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Abstract5

Movement for many animal species is constrained in space by barriers such as rivers, shore-6

lines, or impassable cliffs. We develop an approach for modeling animal movement con-7

strained in space by considering a class of constrained stochastic processes, reflected stochas-8

tic differential equations. Our approach generalizes existing methods for modeling uncon-9

strained animal movement. We present methods for simulation and inference based on10

augmenting the constrained movement path with a latent unconstrained path and illustrate11

this augmentation with a simulation example and an analysis of telemetry data from a Steller12

sea lion (Eumatopias jubatus) in southeast Alaska.13

Keywords: Animal movement, stochastic process, reflected Brownian motion14
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1 Introduction15

The movement of animals and humans is a fundamental process that drives gene flow, infec-16

tious disease spread, and the flow of information and resources through a population (Hanks17

and Hooten, 2013; Coulon et al., 2006; Hooten et al., 2007; Scharf et al., 2015). Movement18

behavior is complex, often exhibiting directional persistence, response to local environmen-19

tal conditions, dependence between conspecifics, and changing behavior in time and space.20

While technological advances have allowed movement (telemetry) data to be collected at21

high resolution in time and space, most movement data still exhibit non-negligible observa-22

tion error, requiring latent variable approaches, such as hidden Markov models (HMMs) or23

Bayesian hierarchical models (BHMs) to provide inference for movement parameters. The24

field of movement ecology is broad and growing; many different modeling approaches have25

been proposed for different species exhibiting different behaviors (e.g., Hooten et al., 2017).26

A majority of attempts to model movement stochastically rely on unconstrained stochastic27

processes, with positive probability of movement to any region in space (typically R
2). This28

continuous-space assumption is realistic for many species, but is clearly violated for others,29

such as marine animals swimming near shorelines (Bjørge et al., 2002; Johnson, London, Lea30

and Durban, 2008; Small et al., 2005) or ants constrained to walk inside the confines of a nest31

(Mersch et al., 2013; Quevillon et al., 2015). In addition, measurement error on telemetry32

data often results in biologically impossible recorded animal locations, such as a seal being33

located miles inland, or two successive ant locations being separated by an impassible wall.34

We consider spatially-constrained animal movement, where an animal can only be present35

within a known subset D of R2. To illustrate the need for movement models constrained by36

space, we consider movement of a Stellar sea lion (Eumatopias jubatus), a marine mammal37

that stays entirely in the water or hauled-out on the shoreline. Figure 1 shows telemetry38

data obtained using the ARGOS system (ARGOS, 2015) from one sea lion over a thirty-day39

observation period from December 6, 2010 to January 5, 2011. Stellar sea lions have expe-40

rienced recent fluctuations in population size, and could be threatened by disease, increased41
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fishing in Northern waters, and other factors (Dalton, 2005). Understanding where sea lions42

spend time can inform species management decisions and fishing regulations off the coast of43

Alaska. Telemetry data provide a natural approach to studying Stellar sea lion space use.44

Remote tracking of marine mammals is challenging, because common tracking systems45

(such as GPS) are impeded by water. While the sea lion is always either in the water or46

hauled out meters from the water’s edge, many of the telemetry locations are kilometers47

inland (Figure 1). If a movement model were fit to the data without accounting for the48

constraint that the sea lion remain within water at all times, the posterior distribution of49

paths the animal could have taken would overlap land. This may lead to biased inference50

for space use or resource selection of pinnipeds (Brost et al., 2015), which could, in turn,51

lead to inefficient species management decisions. Additionally, inference without considering52

the spatial constraint (for example, the need to go around an island between telemetry53

observations) could lead to biased estimates for parameters governing animal movement.54

Statistical inference for constrained movement is computationally challenging, because55

the spatial constraint D often makes the evaluation of density functions only possible numer-56

ically. We present an approach for modeling constrained animal movement based on reflected57

stochastic differential equations (RSDEs), which have been used to model constrained pro-58

cesses in many fields. To implement our approach, we present a Markov chain Monte Carlo59

(MCMC) algorithm for sampling from the posterior distribution of model parameters by60

augmenting the constrained process with an unconstrained process. We illustrate our ap-61

proach through a simulation example, and an application to telemetry data from the sea lion62

shown in Figure 1.63
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2 Modeling Constrained Movement With Reflected Stochas-64

tic Differential Equations65

Stochastic differential equation (SDE) models are popular stochastic process models for an-66

imal movement (Brillinger et al., 2002; Brillinger, 2003; Johnson, Thomas, Ver Hoef and67

Christ, 2008; Preisler et al., 2013; Russell et al., 2017). Brillinger (2003) considered simula-68

tion of animal movement under a constrained RSDE model, but did not consider inference69

under such a model. We develop a class of SDE models that can capture a wide range of70

movement behavior, and then propose approaches for simulation and inference under this71

class of models.72

2.1 Modeling Observational Error73

In general, we assume that we observe animal locations st, t ∈ {τ1, τ2, . . . , τT} at T distinct74

points in time {τt, t = 1, . . . , T}. We assume that the locations are in R
2, with st ≡ (s

