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Abstract
Recently, there has been much interest in black hole echoes, based on the
idea that there may be some mechanism (e.g. from quantum gravity) that
waves/fields falling into a black hole could partially reflect off of an interface
before reaching the horizon. There does not seem to be a good understanding
of how to properly model a reflecting surface in numerical relativity, as the vast
majority of the literature avoids the implementation of artificial boundaries, or
applies transmitting boundary conditions. Here, we present a framework for
reflecting a scalar field in a fully dynamical spherically symmetric spacetime,
and implement it numerically. We study the evolution of a wave packet in
this situation and its numerical convergence, including when the location of a
reflecting boundary is very close to the horizon of a black hole. This opens the
door to model exotic near-horizon physics within full numerical relativity.
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1. Introduction

The recent discovery of gravitational waves (GWs) has led to the new field of GW astronomy,
opening novel windows into some of the deepest physical mysteries in our Universe. Chief
amongst these is the true nature of black hole horizons, which appear to have both temperature
and entropy, if one applies laws of quantum mechanics to the fields in their vicinity [1, 2].
Yet, according to Einstein’s theory of general relativity (GR), horizons comprise nothing but
empty space. Even more problematic is when the thermal nature of black holes (i.e. Hawking
radiation) leads to their evaporation, leaving us to wonder what happens to the information
behind the horizon that cannot escape due to relativistic causality. This is known as the black
hole information paradox [3, 4]. Given that GW astronomy can now probe into the vicinity
of black hole horizons, it is natural to ask whether it can give us an empirical window into
resolving these theoretical mysteries. In particular, one may wonder whether quantum effects
near the horizon would lead to echoes in observations that would have been absent in GR with
classical horizons [5].

Motivated by this, there has been a recent interest in modelling black hole echoes
phenomenologically [5–13]. The idea behind black hole echoes is that there may be some
mechanism, resulting from quantum phenomena for example, by which wave packets falling
into a black hole could partially reflect off of an interface before reaching the horizon, thus
resulting in a potentially detectable effect. In the context of GW astronomy, this has opened
a novel window to study exotic near-horizon physics phenomenologically, from current and
future observations [5, 10, 11, 13]. However, interpreting this data requires modelling strong
gravitational systems in numerical relativity, where there does not currently seem to be a good
understanding of how to properly implement a reflecting surface (but see [14] for an approxim-
ate method and [15] for an adjacent approach to boundaries). There has also been some recent
skepticism that black hole echoes can be detected at all due to the formation of an apparent
horizon before the reflection occurs [16], and having a proper way to model reflecting surfaces
allows for rigorous testing beyond order-of-magnitude estimates.

One way to implement a reflecting surface is to have an artificial boundary in the domain of
the numerical problem where the surface is to be located, and impose a set of boundary con-
ditions (BCs) there. This requires an understanding of the full initial boundary value problem
(IBVP) for a particular framework of numerical relativity, which the majority of studies tend
to avoid by imposing no boundaries or by having boundaries out of causal contact with the
initial conditions. This work contains some examples of the full spherically symmetric IBVP
in numerical relativity with a scalar field. Of course there are no GWs in spherical symmetry,
but see appendix A for how this can be done analagously in cylindrical symmetry.

The generic way of treating the BCs in hyperbolic systems of partial differential equations
is to identify the characteristic modes and speeds of the system, and for each mode that
has a characteristic speed leading it out of the domain, no BCs are applied, while all of the
modes propagating into the domain require a boundary treatment. It is then advantageous
to pick a formulation of Einstein’s equations where the characteristic modes and speeds are
simple and well-behaved. Here, the Einstein-Christoffel (EC) formulation is used due to its
simple characteristic structure, symmetric hyperbolicity, and previously successful numerical
implementation [17].

In section 2, we describe the EC system and the scalar field equations adapted from [17].
In section 3, we derive BCs based on conservation laws while section 4 dictates the initial
conditionswe consider. Section 5 describes our numerical implementation using summation by
parts (SBP) operators and BCs implemented with simultaneous approximation terms (SATs).
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Finally, we present our results for several reflecting IBVPs in section 6, discuss near-horizon
boundaries, and discuss the evolution of the apparent horizon as a response to [16].

