. If u − ϕ has a local

maximum at �t� x�, then(
∂ϕ

∂t
�t� x�� ∇xϕ�t� x�� ∂2xϕ�t� x�

)
∈ � 2�+u�t� x��

If u− ϕ has a local minimum at �t� x�, then(
∂ϕ

∂t
�t� x�� ∇xϕ�t� x�� ∂2xϕ�t� x�

)
∈ � 2�−u�t� x��

We can now give the definition of a viscosity solution of the parabolic ob-
stacle problem (24).

Definition 8.3. (a) It can be said that u ∈ C��0�T� × R
d� is a viscosity

subsolution of (24) if u�T�x� ≤ g�x�, x ∈ R
d, and at any point �t� x� ∈ �0�T�×

R
d, for any �p�q�X� ∈ � 2�+u�t� x�,

min
(
u�t� x� − h�t� x��−p− 1

2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x��) ≤ 0�

In other words at any point �t� x� where u�t� x� > h�t� x�,
−p− 1

2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x�� ≤ 0�
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(b) It can be said that u ∈ C��0�T� × R
d� is a viscosity supersolution of

(24) if u�T�x� ≥ g�x�, x ∈ R
d, and at any point �t� x� ∈ �0�T� × R

d, for any
�p�q�X� ∈ � 2�−u�t� x�,
min

(
u�t� x� − h�t� x��−p− 1

2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x��) ≥ 0�

In the other words, at each point, we have both u�t� x� ≥ h�t� x� and

−p− 1
2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x�� ≥ 0�

(c) u ∈ C��0�T� × R
d� is said to be a viscosity solution of (24) if it is both a

viscosity sub- and supersolution.

We now define

u�t� x� $= Yt�xt � �t� x� ∈ �0�T� × R
d�(25)

which is a deterministic quantity.

Lemma 8.4. u ∈ C��0�T� × R
d��

Proof. We define Yt�xs for all s ∈ �0�T� by choosing Yt�xs = Yt�xt for 0 ≤
s ≤ t. It suffices to show that whenever �tn� xn� → �t� x�,

E
(

sup
0≤s≤T


Ytn�xns −Yt�xs 
2
)
→ 0�(26)

Indeed, this will show that

�s� t� x� → Yt�xs
is mean-square continuous, and so is

�t� x� → Yt�xt �
But Yt�xt is deterministic, since it is � tt measurable.

Now (26) is a consequence of Proposition 3.6 and the following convergences
as n→∞:

E
g�Xt�xT � − g�Xtn�xnT �
2 → 0

E
(

sup
0≤s≤T


h�s�Xt�xs � − h�s�Xtn� xns �
2
)
→ 0

E
∫ T

0

∣∣1�t�T��s�f�s�Xt�xs � Yt�xs � Zt�xs �

− 1�tn�T��s�f�s�Xtn� xns �Yt�xs �Z
t�x
s �∣∣2 ds→ 0�

which follow from the continuity assumptions, (20), (21), (22) and the polyno-
mial growth of f, g and h.

Theorem 8.5. Defined by (25), u is a viscosity solution of the obstacle prob-
lem (24).
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Proof. We are going to use the approximation of the RBSDE (23) by pe-
nalization, which was studied in Section 6. For each �t� x� ∈ �0�T�×R

d, n ∈ N
∗,

let ��nYt�xs � nZt�xs �� t ≤ s ≤ T� denote the solution of the BSDE

nYt�xs = g�Xt�xT � +
∫ T
s
f�r�Xt�xr �n Yt�xr �nZt�xr �dr

+ n
∫ T
s
�nYt�xr − h�r�Xt�xr ��− −

∫ T
s
�nZt�xr � dBr�� t ≤ s ≤ T�

It is known from [18] that

un�t� x� $= nY
t�x
t � 0 ≤ t ≤ T� x ∈ R

d�

is the viscosity solution of the parabolic PDE

∂un
∂t

�t� x� +Ltun�t� x� + fn�t� x� un�t� x�� �∇unσ��t� x�� = 0�

0 ≤ t ≤ T� x ∈ R
d�

u�T�x� = g�x�� x ∈ R
d�

where fn�t� x� r�pσ�t� x�� = f�t� x� r�pσ�t� x�� + n�r − h�t� x��−� However,
from the results of the previous section, for each 0 ≤ t ≤ T, x ∈ R

d,

un�t� x� ↑ u�t� x� as n→∞�
Since un and u are continuous, it follows from Dini’s theorem that the above
convergence is uniform on compacts.