(1)
t , s

(2)
t )′75

representing the observed location at time τt. The extension to higher dimensions (e.g., three-76

dimensional space) is straightforward. The observations are assumed to be noisy versions of77

the true animal location xt ≡ (x
(1)
t , x

(2)
t )′ at time τt, with observation error distribution78

st ∼ ℓ(xt;θ) (1)

where θ contains parameters controlling the distribution of observations centered at the true79

location. We begin by leaving this observation error distribution unspecified, and develop a80

general framework for inference, then apply a specific class of models to the sea lion telemetry81

data.82

To allow for switching between notation for discrete and continuous time processes, we83

adopt the following convention for subscripts. A greek letter in the subscript implies an84

observation in continuous time, with xτ being the location of the animal at time τ . We use85
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a standard Latin letter in the subscript to index a set of locations at a discrete set of times;86

thus xt = xτt represents the individual’s location at time τt. We also adopt the notation87

that xs:t ≡ {xs,xs+1, . . . ,xt−1,xt} represents the set of (t − s + 1) observations in discrete88

time between the sth and tth observations (inclusive) in the sequence.89

In the next Section, we will develop a model for movement based on an approximate90

solution to an SDE. As this approximation operates in discrete time, with a temporal step91

size of h, the approximation yields latent animal locations xτ : τ ∈ {0, h, 2h, . . . , Th} at92

discrete times.93

2.2 A general SDE model for animal movement94

We first consider the unconstrained case (D ≡ R
2), and then consider constrained processes.95

A class of SDE models that can capture a wide range of movement behavior are expressed96

as follows. Let the individual’s position at time τ be xτ and define vτ to be the individual’s97

true velocity at time τ98

dxτ = vτdτ. (2)

This differential equation may be equivalently written as an integral equation (e.g., Hooten99

and Johnson, 2017)100

xτ = x0 +

∫ τ

0

vγdγ,

however, we adopt the differential equation form throughout this section.101

By modeling the time derivative of an individual’s velocity, we focus on modeling accel-102

eration, or, equivalently, the force applied to an individual animal over time. This provides103

a natural framework for modeling intrinsic and extrinsic forces applied to a moving animal.104

Consider the following SDE model for the time derivative of velocity105

dvτ = −β(vτ − µ(xτ , τ))dτ + c(xτ , τ)Idwτ . (3)
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In (3), β is an autocorrelation parameter, µ(xτ , τ) is a function specifying the vector-valued106

mean direction of movement (drift), perhaps as a function of time τ or current location xτ ,107

wτ = (w
(1)
τ , w

(2)
τ )′ is a vector of two independent standard Brownian motion processes, I is108

the 2× 2 identity matrix, and c(xτ , τ) is a scalar function controlling the magnitude of the109

stochastic component of (3).110

Several existing models for animal movement fit into the general framework defined by111

(2)-(3). For example, the continuous-time correlated random walk model developed by112

Johnson, London, Lea and Durban (2008), with a constant drift µ, is obtained by setting113

µ(xτ , τ) = µ and assuming constant stochastic variance across time c(xτ , τ) = σ. Johnson,114

London, Lea and Durban (2008) also consider a time-varying drift parameter by modeling115

dvτ as the sum of two stochastic processes similar to those in (3), operating on different time116

scales.117

As a second example, the potential function approach to modeling animal movement118

(Brillinger et al., 2001, 2002; Preisler et al., 2004, 2013) results from specifying the drift119

function as µ(xτ , t) = −∇H(xτ ), the negative gradient of a potential surface H(x), which120

is a scalar function defined in R
2. In the overdamped case where β → ∞, and when the121

stochastic variance is constant over time and space (c(xτ , τ) = σ), the SDE (3) reduces to122

dxτ = −∇H(xτ )dτ + σIdWτ (4)

See Brillinger et al. (2001) for details. The velocity-based movement model of Hanks et al.123

(2011) results from taking a discrete (Euler) approximation to the SDE in (4).124

As a third example, the spatially-varying SDE approach of Russell et al. (2017) for125

modeling spatial variation in motility (overall rate of speed) and directional bias could be126

approximated by setting c(xτ , τ) = σm(xτ ) and µ(xτ , τ) = m(xτ )
(

− d
dx
H(xτ )

)

, where H(x)127

is a potential function as in Brillinger (2001), and m(xτ ) is a spatially-varying motility128

surface that acts by dilating or compressing time, as is done by Hooten and Johnson (2017)129
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using a time warping function. While Russell et al. (2017) allow this motility or time-dilation130

surface to vary across space, Hooten and Johnson (2017) allowed their warping function to131

vary across time to capture time-varying movement behavior in which individuals exhibit132

periods of little or no movement interspersed with periods of higher activity.133

2.3 Numerically approximating constrained SDEs134

We consider simulation of a constrained SDE and describe a related approach for inference.135

The model in (2)-(3) is a semi-linear Ito SDE (e.g., Allen, 2007), and in some cases, such136

as the CTCRW of Johnson, London, Lea and Durban (2008) and the potential function137

approach of Brillinger et al. (2001), closed form solutions are available for this transient138

distribution without spatial constraints. However, when movement is constrained to occur139

within a fixed spatial domain D, no closed form for the general transient distribution exists.140

Thus, we consider numerical approximations to the solution of the SDE, both without the141

spatial constraint and using modified approximations that account for the spatial constraint142

D.143

The simplest and most common numerical approximation to the solution to the SDE (2)-144