2. Theoretical framework for the EC system

In general, the physical metric gµν in spherical symmetry can be expressed with respect to the
spherical coordinates xα = (t,r,θ,φ), with the line element:

ds2 = −α2dt2 + γrr(dr+βrdt)2 + γθθdΩ
2 , (1)

whereα is the lapse, βr is the shift, and γij are elements of the 3-metric. The extrinsic curvature
is defined as

Kij =− 1
2α

(∂t− £β)γij , (2)

where £β represents the Lie derivative with respect to the shift vector. In order to make the
evolution equations first order in space, the functions

fkij ≡ Γ[ij]k+ γkiγ
lmΓ[lj]m+ γkjγ

lmΓ[li]m , (3)

are defined. Here, Γkij are the Christoffel symbols associated with the 3-metric. The EC frame-
work leaves the densitized lapse α̃≡ α/(

√
γrrγθθ) and the shift as freely specifiable gauge

functions. It is understood that wherever αmay appear in the evolution equations, it is set with
α= α̃

√
γrrγθθ. While we present a general formalism in what follows, we shall come back to

our particular choice of gauge in section 2.3.

2.1. The EC vacuum equations

The evolution equations in the EC system in spherical symmetry were introduced in detail in
[17], which we modify to the following form:

∂tγrr−βr∂rγrr = 2γrr∂rβ
r− 2αKrr , (4)

∂tγθθ −βr∂rγθθ =−2αKθθ , (5)

∂tKrr−βr∂rKrr+αDrfrrr = 3
αf2rrr
γ2
rr

− 6
αf2rθθ
γ2
θθ

− αK2
rr

γrr
+ 2

αKrrKθθ
γθθ

− 10
αfrrrfrθθ
γrrγθθ

− αfrrr∂r ln α̃
γrr

−α(∂r ln α̃)
2 −α∂2

r ln α̃+ 2Krr∂rβ
r , (6)

∂tKθθ −βr∂rKθθ +αDrfrθθ = α+
αKrrKθθ
γrr

+
αfrrrfrθθ
γ2
rr

− 4
αf2rθθ
γrrγθθ

− αfrθθ∂r ln α̃
γrr

, (7)

∂tfrrr−βr∂rfrrr+α∂rKrr = 12
αγrrKθθfrθθ

γ2
θθ

− αKrrfrrr
γrr

− 10
αKrrfrθθ
γθθ

− 4
αKθθfrrr
γθθ

−αKrr∂r ln α̃− 4
αγrrKθθ∂r ln α̃

γθθ
+ 3frrr∂rβ

r+ γrr∂
2
r β

r , (8)

∂tfrθθ −βr∂rfrθθ +α∂rKθθ = 2
αKθθfrθθ
γθθ

− αKθθfrrr
γrr

−αKθθ∂r ln α̃+ frθθ∂rβ
r . (9)

There are a few differences in this form of the equations compared to those presented in [17].
First, we write the equations explicitly in terms of the operator Di, which acts on a 3-covector
fi as Difi = (

√
γ)−1∂i(

√
γfi) (reasons for this will be given in section 5.1). Also, instead of

defining transverse elements like γT = γθθ/r2, we keep the evolution equations in a form that
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does not explicitly depend on the coordinates. The principal part of this system makes up the
left hand side and source-like terms make up the right hand side, which suggests the simple
characteristic structure of this formulation of Einstein’s vacuum equations.We should note that
there is only gauge dynamics possible in the above system until we add stress-energy terms,
which we do next.