We now show that u is a subsolution of (24). Let �t� x� be a point at which
u�t� x� > h�t� x�, and let �p�q�X� ∈ � 2�+u�t� x�.

From Lemma 6.1 in [4], there exists sequences

nj →+∞�
�tj� xj� → �t� x��

�pj� qj�Xj� ∈ � 2�+unj�tj� xj��
such that

�pj� qjXj� → �p�q�X��
But for any j,

−pj − 1
2Tr�aXj� − �b� qj� − f�tj� xj� unj�tj� xj�� qjσ�tj� xj��

− nj�unj�tj� xj� − h�tj� xj��− ≤ 0�

From the assumption that u�t� x� > h�t� x� and the uniform convergence of
un, it follows that for j large enough unj�tj� xj� > h�tj� xj�; hence, taking the
limit as j→∞ in the above inequality yields:

−p− 1
2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x�� ≤ 0�

and we have proved that u is a subsolution of (24).
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We conclude by showing that u is a supersolution of (24). Let �t� x� be an
arbitrary point in �0�T� × R

d, and �p�q�X� ∈ � 2�−u�t� x�. We already know
that u�t� x� ≥ h�t� x�. By the same argument as above, there exist sequences:

nj →∞�
�tj� xj� → �t� x��

�pj� qj�Xj� ∈ � 2�−unj�tj� xj��
such that

�pj� qj�Xj� → �p�q�X��
But for any j,

−pj − 1
2Tr�aXj� − �b� qj� − f�tj� xj� unj�tj� xj�� qjσ�tj� xj��

− nj�unj�tj� xj� − h�tj� xj��− ≥ 0�

Hence

−pj − 1
2Tr�aXj� − �b� qj� − f�tj� xj� unj�tj� xj�� qjσ�t� x�� ≥ 0�

and taking the limit as j→∞, we conclude that:

−p− 1
2Tr�aX� − �b� q� − f�t� x� u�t� x�� qσ�t� x�� ≥ 0� ✷

In order to establish a uniqueness result, we need to impose the following
additional assumption. For each R > 0, there exists a continuous function
mR� R+ → R+ such that mR�0� = 0 and


f�t� x� r�p� − f�t� y� r�p�
 ≤mR�
x− y
�1+ 
p
���(27)

for all t ∈ �0�T�, 
x
� 
y
 ≤ R, 
r
 ≤ R, p ∈ R
d.

Theorem 8.6. Under the above assumption, including condition (27), the
obstacle problem (24) has at most one viscosity solution in the class of contin-
uous functions which grow at most polynomially at infinity.

Proof. It suffices to show that if u� v ∈ C��0�T� × R
d� have at most poly-

nomial growth at infinity, satisfy u�T�x� = v�T�x� = g�x�, x ∈ R
d, and are,

respectively, a sub- and a supersolution of the obstacle problem (24), then
u ≤ v. For some λ > 0 to be chosen below, let

ũ�t� x� = u�t� x�eλtξ−1�x��
ṽ�t� x� = v�t� x�eλtξ−1�x��
h̃�t� x� = h�t� x�eλtξ−1�x��
g̃�x� = g�x�eλTξ−1�x��
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where ξ�x� = �1+
x
2�k/2, and k ∈ N is choosen such that ũ and ṽ are bounded.
We note that

η�x� �= ξ−1�x�Dξ�x� = k�1+ 
x
2�−1x�

κ�x� �= ξ−1�x�D2ξ�x� = k�1+ 
x
2�−1I− k�k− 2��1+ 
x
2�−2x⊗ x�
where Dξ denotes the gradient of ξ, and D2ξ the matrix of second order
partial derivatives of ξ. Then ũ (resp. ṽ ) is a bounded viscosity subsolution
(resp. supersolution) of the obstacle problem:

min
(
ũ�t� x� − h̃�t� x��

− ∂ũ
∂t
�t� x� − L̃ũ�t� x� − f̃�t� x� ũ�t� x�� �∇ũσ��t� x��

)
= 0�

ũ�T�x� = g̃�x��
where

L̃ϕ = Lϕ+ �aη� Dϕ� + [ 1
2Tr�aκ� + �b�η� − λ]ϕ�

f̃�t� x� ũ�t� x�� �∇ũσ��t� x��
= eλtξ−1�x�f(t� x� e−λtξ�x�ũ�t� x��

e−λtξ�x��Dũσ��t� x� + e−λtDξ�x��σũ��t� x�)�
We rewrite the above problem as

min
(
ũ�t� x� − h̃�t� x�� −∂ũ

∂t
�t� x� +F�t� x� ũ�t� x�� Dũ�t� x��D2ũ�t� x��

)
= 0�

ũ�T�x� = g̃�x��
We choose λ large enough so that

r→ F�t� x� r� q�X�
is strictly increasing for any �t� x� q�X� ∈ �0�T�×R

d×R
d×S�d�, which is pos-

sible since aκ and �b�η� are bounded. Hence F is “proper” in the terminology
of [4], and it also satisfies (27), since in particular aη is Lipschitz.