(3) is the Euler-Maruyama scheme, which results from a first-order Taylor series approxima-145

tion (e.g., Kloeden and Platen, 1992). Given a temporal step-size of h, the Euler-Maruyama146

iterations are147

xτ+h = xτ + vτh (5)

vτ+h = vτ − β(vτ − µ(xτ , τ))h+ c(xτ , τ)Iwτ , (6)

where wτ
iid∼ N(0, hI). The numerical approximation in (5)-(6) is known to be of strong148

order 1/2 (Kloeden and Platen, 1992). Russell et al. (2017) use this Euler-Maruyama nu-149

merical procedure to specify an approximate statistical model for spatially-varying movement150

behavior of ants.151
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2.3.1 A Two-Step Higher Order Procedure152

Brillinger (2003) notes that, for constrained SDEs, the Euler-Maruyama scheme may require153

a very fine temporal discretization to result in realistic paths, and recommends higher-order154

numerical schemes be used. One modification of the above Euler-Maruyama procedure155

involves replacing the velocity vτ with a first difference approximation. This is similar to the156

approach taken in Runge-Kutta procedures for solving partial differential equations (e.g.,157

Cangelosi and Hooten, 2009; Wikle and Hooten, 2010; Cressie and Wikle, 2011). From (5),158

note that vτ = (xτ+h − xτ )/h. Substituting this expression for vτ into (6) gives159

xτ+2h = xτ+h(2− βh) + xτ (βh− 1) + βh2µ(xτ , τ) +wτ , (7)

where wτ
iid∼ N(0, h3c2(xτ , t)I). This numerical procedure has three main benefits rela-160

tive to the Euler-Maruyama approach. First, the resulting solution to the unconstrained161

SDE is an approximation of strong order 1 (Kloeden and Platen, 1992) and thus provides a162

more accurate approximation to the continuous-time solution than does the Euler-Maruyama163

procedure. Second, this procedure removes the latent velocity vτ from the probability distri-164

bution, which simplifies the transition densities to only rely on animal locations at the two165

previous time points. Russell et al. (2017) used the Euler-Maruyama approach to motivate166

a statistical model, and treated vτ as latent variables to be estimated. The two-step proce-167

dure in (7) removes the need to make inference on the latent v. Third, removing the latent168

velocity from the approximation simplifies the solution in the presence of a spatial constraint169

D, because the velocity is not constrained, but the animal’s position is constrained to occur170

within D.171

2.3.2 Reflected Stochastic Differential Equations for Animal Movement172

The SDE in (2)-(3), whose solution is approximated by (7), is not constrained to occur within173

D. One theoretical approach to constructing a constrained process is to consider a process174
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kτ that is defined as the minimal process required to keep xτ within D. Thus, we modify175

(2)-(3) to obtain the constrained stochastic process176

dxτ = vτdt+ kτdt (8)

dvτ = −β(vτ − µ(xτ , t))dt+ c(xτ , t)Idwτ . (9)

This approach is a so-called “reflected” stochastic differential equation (RSDE, e.g., Lépingle,177

1995; Grebenkov, 2007; Dangerfield et al., 2012), a generalization of reflected Brownian178

motion. In reflected Brownian motion, a Brownian trajectory is reflected when it encounters179

the boundary ∂D of the domain D. While there are many theoretical results for reflected180

Brownian motion, we note that the SDE in (2)-(3) is a variation on integrated Brownian181

motion, and therefore results for reflected Brownian motion are not directly applicable here.182

The process kτ is defined as the minimal process required to restrict xτ to be within D,183

and can be described by considering a unit vector n(x) that points toward the interior of D184

orthogonal to ∂D at x. Then this minimal process is defined as185

kτ =















0 if xτ ∈ D

−n(xτ )
n(xτ )′vτ

n(xτ )′n(xτ )
if xτ ∈ ∂D

. (10)

Under this specification, when an individual encounters the boundary ∂D, the process kτ186

nullifies the component of the individual’s velocity that would carry it out of D, and the187

individual’s velocity becomes parallel to the boundary ∂D until acted upon by other forces188

(such as wτ ). kτ is defined when ∂D admits an orthogonal vector n, which is true for smooth189

boundaries ∂D. A natural way to define ∂D is as a polygon, which is piece-wise continuous.190

In this setting, n would be undefined at polygon vertices, but for a fine temporal resolution,191

the latent process x will rarely or never directly encounter the vertices.192

The numerical solution (approximation) to such a constrained SDE (8)-(9) can be ob-193

tained in one of two ways. The most common approach (e.g., Lépingle, 1995; Grebenkov,194
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2007; Dangerfield et al., 2012) is to consider a projected version of a numerical solution to195

the unconstrained SDE. This corresponds to the projection approach proposed by Brillinger196

(2003) for a simpler SDE, who also proposes two other schemes for constraining xτ to re-197

main within D. We do not consider these other schemes here, but make note of them in the198

Discussion.199

In a projected approach to solving the RSDE, the two-time-step numerical procedure in200

(7) is modified by augmenting the solution xτ to the constrained SDE with an unconstrained201

process x̃τ that may occur outside D, as follows. Conditioned on the constrained process at202

previous times x1:(τ+h), the distribution of the unconstrained process x̃τ+2h is given by (7),203

with204

x̃τ+2h|x1:(τ+h) ∼ N
(

(2− βh)xτ+h + (βh− 1)xτ + βh2µ(xτ , τ), σ
2h3I

)

, r = 3, 4, . . . , T.