2.2. Scalar field and source terms

Scalar fields of mass m are subject to the Klein–Gordon equation ∇µ∇µϕ−m2ϕ = 0.
This equation can be reduced to a first order system and keep the same characteristic
structure as the EC system with the definition of two auxiliary variables: ψr ≡ ∂rϕ and
Π≡−(∂tϕ−βr∂rϕ)/α. The evolution equations then become

∂tϕ−βr∂rϕ=−αΠ , (10)

∂tψr−βr∂rψr+α∂rΠ = α

(
− frrr
γrr

+ 2
frθθ
γθθ

− ∂r ln α̃

)
Π + ∂rβ

rψr , (11)

∂tΠ −βr∂rΠ+αDrψr = α

(
Krr
γrr

+ 2
Kθθ
γθθ

)
Π+

α

γrr

(
frrr
γrr

− 6
frθθ
γθθ

− ∂r ln α̃

)
ψr+m

2αϕ. (12)

With the unit normal to the spatial foliation nµ, the stress-energy tensor Tµν is decomposed
into the energy density ρ= nµnνTµν , the momentum density Si =−γiµnνTµν , the trace T=
Tµµ, and the spatial stress Sij = γiµγjνTµν . In spherical symmetry the nonzero elements for the
Klein–Gordon field are explicitly

ρ=
(
Π2 +ψrψ

r+m2ϕ2
)
/2 , (13)

Sr =Πψr , (14)

T=Π2 −ψrψ
r− 2m2ϕ2 , (15)

Srr = γrr
(
Π2 +ψrψ

r−m2ϕ2
)
/2 , (16)

Sθθ = γθθ
(
Π2 −ψrψ

r−m2ϕ2
)
/2 . (17)

These elements modify the right hand side equations (6)–(8) in this framework as

∂tKrr = · · ·+ 4πα(γrrT− 2Srr) , (18)

∂tKθθ = · · ·+ 4πα(γθθT− 2Sθθ) , (19)

∂tfrrr = · · ·+ 16παγrrSr , (20)

and this system is subject to a set of five constraints:

C≡ ∂rfrθθ
γrrγθθ

+
7
2

f2rθθ
γrrγ2

θθ

− frrrfrθθ
γ2
rrγθθ

− 1
2
K2
θθ

γ2
θθ

− 1
2γθθ

− KrrKθθ
γrrγθθ

+ 4πρ= 0 , (21)

Cr ≡
∂rKθθ
γθθ

− Kθθfrθθ
γ2
θθ

− Krrfrθθ
γrrγθθ

+ 4πSr = 0 , (22)

Crrr ≡ ∂rγrr+ 8
γrrfrθθ
γθθ

− 2frrr = 0 , (23)

Crθθ ≡ ∂rγθθ − 2frθθ = 0 , (24)

Cϕ ≡ ∂rϕ−ψr = 0 . (25)
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Equations (21) and (22) are the Hamiltonian and Momentum constraints respectively,
equations (23) and (24) come from definition equation (3), and equation (25) was defined
at the beginning of this section.

The characteristic modes for the complete system of equations include a set of three modes
that propagate along the timelike normal to the foliation with characteristic speed −βr :

U 0
r = γrr , U0

θ = γθθ , U 0
ϕ = ϕ, (26)

and a set of six modes that propagate along the light cone with characteristic speeds c± ≡
−βr±α/

√
γrr :

U±
r = Krr±

frrr√
γrr

, (27)

U±
θ = Kθθ ±

frθθ√
γrr

, (28)

U±
ϕ =Π± ψr√

γrr
. (29)

2.3. Gauge choices in the bulk

In this work, we will consider one particular gauge choice, that is that α̃ and βr are time
independent:

∂tα̃= ∂tβ
r = 0. (30)

Other types of gauge choices have been discussed in [17], but it is not clear to us that many
of these choices do not change the characteristic structure of the evolution equations. If one
considers a hyperbolic time evolution of the gauge variables, in general this will directly affect
the characteristic structure, but it is not clear whether the characteristics are well-defined if α̃
and βr are prescribed with elliptic gauge conditions. Therefore, we restrict our analysis to our
gauge choice equation (30), where it is clear that the characteristic structure is as presented in
the previous section, and leave other gauge choices for future work.