From now on, we drop the tildes, and we make a last modification. Namely
we replace v�t� x� by v�t� x� + �ε/t�, with ε > 0. Since ε is arbitrary, if we
prove that for the “transformed” functions, u� v satisfy u ≤ v, we will have
proved the same inequality for the “old” functions u and v. Moreover, since F
is proper, and the old v was a supersolution, we have that

− ∂v
∂t

+F�t� x� v�t� x��Dv�t� x��D2v�t� x�� ≥ ε
t2
�(28)

and moreover v�t� x� ↑ +∞ as t ↓ 0, uniformly in x.
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For any R > 0, let BR
$= �x ∈ R

d� 
x
 < R�. We need only show that for any
R > 0,

sup
�0�T�×BR

�u− v�+ ≤ sup
�0�T�×∂BR

�u− v�+�

since the right-hand side tends to zero as R→∞.
Let us suppose that for some R > 0, there exists �t0� x0� ∈ �0�T�×BR such

that

δ = u�t0� x0� − v�t0� x0� > sup
�0�T�×∂BR

�u− v�+ ≥ 0�(29)

and we will find a contradiction.
For each α > 0, let �t̂� x̂� ŷ� be a point in the compact set �0�T� ×BR ×BR

where the continuous function

2α�t� x� y� = u�t� x� − v�t� y� −
α

2

x− y
2

achieves its maximum.
Let us admit for a moment the following lemma.

Lemma 8.7. (i) For α large enough, �t̂� x̂� ŷ� ∈ �0�T� ×BR ×BR.
(ii) α
x̂− ŷ 
2 → 0 and 
x̂− ŷ 
2 → 0, as α→∞.

(iii) u�t̂� x̂� ≥ v�t̂� ŷ� + δ.

Theorem 8.3 from [4] tells us that there exists

�p�X�Y� ∈ R×� �d� ×� �d��
such that

�p�α�x̂− ŷ��X� ∈ �
2�+
u�t̂� x̂�

�p�α�x̂− ŷ��Y� ∈ �
2�−
v�t̂� x̂��

and (
X 0

0 −Y
)
≤ 3α

(
I −I
−I I

)
�(30)

Now from Lemma 8.7(iii), u�t̂� x̂� ≥ h�t̂� ŷ�+δ, since v is a supersolution. Then
since h is uniformly continuous on compacts, for α large enough, u�t̂� x̂� >
h�t̂� x̂�. Hence since u is a subsolution,

−p+F�t̂� x̂� u�t̂� x̂�� α�x̂− ŷ��X� ≤ 0

and from (28)

−p+F�t̂� ŷ� v�t̂� ŷ�� α�x̂− ŷ�� Y� ≥ ε/t2�
Next from Lemma 8.7(iii),

u�t̂� x̂� ≥ v�t̂� ŷ��
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Hence, since F is proper,

−p+F�t̂� x̂� v�t̂� ŷ�� α�x̂− ŷ��X� ≤ 0

and consequently

ε/t2 ≤ F�t̂� ŷ� v�t̂� ŷ�� α�x̂− ŷ��Y� −F�t̂� x̂� v�t̂� ŷ�� α�x̂− ŷ��X��
Define G by

F�t� x� r� q�X� = − 1
2Tr�aX� +G�t� x� r� q��

We have

ε/t2 ≤ Tr�a�t̂� x̂�X− a�t̂� ŷ�Y�
+G�t̂� ŷ� v�t̂� ŷ�� α�x̂− ŷ�� −G�t̂� x̂� v�t̂� ŷ�� α�x̂− ŷ��

ε/t2 ≤ Tr�a�t̂� x̂�X− a�t̂� ŷ�Y�
+ K̃α
x̂− ŷ 
2 +mR̄�
x̂− ŷ 
 + α
x̂− ŷ 
2��

where R̄ = R ∨ sup�t� x�∈�0�T�×BR 
v�t� x�
, since G satisfies the same condition
as f in (27). However, from (30), ∀ q� q′ ∈ R

d,

�Xq�q� − �Yq′� q′� ≤ 3α
q− q′
2�
and

Tr�a�t̂� x̂�X− a�t̂� ŷ�Y�
= Tr�σ∗�t̂� x̂�Xσ�t̂� x̂� − σ∗�t̂� ŷ�Yσ�t̂� ŷ��

=
d∑
i=1

��Xσ�t̂� x̂�ei� σ�t̂� x̂�ei� − �Yσ�t̂� ŷ�ei� σ�t̂� ŷ�ei��

≤ 3αdK2
x̂− ŷ
2�
Finally, we deduce that

ε/t2 ≤ c�
x̂− ŷ 
2 + α
x̂− ŷ 
2� +mR̄�
x̂− ŷ 
 + α
x̂− ŷ 
2��
which contradicts Lemma 8.7. We proceed to the proof.