(11)

Any simulated animal location x̃τ+2h /∈ D that falls outside of the spatial region D is pro-205

jected onto the nearest location xτ+2h ∈ ∂D on the spatial boundary206

xτ+2h = argmin
u∈D

{||u− x̃τ+2h||}. (12)

This results in a computationally efficient approach to simulating sample paths from the207

constrained SDE in (8)-(9), as the boundary ∂D can be approximated as a polygon, and208

fast algorithms can be specified for projection of a point outside of D onto the polygonal209

boundary ∂D. Pseudo-code for simulation of the RSDE in (8)-(9) for a given temporal step-210

size h is given in Appendix A, and R code to implement this approach is available upon211

request.212
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3 Inference on RSDE Model Parameters213

We now consider inference on the movement parameters θ ≡ (β, σ2)′ from observed telemetry214

data {si, i = 1, 2, . . . , n}. To maintain generality in our description, we consider a general215

observation error model (1), with216

st ∼ ℓ(xt;θ)

and with the latent movement path x1:T defined by (11)-(12). We treat our discrete-time217

approximation (11)-(12) as the statistical model for the latent movement process, rather218

than the RSDE in (8)-(9). This requires a sufficiently fine temporal resolution h to maintain219

fidelity to the RSDE (8)-(9). Our goal is inference on the latent discrete-time representation220

of the animal’s movement path {xr, r = 1, 2, . . . , T} together with the movement parameters221

θ ≡ (β, σ2)′.222

The main difficulty in such inference is the latent unknown movement path x1:T , because223

if we were able to condition on x1:T , inference on θ would be straightforward. If the latent224

movement path is unconstrained, then the model (1), (11)-(12) is a hidden Markov model225

(HMM), and inference can be made using recursive algorithms such as the Kalman filter226

(Cappé, 2005; Zucchini and MacDonald, 2009; Cressie and Wikle, 2011).227

The projection in (12) is nonlinear, thus we need to make inference on the states and228

parameters in a nonlinear (constrained) state space model. Many methods for such inference229

have been proposed, including the ensemble Kalman filter (Katzfuss et al., 2016), MCMC230

(Cangelosi and Hooten, 2009), and particle filtering (Andrieu et al., 2010; Cappé et al.,231

2007; Del Moral et al., 2006; Kantas et al., 2009). In particle filtering, the filtering densities232

f(xt|s1:t;θ) are recursively approximated using particles that are propagated at each time233

point using the transition density (11)-(12) , and then reweighted based on the observation234

likelihood ℓ (1). Particle filtering approaches to inference, like particle MCMC (Andrieu235

et al., 2010), are appealing for constrained processes because they do not require the eval-236

uation of the transition densities (11)-(12), which are intractible due to the projection, but237
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only require that they be simulated from.238

3.1 Inference on RSDEs through Markov Chain Monte Carlo239

To make inference on model parameters θ ≡ (β, σ)′ and the individual’s latent path x1:T , we240

constructed an MCMC algorithm to sample from the posterior distribution of x1:T ,θ|s1:n. In241

doing so, we make explicit use of the simulation procedure in (11)-(12), which is a discretized,242

constrained movement model. It would be difficult to directly obtain the transition density243

function, because this would require marginalizing over the auxiliary x̃r244

qr(xr|xr−1,xr−2) =

∫

x̃r

[x̃r|xr−1,xr−2]1{argmin
u∈D ||x̃r−u||=xr}dx̃r,

where [x̃r|xr−1,xr−2] is given by (11).245

However, because we have a tractable conditional density for [x̃r|xr−1,xr−2], and xr is a246

deterministic function of x̃r (xr is the projection of x̃r onto D), we constructed an MCMC247

algorithm that jointly updates (x̃r,xr), as follows. At the mth iteration of the MCMC248

algorithm, let the current state of the latent constrained process be x
(m)
1:T , augmented by249

the unconstrained x̃
(m)
1:T . To update (x̃r,xr) at one time point r, we propose a new location250

x̃∗
r ∼ N(x̃

(m)
r , γ2

r I) as a random walk centered on x̃
(m)
r , with proposal variance γ2

r . Projecting251

this proposed location onto D (if x̃∗
r 6∈ D) as in (12) gives x∗

r, the proposed individual location252

at time τr. The proposed pair (x̃∗
r,x

∗
r) can then be accepted with probability253

pr = min

{

1,
[s1:n|x(m)

1:(r−1),x
∗
r,x

(m)
(r+1):T ][x̃

(m)
r+2|x

(m)
r+1,x

∗
r][x̃

(m)
r+1|x∗

r,x
(m)
r−1][x̃

∗
r|x

(m)
r−1,x

(m)
r−2]

[s1:n|x(m)
1:T ][x̃

(m)
r+2|x

(m)
r+1,x

(m)
r ][x̃

(m)
r+1|x

(m)
r ,x

(m)
r−1][x̃

(m)
r |x(m)

r−1,x
(m)
r−2]

}

. (13)

The likelihood of the data [s1:n|x(m)
1:(r−1),x

∗
r,x

(m)
(r+1):T ] is the likelihood (1) of all observed teleme-254

try locations, conditioned on the latent path and the proposed location x∗
r (e.g., Gaussian255

error for GPS data). Each of the transition densities (e.g., [x̃∗
r|x

(m)
r−1,x

(m)
r−2]) are multivariate256

normal densities given by (11).257
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This approach allows for Metropolis-Hastings updates for the latent locations xr one at a258

time. Block updates based on the simulation procedure could also be constructed. We found259

that updating each location at a time, using adaptive tuning (e.g., Craiu and Rosenthal,260

