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ABSTRACT

According to Fresnel formulae, at normal incidence on an abrupt interface, the reflected wave has a phase
difference of zero or π, if the second medium has a lower or larger refractive index than the first. However, what
happens if the refractive indices of two media are the same at the interface but the derivative of the refractive
index varies abruptly? Since the two media are not homogeneous because the refractive index derivative is finite,
the problem cannot be tackled with the Fresnel formalism. In order to deal with this problem the amplitude
and phase representation of plane electromagnetic waves is used. An invariant is obtained that permits the
decoupling of the amplitude and phase equations, both of which, are nonlinear. The amplitude equation is then
solved numerically. No approximations are made regarding how slow or fast refractive index varies compared
to the wavelength. Interpretation of the amplitude equation solutions reveal that surfaces where any of the
derivatives of the refractive index profile is discontinuous, do enhance reflection. At normal incidence, the
reflected wave thus generated will have a phase difference that may be a multiple of π

2 , apparently contradicting
the Fresnel equations.

Keywords: electromagnetic propagation, stratified media, reflectivity, discontinuity, rugate filters, atmospheric
disturbances, optical coherence tomography

1. INTRODUCTION

1.1 Amplitude equation
Important works trying to describe propagation of electromagnetic waves through stratified media have already
been published. Somehow these works end up using approximate expressions, most of them being for either a
slowly or strongly varying refractive index, compared to the wavelength.1–4 This approximations allow analytical
expressions to be written for the fields and the reflectivity. Note that this early works were published before
commercial computers were widely used by scientists and regular population, numerical analysis was not as easily
performed as it is today. In the present work, no approximations of this kind are intended, just those inherent
to the use of numerical methods. For that purpose a differential equation for the electric field amplitude will be
convenient.5, 6 It is a nonlinear ordinary differential equation of the Ermakov–Milne–Pinney type.

Starting with Maxwell equations, assuming then an isotropic, transparent, dielectric medium with a linear
response and no free charges, but letting the electric permittivity and magnetic permeability vary, yields the
following second order equation for the electric field:

∇ (E · ∇ ln ε) +∇ lnμ× (∇×E) = με
∂2E

∂t2
−∇2E (1)

Where ε and μ are the electric permittivity and magnetic permeability respectively. Let now z be the direction
of stratification, meaning thatε and μ will depend only on z. Consider also a monochromatic time behavior, being
ω its frequency, and assume a TE polarization, then equation 1 leads to:7

∂2Ex

∂y2
+

∂2Ex

∂z2
+ ω2εμEx =

d(lnμ)

dz

∂Ex

∂z
(2)
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Where we choose x as the direction of the electric field. Particularly for normal incidence and non magnetic
media, this is μ = μ0, the former equation may be written in a very simple way:

∂2Ex

∂z2
+ k20n

2Ex = 0 (3)

Where k20 = ω2μ0ε0 and n =
√

ε
ε0

, being ε0 the electric permittivity of vacuum and μ0 its magnetic per-
meability. Equation 3 looks like a one dimensional Helmholtz equation except that the refractive index is not
necessarily a constant, n = n(z). Now, consider a complex Ex, namely Ex = Aeiq , where the amplitude A and
phase q may depend on z. We are interested in non absorbing media, so we will assume the refractive index to
be a real quantity. Substitution in equation 3 and later separation of real and imaginary parts render:

d2A

dz2
− A

(
dq

dz

)2

= −k20n
2A (4)

2

(
dA

dz

)(
dq

dz

)
+ A

d2q

dz2
= 0 (5)

Equation 5 can be readily integrated to obtain an invariant quantity given by:

Q = A2 dq

dz
(6)

A nonlinear ordinary differential equation for the amplitude is obtained upon substitution of this result in
equation 7:

d2A

dz2
− Q2

A3
= −k20n

2A (7)

The former is an Ermakov–Milne–Pinney type equation. In order to work with a dimensionless amplitude
function let us introduceAd = A

√
k0

Q , then equation 10 can be rewritten:

1

k20

d2Ad

dz2
−

1

A3
d

= −n2Ad (8)

This is the ordinary differential equation for the electric field amplitude. It seems folly to turn a linear
differential equation into a non-linear ODE, but equation 8 poses no challenge to be solved numerically if A is
real and n is bounded. Also, initial conditions are easily imposed having a clear physical meaning and finally,
interpretation of the solutions is straight forward.