Proof of Lemma 8.7. Let us first prove (ii). We have that

u�t̂� ŷ� − v�t̂� ŷ� ≤ sup
�t� y�
2α�t� y� y�

≤ sup
�t� x� y�

2α�t� x� y�

= u�t̂� x̂� − v�t̂� ŷ� − α
2

x̂− ŷ 
2�

Hence
α

2

x̂− ŷ
2 ≤ u�t̂� x̂� − u�t̂� ŷ��
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and consequently α
x̂− ŷ
2 is bounded, and as α→∞, 
x̂− ŷ
 → 0. Since u is
uniformly continuous on �0�T� ×BR, (ii) is established.

We now prove (iii). From (29),

δ ≤ sup
�t� x�
2α�t� x� x�

≤ sup
�t� x� y�

2α�t� x� y�

≤ u�t̂� x̂� − v�t̂� ŷ��
We finally prove (i). Since u�T�x� = g�x� = v�T�x� − T/ε, from (ii), the
uniform continuity of u�T� ·� and v�T� ·� on BR, and (iii), t̂ < T.

Since u and v− �ε/t� are bounded,

−C− ε
t
− α

2

x− y
2 ≤ 2α�t� x� y� ≤ C−

ε

t
�

Taking the sup over �t� x� y� in the left inequality yields:

−C− ε
T
≤ 2α�t̂� x̂� ŷ� ≤ C−

ε

t̂
�

hence

t̂ ≥ �2C+T−1ε�−1ε > 0�

Moreover, from (ii), (iii) and the uniform continuity of u and v on �0�T�×BR,
for any 0 < δ′ < δ, there exists M such that α ≥ M implies that u�t̂� x̂� −
v�t̂� x̂� ≥ δ′, u�t̂� ŷ� − v�t̂� ŷ� ≥ δ′. In view of (29), if δ′ is chosen close enough
to δ, these inequalities imply that x̂� ŷ ∈ BR. ✷

In order to conclude from Theorems 8.5 and 8.6 that u�t� x� $= Yt�xt is the
unique viscosity solution of the obstacle problems (24), it remains to show that
it grows at most polynomially at infinity. A careful analysis of the estimates
leading to the inequality preceding (16) shows that there exists a universal
constant c, independent of the data, such that for each n ∈ N,

sup
0≤t≤T

E
Ynt 
2 ≤ cE
(
ξ2 +

∫ T
0
f2�s�0�0�ds+ sup

0≤t≤T
S+2
t

)
�

From Fatou’s lemma, the same inequality holds for Yt = limn Y
n
t . Hence, with

the notation of the present section, we have in particular that


Yt�xt 
2 ≤ cE
(
g�Xt�xT �2 +

∫ T
t
f2�s�Xt�xs �0�0�ds+ sup

t≤s≤T
h�s�Xt�xs �2

)
�

The result now follows from (20), (22), the same assumption for g and the
standard estimate

sup
t≤s≤T

E
Xt�xs 
2 ≤ c�T��1+ 
x
2��
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Remark 8.8. Suppose now that for each �t� x�, f�t� x� y� z� is a concave
function of �y� z�. We then associate the conjugate function

F� �0�T� × R
d × R× R

d→ R

by the formula

F�t� x�β� γ� = sup
�y� z�

�f�t� x� y� z� − βy− !γ� z"��

Define moreover �β�γt� s as in Theorem 7.2 and for t ≤ v ≤ T,

2x�t� v� β� γ� = �β�γt�v
[
h�v�Xt�xv �1�v<T� + g�Xt�xT �1�v=T�

]
+

∫ v
t
�
β� γ
t� s F�s�Xt�xs � βs� γs�ds�

It follows from Theorem 7.2 that

Y
t�x
t = ess inf

�β� γ�∈A
ess sup

v∈�t
E�2x�t� v� β� γ�/�t�

and (24) is the Hamilton–Jacobi–Bellman equation of the corresponding min-
imax control problem.
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