2014) for each proposal variance γ2
r resulted in acceptable mixing, both in simulation (see261

Appendix B), and for the sea lion analysis in Section 4.262

To complete the MCMC algorithm, we update the movement parameters θ ≡ (β, σ)′,263

conditioned on x̃1:T . One could specify conjugate priors (e.g., a Gaussian prior for β and an264

inverse gamma prior for σ2), or one could use block Metropolis-Hastings updates to jointly265

update the movement parameters β and σ at each iteration of the MCMC algorithm. We266

favor this approach because it allows for more flexible prior specification. Similar update267

schemes could be used for parameters in the observation error model (1).268

In Appendix B, we show a simulation example where we simulate movement constrained269

to lie within a polygon D, and make inference on model parameters. Code to replicate this270

simulation study is available upon request.271

4 Modeling Constrained Sea Lion Movement272

Having specified an RSDE-based approach for simulating animal trajectories constrained to273

lie within a domain D, and for making inference on model parameters, we now apply this274

approach to the sea lion telemetry data.275

4.1 Telemetry Data276

As described in the Introduction, we consider the telemetry observations obtained from a277

sea lion off the coast of Alaska from December 6, 2010 to January 5, 2011. In this 30-day278

period of observation, n = 211 telemetry observations were obtained using the ARGOS279

system (ARGOS, 2015). The ARGOS system is unable to obtain a location fix when the280

sea lion is under water, thus the telemetry observations s1:n were obtained at n irregular281

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2017. ; https://doi.org/10.1101/152017doi: bioRxiv preprint 

https://doi.org/10.1101/152017
http://creativecommons.org/licenses/by-nc-nd/4.0/


times τi, i ∈ {1, 2, . . . , n}. Each ARGOS telemetry location is also accompanied by a code282

ci ∈ {3, 2, 1, 0, A,B} specifying the precision of the location fix at each time point, where283

ci = 3 corresponds to observations with the highest precision and ci = B corresponds to284

observations with the lowest precision. Multiple studies have shown that ARGOS error has285

a distinctive X-shaped pattern (Costa et al., 2010; Brost et al., 2015), and that each error286

class exhibits increasing error variance.287

4.2 Model and Inference288

To model the X-shaped error distribution, we follow Brost et al. (2015) and Buderman et al.289

(2016) and model observation error using a mixture of two multivariate t-distributed random290

variables, centered at the individual’s true location xτi291

si ∼















MVT(xτi ,Σci , νci) w.p. 0.5

MVT(xτi ,Σ
∗
ci
, νci) w.p. 0.5

. (14)

In (14), νci is the degrees of freedom parameter for ARGOS error class ci, and Σci and Σ∗
ci

292

capture the X-shaped ARGOS error pattern293

Σc = κ2
c







1 ρc
√
ac

ρc
√
ac a






, Σ∗

c = κ2
c







1 −ρc
√
ac

−ρc
√
ac a







and θc ≡ (κc, ρc, ac, νc)
′ are ARGOS class-specific error parameters. See Brost et al. (2015)294

for additional details, and Costa et al. (2010) for an empirical analysis of ARGOS error295

patterns. As the distribution of ARGOS error has been studied extensively, we consider the296

ARGOS error parameters θc to be fixed and known. For this study, we set these parameters297

equal to the posterior means reported in Appendix D of Brost et al. (2015).298

To model sea lion movement, which is constrained to be in water (xτ ∈ D), we consider299

a continuous-time model defined as a linear interpolation of the numerical approximation300
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(11)-(12) of the RSDE (8)-(9). For a given temporal step size h, taken to be h = 5 minutes301

for this analysis, we consider an approximation to the RSDE at times tr ≡ τ1 + rh, r ∈302

{0, 1, . . . , T, T ≡ 30×24×12 = 8640}. At any observation time τi, the individual’s position303

is given by a linear interpolation of the discrete approximation to the RSDE at the two304

nearest time points tr(i), tr(i)+1, where τi ∈ (tr(i), tr(i)+1) and305

xτi = xr(i)

τi − tr(i)
h

+ xr(i)

tr(i)+1 − τi
h

. (15)

The RSDEmodel for movement is approximated at discrete times tr ≡ τ1+rh, r ∈ {0, 1, . . . , T}306

according to (11)-(12). An alternative to this linear interpolation is to augment the approx-307

imation times (tr ≡ τ1 + rh, r ∈ {0, 1, . . . , T}) with the observation times (τi, i = 1, . . . , n).308

This results in a non-uniform step size between time points at which the RSDE is approx-309

imated. The computational complexity of simulating the RSDE is linear in the number of310

time points, so the addition of the n additional time points is computationally feasible in311

many situations. The error in the numerical approximation (7) to the SDE scales with the312

largest time h between approximation times (Kloeden and Platen, 1992), so it is not clear313

that adding these n additional time points would result in an increase in numerical efficiency.314

We thus retain our regular temporal resolution, with a step size of h.315

For this study of sea lion movement, we characterize space use over time. While it would316

be possible in some situations to model sea lion movement as being attracted to a haul-out317

or other central point (Hanks et al., 2011; Brost et al., 2015), we do not consider this here318

because our goal is only to characterize space use. Thus, we set µ(xτ , τ) = 0. We also319

assume a constant variance in the velocity process over time and space, with σ2 ≡ c2(xτ , τ).320