1.2 Interpretation of the solutions
A constant n is related to an homogeneous medium, in that case the solutions of equation 8 are known and must
be of the following form:5, 6, 8

Ad =
√
A2

1 +A2
2 + 2A1A2 cos (2k0nz + β) (9)

Where Ad is the field amplitude produced by the superposition of two counter propagating waves, with
individual constant amplitudes A1and A2. Also β is the phase difference between both waves at z = 0. There is
a restriction for this amplitudes A1and A2 if equation 8 is to be satisfied:

(
A2

1 −A2
2

)2
=

1

n2
(10)
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This homogeneous media solution Ad(z) oscillates periodically if neither, A1nor A2, is zero. Maxima Amax

and minima Amin occur when the incoming and outgoing waves are in or out of phase respectively. These extrema
can also be related to the ratio r = A2

A1
:5, 6

r =
Amax −Amin

Amax +Amin
(11)

The local extrema of the oscillations show where the incident and reflected waves are in or out of phase.
Wherever there is a minimum, the electric vector fields of these waves point in opposite directions; if there is
a maximum, it means the fields point in the same direction. Let Op be the optical path Op =

´ z
0 n dz. If

maxima occur at Op = 1
4 ± m

2 and minima at Op = ±m
2 , for m = 0, 1, 2, 3..., the electric field waves must have

phase difference of δ = π between them at z = 0, the discontinuity site. If maxima and minima positions are
interchanged, waves must be in phase at z = 0. For the former interpretation to be valid, the refractive index
n(z) must be sufficiently constant along the interval where the local extrema are found. If there is only one wave
propagating, A1or A2 is zero and Adis constant, particularly:

A2
d =

1

n
(12)

To model a single interface, n(z) must be a monotonic continuous function that evolves from n1 to n2. Far
from the interface n should be practically constant. To evaluate the reflectivity, the convenient initial condition is
a single transmitted wave through the second medium, so the incident light is assumed to come only from the first
medium side. This will mean that the solution in the second medium, far from the interface, is almost constant
Ad =

√
1
n2

. Under this condition, the oscillations in the first medium, far from the interface too, will reveal
the reflectivity: R = r2. Given the indices n1 and n2, we expect that reflectivity will depend on the interface
abruptness. The former property can be characterized by the distance D through which the index varies from
n1 +

1
20Δn to n2 − 1

20Δn, so that parameter D can be thought as the interface thickness, corresponding to 90 %
of the index change.

In earlier papers5, 6 studies of the interface reflectivity, given different profiles with varying thicknesses, have
been done. All profiles were continuous, but some were piecewise defined and their derivatives were discontinuous.

For “hard” interfaces, meaning D ≈ λ
100 , reflectivity was close to the Fresnel result R =

(
n2−n1

n2+n1

)2

, regardless

of the profile type. For “softer” interfaces, D ≈ λ
2 , the reflectivity of almost all n(z) profiles fell to less than 6

% of the former result. When D extended to about a wavelength and more, the reflectivity for analytic profiles
continued to drop monotonically, but for the piecewise defined it oscillated. It is important to say that every
piecewise defined profile had two attachment points z1and z2 in order to keep a certain interface symmetry.
Oscillations in these cases resembled quite well thin film interference, being its thickness z2 − z1. Evidently
discontinuities in the profile derivatives were causing reflection but it was not clear, only with the interference
data, which type of phase change was the reflected wave undergoing at the boundaries z1and z2. We could only
infer the relative change between the two reflections. Our task now is to evaluate such phase change, based on
interpretations of the Amplitude equation solutions.
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Figure 1. Two discontinuous functions and their corresponding amplitude equation solutions.

Proc. of SPIE Vol. 8011  80115U-3



-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

0.97

0.98

0.99

1.00

1.01

1.02

A
d

Optical path in wavelength units

 lin&tanh+
 tanh&lin+

Figure 2. Two continuous functions with discontinuous first derivatives and their corresponding amplitude equation solu-
tions.