3. BCs

We now restrict the problem to a spatial domain where r ∈ [a,b]. One way to gain some intu-
ition on BCs for the scalar wave equation is to study the case of a static background. In such a
case we have a time-like Killing vector ξν and thus a conserved current Jµ = ξνTµν . We then
define the static energy

Es =
ˆ b

a
(αρ−βrSr)

√
γ dr , (31)

and rewrite the conservation law ∇µJµ = 0 in terms of the characteristics

∂tEs =
1
4
√
γrr

√
γ
[
(c−U

−
ϕ )

2 − (c+U
+
ϕ )

2
]∣∣∣b

a
. (32)

The flux term on the right hand side suggests the BCs that can be applied to allow Es to enter/
leave the domain:

U+
ϕ =−ka

c−
c+

U−
ϕ at r= a , (33)

U−
ϕ =−kb

c+
c−

U+
ϕ at r= b , (34)

5
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for some coefficients ka,b. While ka,b do not necessarily need to be constants, the values ka,b =
±1 keep Es exactly conserved in the domain for each boundary. In this work, a conservative
BC that reverses the sign of an incoming pulse is referred to as a Dirichlet type (ka,b =−1),
while one that retains the sign is referred to as a Neumann type (ka,b =+1). The motivation
for this naming scheme comes from the fact that these BCs reduce to the classical Dirichlet
(∂tϕ = 0) and Neumann (∂rϕ = 0) BCs in Minkowski space where c± =±1. It is important
to note that we are considering domains and gauge conditions where c+c− < 0 throughout so
that both boundaries always require BCs.

Once the metric becomes time dependent, Jµ is no longer conserved. Instead, the notion
of what a reflection means needs to be rooted in a quantity that describes energy in a dynam-
ical spacetime. One way of defining this is with the Misner–Sharp mass, which in spherical
symmetry can be written as [17]

M(r) =
√
γθθ

2

(
1+

U+
θ U

−
θ

γθθ

)
. (35)

To obtain the BCs on the incoming scalar modesU±
ϕ , we express the derivatives of theMisner–

Sharp mass in terms of the state vector:

∂tM= 4π
√
γθθ [frθθ(β

rρ−αSr/γrr)

+Kθθ(αρ+αT− 2αSθθ/γθθ −βrSr)] , (36)

∂rM= 4π
√
γθθ( frθθρ−KθθSr) . (37)

These relationships can be derived by taking the appropriate derivative of equation (35) and
substituting time derivatives with the evolution equations and spatial derivatives with the con-
straints. It is interesting that these relationships can be expressed solely in terms of the state
vector, which enables us to impose BCs on the scalar characteristics to control M.

To see this, let us integrate equation (37) to define the Misner–Sharp ‘energy’ enclosed
within our domain

EM =

ˆ b

a

frθθρ−KθθSr√
γrrγθθ

√
γ dr . (38)

In the continuum, we clearly have EM =M(b)−M(a). We can then write a conservation law
by taking a time derivative and substituting equation (36). Written here for a massless scalar
(i.e. m= 0), we have

∂tEM =

√
γ

4
√
γθθ

[
c+U

−
θ (U

+
ϕ )

2 − c−U
+
θ (U

−
ϕ )

2
]∣∣∣∣b

a

. (39)

The flux term on the right hand side suggests the general BCs that can be applied to allow EM to
enter/leave the domain:

U+
ϕ = ka

√
c−U

+
θ

c+U
−
θ

U−
ϕ at r= a , (40)

U−
ϕ = kb

√
c+U

−
θ

c−U
+
θ

U+
ϕ at r= b , (41)

where the coefficient values ka,b =∓1 define the Dirichlet/Neumann type BCs on the scalar
characteristics that keep EM exactly conserved at each boundary. Interestingly, in the case of
∂tγθθ = 0, these reduce to the static background BCs, equations (33) and (34), whichmotivates
their connection to the classical Dirichlet/Neumann BCs.