The resulting model for the discretized movement process constrained to be within water is321

xr|x̃r = argmin
u∈D

{||u− x̃r||}, r = 1, 2, . . . , T (16)

x̃r|xr−1,xr−2 ∼ N
(

(2− βh)xr−1 + (βh− 1)xr−2, σ
2h3I

)

, r = 3, 4, . . . , T. (17)
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This model is illustrated conceptually in Figure 2.322

We complete the hierarchical state space model by specifying prior distributions for all323

parameters. For the initial two time points, we specify independent uniform priors324

x1 ∼ Unif(D), x2 ∼ Unif(D) (18)

and we specify independent half-normal priors for the autocorrelation parameter β and the325

Brownian motion standard deviation σ326

[β] ∝ exp
{

−β2/(2γ2
β)
}

1{β>0} , [σ] ∝ exp
{

−σ2/(2γ2
σ)
}

1{σ>0} (19)

with γσ = γβ = 100 as hyperparameters.327

Our goal is inference on all parameters in the hierarchical Bayesian model for animal328

movement in (14)-(19). We constructed an MCMC algorithm to draw samples from the329

posterior distribution of model parameters, conditioned on the observed telemetry data,330

using methods described in Section 3.1. We used variable at a time Metropolis-Hastings331

updates (13) for the latent locations (x̃r,xr), and used block Metropolis-Hastings updates to332

jointly update the movement parameters β and σ at each iteration of the MCMC algorithm.333

Random walk proposal distributions were specified for all parameters, and the variance of334

each proposal distribution was tuned adaptively using the log-adaptive procedure of Shaby335

and Wells (2010).336

To initialize the MCMC algorithm for the sea lion analysis, we first chose starting values337

for movement parameters (β0 = .001, σ0 = 1km) and used a particle filtering algorithm338

(Cappé et al., 2007; Kantas et al., 2009) to provide a starting movement path x1:T constrained339

to be in water. We initialized x̃r = xr for each time point, and then ran the MCMC algorithm340

for 200,000 iterations. Convergence was assessed visually, with chains for β, σ, and each xr341

showing good mixing. The entire procedure required 14 hours on a single core of a 2.7GHz342

Intel Xeon processor. Code to replicate this analysis is available upon request.343
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4.3 Results344

The posterior mean for log(σ), which controls the variance of the Brownian motion process345

on velocity, was log(σ̂) = 11.8, with an equal-tailed 95% credible interval of (11.2, 12.4).346

The posterior mean for log(β), which controls autocorrelation beyond that implied by IBM,347

was log(β̂) = −7.1, with an equal-tailed 95% credible interval of (−7.6,−6.2). The small348

estimated value for β implies that this term may not be needed in the model, and that IBM349

could be an appropriate model for this sea lion’s movement.350

Figure 3a shows 10 realizations of paths x1:T from the posterior distribution, and Figure351

3b shows one path realization together with the observed ARGOS telemetry locations s1:T ,352

with lines drawn from the telemetry locations to the realization of the individual’s location at353

the time of observation. Figure 4(a) shows 10 realizations from the posterior path distribution354

of the animal on December 11, 2010, as it navigated a narrow passage. Figures 4(b)-(j) show355

the posterior distribution of the sea lion’s location xt at 15 minute intervals. Our temporal356

discretization had a step-size of h = 5 minutes. Thus, there are two time points in our latent357

representation of the movement process between each shown time point in 4(b)-(j). Using358

a coarser time discretization would speed up computation at the expense of realism, as the359

linear interpolation (15) would result in paths that cross larger portions of land.360

The spatial constraint is clear in both Figure 3 and Figure 4, and shows that our RSDE361

approach was successful in modeling realistic animal movement that is spatially constrained362

to occur within water (D). The posterior distribution of x1:T |s1:n (Figure 3a) estimates sea363

lion space use over the 30 days of observation, and indicates that the individual spends a364

majority of its time near land, as expected for this species of pinniped.365

5 Discussion366

We developed an approach for modeling spatially-constrained animal movement based on367

a numerical approximation to a stochastic differential equation. The base SDE is gen-368
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eral enough to capture a range of realistic animal movement, and the two-step procedure369

in Section 2.2.1 leads to a computationally tractable transition density. Our approach to370

constraining movement is based on the reflected SDE literature, and consists of projecting371

numerical approximations to the solution of the SDE onto the domain D.372

Our approach for inference is computationally challenging, and future work will consider373

approaches that make inference more computationally efficient. The main computational374

burden for each iteration of the MCMC algorithm is projecting each latent x̃1:T onto D. We375

coded Algorithm 1 using C++, but there is still significant room for improving computational376

efficiency. Algorithm 1 assumes that ∂D is given as a polygon or set of polygons, and checks377

each side of each polygon. When D is large relative to the distance an animal can move378

between telemetry observations, Algorithm 1 could potentially be made more efficient by379

only considering a subset of polygon edges for each time point. An additional computational380

difficulty comes from the lack of conjugacy for the long latent time-series x1:T . Our approach381

is to use adaptively-tuned Metropolis-Hastings steps for each time point. One possible future382

approach is to construct a joint proposal for all x̃1:T through a forward filtering, backward383

sampling algorithm (e.g., Cressie and Wikle, 2011) ignoring constraints. This would provide384

an approach for block updates of (x1:T , x̃1:T ), which may improve mixing of the MCMC385

algorithm.386

We note that there are other possible approaches to simulating RSDEs. One alterna-387

tive, less common, approach for approximating the constrained SDE in (8)-(9) is to change388

the distribution of the increments (7) of the unconstrained numerical approximation to be389

distributed as truncated normal distributions with spatial constraint D instead of the un-390

constrained Gaussian increments in (7). Cangelosi and Hooten (2009) used this approach391

and included a correction term in the mean of the truncated bivariate normal distribution to392

better capture the dynamics implied by the unconstrained SDE. Brillinger (2003) considered393

additional approaches to simulation, including specifying a mean function µ(x) that repels394

trajectories near the boundary ∂D. Russell et al. (2017) use a similar approach to constrain395
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ant movement to lie within a nest.396