0.99

1.00

A
d

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

0.82

0.83

0.84

Optical path in wavelength units

 lin&sech+
 sech&lin-

Figure 3. Two continuous functions with discontinuous second derivatives and their corresponding amplitude equation
solutions.
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Figure 4. Two continuous functions with discontinuous third derivatives and their corresponding amplitude equation
solutions.

2. REFRACTIVE INDEX PROFILES
In order to see how the reflectivity of a single junction profile behaves, piecewise refractive index profiles can be
built with only one attachment point. To rule out reflections from the rest of the interface, the D parameter must
be grater than one. The junction, always at z = 0, can exhibit different types of discontinuities, the function
n(z) may be discontinuous itself, or be continuous but not its first derivative and/or the rest. The former figures
show different n(z) functions and their corresponding amplitude equation 8solution plotted against the optical
path in wavelength units. Figure 1 shows two n(z) functions with a discontinuity at z = 0, let na = 1 and
ng = 1.5. Figure 2 shows another couple of profiles, this time n(z) is continuous for both but dn

dz is not, in one
case the first derivative increases at the junction and in the other case it decreases. The functions n(z) in figure

Proc. of SPIE Vol. 8011  80115U-4



3 are continuous as well as dn
dz , but d2n

dz2 is discontinuous at the junction. Profiles n(z) at figure 4 are continuous
as well as dn

dz and d2n
dz2 , but not d3n

dz3 .

3. PHASE RELATION BETWEEN INCIDENT AND REFLECTED WAVES

The amplitude equation solution for “step+”, with an increasing n(z) at the junction, has its maxima around
Op = − 1

4 − m
2 and minima at Op = −m

2 , the electric field waves must have a phase difference of δ = π between
them at the junction. For “step-”, with a decreasing n(z) at the junction, maxima and minima positions are
interchanged, waves must be in phase at z = 0. The former results are also reached by the well known Fresnel
formulae.

The amplitude equation solution for “lin&tanh+”, with an increasing dn
dz at the junction, has its maxima

around Op = − 1
8 − m

2 and minima at Op = − 3
8 − m

2 , the electric field waves must have a phase difference of
δ = π

2 between them at the junction. For “tanh&lin+”, with a decreasing dn
dz at the junction, maxima and minima

positions are interchanged, the electric field waves must have a phase difference of δ = 3π
2 between them at the

junction. The former results can not be reached by the Fresnel formalism and are very surprising. The following
results can not be reached by Fresnel formalism either and certainly are surprising too.

The amplitude equation solution for “lin&sech+”, with an increasing d2n
dz2 at the junction, has its maxima

around Op = −m
2 and minima at Op = 1

4 − m
2 , waves must be in phase at z = 0. For “lin&sech-”, with a

decreasing d2n
dz2 at the junction, maxima and minima positions are interchanged, the electric field waves must

have a phase difference of δ = π between them at the junction.

The amplitude equation solution for “lin&cubexp+”, with an increasing d3n
dz3 at the junction, has its maxima

around Op = − 3
8 − m

2 and minima at Op = − 1
8 − m

2 , the electric field waves must have a phase difference of
δ = 3π

2 between them at the junction. For “cubexp&lin+”, with a decreasing d3n
dz3 at the junction, maxima and

minima positions are interchanged, the electric field waves must have a phase difference of δ = π
2 between them

at the junction.

4. CONCLUSIONS

The selected profiles and their amplitude equation solutions show a certain order, related to the phase difference
between the incident and reflected waves at the junction. Table 1 displays a generalization of that behavior.
Other profiles have been tested and they all hold to the rule. Reflectivity of the interface, computed with equation
11, diminishes about an order of magnitude as the lowest order of the discontinuous derivatives escalates. That is
why the relevant discontinuity is the one related to the lowest order discontinuous derivative. The former results
may be applied to rugate filter design, interpretation of Doppler radar measurements in the clear air atmosphere,
optical coherence tomography and other issues related with wave propagation in stratified media.

Table 1. conclusions.
Phase difference δ between incident and reflected waves at the junction

Lowest order discontinuous
derivative

for increasing lowest order
discontinuous derivative

for decreasing lowest order
discontinuous derivative

n(z) is discontinuous π 0
dn
dz

π
2

3π
2

d2n
dz2 0 π
d3n
dz3

3π
2

π
2
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