6
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The expansion of outgoing null geodesics is proportional to U−
θ , and thus the apparent

horizon is the outermost surface where U−
θ = 0. We call the surface where c+ = 0 the charac-

teristic horizon. Only when c+ < 0 are BCs no longer required at r= a as both characteristics
are then leaving the domain. If c+c− < 0 and−U−

θ U
+
θ < 0, i.e. the boundary r= a is between

the apparent horizon and the characteristic horizon, the BCs at r= a are not well-defined unless
ka = 0. We will not consider any simulations where such cases are present in this work.

The BCs on the incoming angular characteristics U±
θ are given by equation (35):

U+
θ =

2M(a)
√
γθθ − γθθ

U−
θ

at r= a , (42)

U−
θ =

2M(b)
√
γθθ − γθθ

U+
θ

at r= b , (43)

where the values ofM(a) andM(b) at each time step are given by integrating their time deriv-
atives with the scalar BCs applied

∂tM(a) =−πτac−
√
γrrγθθU

+
θ (U

−
ϕ )

2 at r= a , (44)

∂tM(b) = πτbc+
√
γrrγθθU

−
θ (U

+
ϕ )

2 at r= b , (45)

where τa,b = (1− k2a,b). We thus see that, in the case of Dirichlet/Neumann type BCs, the
Misner–Sharp mass at both boundaries remains constant.

As long as βr > 0, the boundary r= b has three additional incoming modes U 0
r , U

0
θ, and

U 0
ϕ. As suggested in [18], these can all be fixed using the constraints (23)–(25) by replacing

the r derivatives in their evolution equations:

∂tϕ = βr(ψr)−αΠ , (46)

∂tγrr = βr
(
2frrr− 8

γrrfrθθ
γθθ

)
+ 2γrr∂rβ

r− 2αKrr , (47)

∂tγθθ = βr(2frθθ)− 2αKθθ , (48)

all evaluated at r= b.
While fixing the massesM(a) andM(b), and scalar characteristics (equations (40) and (41)),

fixes all the physical degrees of freedom at the boundaries, the incoming radial characteristics
U±
r are left arbitrary, and thus should be connected to the residual gauge freedoms. Although

we have specified the gauge dynamics in the bulk by choosing α̃ and βr, additional gauge
freedom can propagate into the domain from outside, and thus needs to be specified by fixing
the incoming radial modes.

We shall consider a few choices for the BCs of U±
r . First, one could impose ∂tU±

r = 0 at
the corresponding boundaries:

U+
r (t) = U+

r (0) at r= a , (49)

U−
r (t) = U−

r (0) at r= b , (50)

which ensures there are no incoming radial characteristics into the domain. Next, we could
impose ∂tKrr = 0:

U+
r (t) =−U−

r (t)+ 2Krr(0) at r= a , (51)

U−
r (t) =−U+

r (t)+ 2Krr(0) at r= b , (52)

7
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and finally we could impose ∂tfrrr = 0:

U+
r (t) = U−

r (t)−
2frrr(0)√
γrr(t)

at r= a , (53)

U−
r (t) = U+

r (t)+
2frrr(0)√
γrr(t)

at r= b . (54)

It is not clear if different choices may be more advantageous, but we find that for long term
stability, the condition ∂tKrr = 0 at both boundaries seems to work the best.

4. Initial conditions

For the initial background, we consider a Schwarzschild black hole in Kerr-Schild coordinates,
but with a r-dependent mass function:

α−2 = 1+
2M(r,0)

r
, βr =

2M(r,0)
r

α2 ,

γrr = α−2 , γθθ = r2 . (55)

The initial values of f rrr and frθθ are formed from constraint equations (23) and (24). The initial
values of extrinsic curvature components are formed via equations (4) and (5), with ∂tγθθ = 0
assumed, but ∂tγrr kept arbitrary. The yet unspecified functionsM(r,0) and ∂tγrr will be used
to satisfy the constraints. For the scalar field, a spherical pulse of amplitude A, total width 2σ,
and location µ is modelled as a section of a polynomial:

ϕ(r,0) =
A
rσ8

[r− (µ−σ)]4[r− (µ+σ)]4 , (56)

and is set to zero outside of (µ−σ)⩽ r⩽ (µ+σ). The degree of this polynomial assures that
the first three derivatives are continuous. The initial condition on ψr is obtained by taking the r
derivative. For the initial condition on Π, a common choice is Π = 0, which describes a pulse
that will break into two parts traveling at speeds c+ and c−. Another choice is to specify that
the pulse is initially traveling at speed c−, such that the initial time derivative is

∂tϕ(r,0) =−8Ac−
rσ8

[
(r−µ)2 −σ2

]3
(r−µ) , (57)

and is zero outside of (µ−σ)⩽ r⩽ (µ+σ). The initial value ofΠ is then completed with the
definitionΠ =−(∂tϕ−βrψr)/α. Given initial conditions on the scalar field, the Hamiltonian
and momentum constraints must be satisfied at the initial time. With the two functionsM(r,0)
and ∂tγrr, one can show that these constraints are satisfied if

∂rM(r,0) = 4π r2 (αρ−βrSr)/α, (58)

∂tγrr =−8π rSr/α. (59)

These are easy conditions to satisfy, asM(r,0) can be integrated with a standard solver starting
at r= a with initial internal mass M0 or from r= b with initial total mass Mtot. The value of
∂tγrr can be replaced outright in the initial value of Krr.

5. Numerical implementation

In this section, we will introduce our numerical implementation of the IBVPs we are consider-
ing. We use Summation-By-Parts (SBP) derivative operators in an effort to preserve numerical

8
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stability by ensuring the energy of the system is bounded. In order to impose BCs in a stable
fashion we use SATs. Finally, we use numerical dissipation to prevent instability due to high-
frequency noise.

5.1. Summation-by-parts derivative operators

A popular way to maintain stability in numerical hyperbolic IBVPs is to use finite differen-
cing operators that satisfy SBP, which is the discrete analog of integration by parts. Using SBP
operators can be proven to be closely related to the well-posedness and the numerical stability
of many conservative problems [19, 20]. In order to introduce our covariant SBP scheme, we
review some covariant integration properties. In a three-dimensional domain V with coordin-
ates x and the two-dimensional boundary of that domain ∂V with coordinates ξ, the covariant
Gauss’s theorem states that for a vector field Fiˆ

V
∇iF

i√γ d3x=
˛
∂V
niF

i√sd2ξ , (60)

where the determinants of the metric on V and ∂V are γ and s respectively and ni is the unit
normal to the boundary ∂V. If the vector field is represented by a scalar factor and a vector
factor as F i = uvi, in spherical symmetry, this property can be written asˆ b

a
u∇rv

r√γ dr+
ˆ b

a
(∂ru)v

r√γ dr= uvr
√
γ
∣∣∣b
a
, (61)

where∇rvr = (
√
γ)−1∂r(

√
γ vr) is the covariant divergence. This can be thought of as the cov-

ariant version of integration by parts in one-dimension. Our goal will be to develop a numerical
implementation of our IBVP that obeys a discrete analog of this property in an effort to main-
tain numerical stability.

For our spatial domain r ∈ [a,b]we define a grid where all functions will be sampled with n
points spaced by a distance h. An n× n finite differencing operator D paired with a symmetric
and positive definite n× n norm operator Σ are said to satisfy SBP if [19]

ΣD+DTΣ= B , (62)

where the boundary operatorB= diag(−1,0, . . . ,0,1). For this property tomimic the covariant
property equation (61), we insert a matrix Γwith the values of

√
γ injected along the diagonal:

W∇+DTW= BΓ . (63)