Another approach to modeling movement constrained to lie within D is to consider dis-397

crete space (gridded) approximations to the movement process (Hooten et al., 2010; Hanks398

et al., 2015; Avgar et al., 2016; Brost et al., 2015). A discrete support allows the spatial399

constraint on movement to be easily captured, but discrete space approaches can be com-400

putationally challenging to implement when the evaluation of the transition density requires401

the computation of all pairwise transitions from any grid cell to any other grid cell (e.g.,402

Brost et al., 2015).403

We assumed that animal locations are observed with error, which is the case for most404

telemetry data. If it can safely be assumed that observation locations have negligible error,405

then all observations will be within D. In this setting, the projection-based approach to406

inference developed in Section 3 could still be applied. This is true for SDE models that407

only model change in location, like potential function models (4), as well as SDE models408

that model change in velocity, like (2)-(3). An appealing alternative to the projection-based409

approach is to consider a truncated normal (TN) transition density with suitable location410

parameter µt, covariance Σt, and support D411

xt|x1:(t−1) ∼ TN(µt,Σt,D). (20)

For example, the location and covariance parameters could be those defined by the approx-412

imation (11) to the SDE (8)-(9). The density function of the truncated normal distribution413

in (20) is414

qt(xt|x1:(t−1);θ) =
exp

(

−1
2
(xt − µt)

′Σ−1
t (xt − µt)

)

∫

D
exp

(

−1
2
(v − µt)

′Σ−1
t (v − µt)dv, (21)

and fast approaches exist (Abramowitz and Stegun, 2012; Genz and Bretz, 2009) with ac-415

cessible software (Meyer et al., 2016) for computing the normalizing constant when D can416

be approximated as a polygon in R
2.417

We have focused on SDE models for the time-derivative of velocity. In some situations418
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it is reasonable to model movement based solely on an SDE model for the time derivative of419

position (Brillinger et al., 2002; Preisler et al., 2013). The RSDE approach developed here420

could also be applied in this case, though there would be no need to do the two-step numerical421

approximation (7). Instead, an Euler approximation, or other numerical approximation to422

the SDE could be used (Kloeden and Platen, 1992).423

Modeling movement without accounting for spatial constraints can lead to bias in move-424

ment parameter estimates and resulting inference. Our work, and the work of others who425

have also considered constrained movement (Brillinger, 2003; Cangelosi and Hooten, 2009;426

Brost et al., 2015) provide approaches that formally account for constraints and lead to more427

realistic animal movement and space use.428

Acknowledgments429

Funding for this research was provided by NSF (DEB EEID 1414296), NIH (GM116927-01),430

NOAA (RWO 103), CPW (TO 1304), and NSF (DMS 1614392). Any use of trade, firm, or431

product names is for descriptive purposes only and does not imply endorsement by the U.S.432

Government. We thank Brett McClintock, Jay VerHoef, two anonymous reviewers, and an433

anonymous AE for their helpful suggestions on an earlier draft of this manuscript.434

APPENDIX A. Algorithm for Simulating RSDEs435

We here describe an algorithm for simulating from RSDEs constrained to lie within a domain436

D.437

APPENDIX B. Simulation Example438

In this Appendix, we consider a simple simulation example that illustrates the possible bias439

incurred by not accounting for constraints in movement. We consider a simple version of the440
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reflected SDE in (8)-(9) in which β = 0 and c(x, τ) = σ441

dxτ = vτdτ + kτdτ (22)

dvτ = σIdwτ (23)

and where kτ is as given in (10). We refer to this constrained process as reflected integrated442

Brownian motion (RIBM) becuase the unconstrained version of this process (when kτ = 0)443

is two-dimensional integrated Brownian motion (IBM). Figure B.1a shows a path simulated444

from RIBM for a given polygonal constraint D. When the path is far from the boundary ∂D,445

the path behaves identically to IBM. When the path is near the border ∂D, it often ends up446

identically on the boundary for short periods of time, because the minimal k process keeps447

xt from leaving D. We also simulated noisy telemetry observations (Figure B.1b) under448

Gaussian observation error at 300 regularly spaced time points449

st ∼ N(xt, κ
2I), t = 1, 2, . . . , 300. (24)

We considered estimation of model parameters θ = (σ, κ)′ by specifying diffuse half-normal450

priors (with variance=100) for σ and κ, and sampling from the posterior distribution [θ|s1:300]451

using PMMH algorithms (Andrieu et al., 2010). Code to replicate this simulation study is452

available upon request. We considered estimation from the true model, RIBM, by construct-453

ing a particle filter using the projected simulation approach in Algorithm 1. We estimated454

model parameters using an unconstrained IBM model for xτ by constructing a particle filter455

without any projection or constraint. We note that it is possible to estimate θ under IBM456

by marginalizing over x1:300 using the convolution approach of Hooten and Johnson (2017),457

but we instead used PMMH to allow a more direct comparison between the estimates of θ458

under constrained (RIBM) and unconstrained (IBM) models. Each PMMH sampler was run459

for 10,000 iterations, with convergence of Markov chains assessed visually.460

In general, the PMMH algorithm is less computationally-efficient for our system than461
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the MCMC algorithm that we develop in the Section 3.1. The PMMH algorithm essentially462

attempts a block update of the entire latent path x1:300 at each MCMC algorithm, while the463

approach in Section 3.1 considers updating each xt one at a time. Code to compare both of464

these approaches is available upon request.465

Figure B.1c shows the estimated posterior distributions for the observation error stan-466

dard deviation κ under IBM and RIBM, and Figure B.1d shows the posterior distributions467

for the Brownian motion standard deviation σ. There is little difference between constrained468

(RIBM) and unconstrained (IBM) models in the posterior distribution of the observation469

error κ (Figure B.1c), but the IBM model overestimates the Brownian motion standard de-470

viation σ (Figure B.1d). Figure A.1e shows 10 sample paths from the posterior distribution471

of x1:300 under RIBM, and Figure 1f shows 10 sample paths from the posterior distribution472

under IBM. From this simulation example, it is clear that parameter estimates obtained473

without accounting for constraints in movement can show bias under model misspecifica-474

tion, though even under misspecification the 95% equal-tailed credible intervals of all model475

parameters under IBM include the true values simulated under RIBM. This may indicate476

that estimates obtained by fitting unconstrained movement models may be useful, even when477

we know the underlying movement process is constrained.478
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Figure 1: Sea Lion Telemetry Data. Telemetry data from 30 days of observation of a sea
lion (Eumatopias jubatus) in southeast Alaska, obtained using the ARGOS system.
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Figure 2: Modeling movement using projected processes. A time-discretized solution to the
reflected SDE is obtained by first forward simulating from the transition density to obtain
x̃t|xt−1,xt−2, and then projecting x̃t onto D to obtain xt.

(a) Posterior Path Distribution (b) Observations and Path

Figure 3: Ten sample paths from the posterior distribution of sea lion paths are shown in
(a), with each path plotted in a different color. These paths show a propensity of the sea
lion to stay close to coastlines. A single paths is shown in blue in (b), with the telemetry
observations shown as red points, with lines connecting the telemetry observation to the
estimated location xτr . The imputed path between observed telemetry locations skirts islands
and other barriers, as the movement model constrains the sea lion to be in the water or on
the shoreline at all times.
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(a) Ten Posterior Paths on 2010−12−11 (b)  19:45

(c) 20:00

(d) 20:15

(e) 20:30

(f) 20:45

(g) 21:00
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Figure 4: (a) Ten paths from the posterior distribution of sea lion locations as it navigates a
narrow passage. (b)-(j) 5000 samples from the posterior distribution of sea lion locations at
fifteen minute intervals. The posterior distribution shows that the individual is constrained
to be within water (shown in white), or on the shoreline.
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Algorithm 1: Projected Solution to Reflected Stochastic Differential Equations

1 function simRSDE (h, T,x0,xh,µ(x, τ), c(x, τ), β);
Input : initial states x0, xh, step size h, end time T ,

movement parameters µ(x, τ), c(x, τ), β from (17)-(18)
Output: Simulated Path x2h,x3h, . . . ,xT

2 for τ = 0, h, 2h, 3h, . . . , (T/h− 2) do
3 Simulate unconstrained movement using (16):

x̃τ+2h = xτ+h(2−βh)+xτ (βh− 1)+βh2µ(xτ , τ)+wτ , wτ
iid∼ N(0, h3c2(xτ , t)I);

4 if x̃τ+2h ∈ D then

5 xτ+2h = x̃τ+2h

6 else

7 xτ+2h = project(x̃τ+2h,D)
8 end

9 end

10 function project (x̃, ∂D)
Input : location x̃ outside of D,

boundary ∂D expressed as a polygon with vertices p1,p2, . . . ,pM

Output: x ∈ ∂D
11 set d = ∞
12 for j = 1, 2, . . . , (M − 1) do
13 Project x̃ onto the line segment pj + u · (pj+1 − pj), u ∈ [0, 1]:
14 u = min{1, (x̃− pj)

′(pj+1 − pj)/[(pj+1 − pj)
′(pj+1 − pj)]}

15 u = max{0, u}
16 xj = pj + u · (pj+1 − pj)

17 d(j) = (x(j) − x̃)′(x(j) − x̃)

18 if d(j) < d then

19 d = d(j)

20 x = xj

21 end

22 end
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IBM

RIBM

RIBM

Figure B.1: Simulation example (IBM). An individual’s path, constrained to occur within
the polygon, was simulated using RIBM (a), and iid Gausian error was added (b) to simulate
telemetry observation error. The observation error variance (c) and latent Brownian motion
error variance (d) were estimated using PMMH for both RIBM and IBM models with diffuse
half-normal priors. Results show some bias in the Brownian motion error variance. Samples
from the posterior distribution of animal paths x1:T |s1:T from the RIBM model (e) are
constrained to lie within D, while those from the IBM model (f) are not.

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2017. ; https://doi.org/10.1101/152017doi: bioRxiv preprint 

https://doi.org/10.1101/152017
http://creativecommons.org/licenses/by-nc-nd/4.0/