The operator ∇≡ Γ−1DΓ approximates the covariant 3-divergence of 3-vectors, the operator
D approximates the covariant scalar gradient, andW≡ ΣΓ is the covariant norm operator and
approximates covariant integration. Then, in one spatial dimension, for a scalar grid function
u and the one non-zero component of a 3-vector grid function vr,

uTW∇vr+(Du)TWvr = uvr
√
γ
∣∣∣b
a
, (64)

which directly mimics the continuous property equation (61).
In the case of the wave equation on a static background, one can write the energy conserva-

tion law in a directly analogous way to the covariant property equation (61) (see appendix B),
and thus when the system is discretized using the SBP operators, the system remains strictly
stable in the sense that the energy is bounded [19, 20]. It is no longer clear how to properly
do this when the spacetime becomes dynamic. The state vector in the EC system is defined in
terms of lower-index functions (f ijk), which runs counter to the covariant SBP property that
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is defined in terms of an upper-index function. We have discovered one way that seems to be
stable in at least all of the cases considered here, but a more elegant discretization paradigm
may exist, perhaps one where the SBP properties can be made to mimic the dynamic conser-
vation law equation (39), and the equations of motion can be written in terms of covariant
divergences of upper-index functions. In the numerical scheme presented here, the evolution
equations written in section 2 are discretized by replacing scalar gradients with an SBP oper-
ator (i.e. ∂r → D) and where present the operator Dr → Γ−1DΓ.

In this work, we use the D6−3 SBP operator defined in [21] that minimizes the so-called
average boundary truncation error. This operator is 6th order accurate in the interior and 3rd
order accurate near the boundaries. It was reported in [21] that this operator achieves near 4th
order global convergence with a diagonal norm operator, which in principle will pair nicely
with standard 4th order Runge-Kutta time integration.

5.2. Application of BCs

The BCs are applied using SATs. This method applies BCs in a weak fashion, adding an expo-
nential decay term to the evolution equations at the boundary. For two arbitrary character-
istic grid functions U±(r, t) with characteristic speeds c±, the application of the general BCs
U+(a, t) = ga(t) and U−(b, t) = gb(t) is

∂tU
+(t) = · · ·+ sa

Σ11

[
ga(t)−U+(t)

]
at r= a , (65)

∂tU
−(t) = · · ·+ sb

Σnn

[
gb(t)−U−(t)

]
at r= b , (66)

with strengths sa and sb which dictate the exponential decay scale [19]. One can show that for
proper SBP energy conservation, in the context of the wave equation on a static background,
the strengths must be equal to the magnitude of the incoming characteristic speeds [20]. At the
left boundary we have sa → c+ and at the right boundary we have sb →−c−. In the case of
the wave equation around a static background black hole in Kerr-Schild coordinates, we have
sb = 1 and 0< sa < 1 where sa = 0 when a= 2M0 as the boundary is then placed exactly on
the horizon, where BCs are not to be imposed anyway since there are no longer any incoming
characteristics into the domain at r= a.

5.3. Numerical dissipation

To stabilize nonlinear evolution it is common to add numerical dissipation, ensuring that high
frequency noise does not destabilize the evolution. We use the A6 numerical dissipation oper-
ator that applies to the D6−3 operator defined in [21], and it is added to the right hand side of
the evolution equations as

∂tU⃗= · · ·+ ϵ

26
A6U⃗ . (67)

where ϵ> 0 is the amount of dissipation, which is usually chosen to be of order unity. The
coefficients of both operators D6−3 and A6 can be found in [21].

6. Results

First, to demonstrate long term stability and energy conservation of this framework, an IBVP
with two distinct reflection boundaries, one of Dirichlet type and one of Neumann type, will
be demonstrated in several situations. Then we will investigate situations where the boundary

10
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Figure 1. Convergence and solution for the flat spherical wave equation. At the top, the
solution convergence order settles to about 4th order even at coarse resolutions, and
deviates only when a reflection occurs where the error is dominated by the boundary
region accurate to 3rd order. At the bottom we see the wave solution in the r–t plane,
where the pulse travels in straight lines since c± =±1.

r= a is brought very close to the horizon of the black hole. Finally, we discuss the movement
of the apparent horizon and situations where the initial pulse can reflect without the apparent
horizon moving into the domain.

6.1. Enclosed reflecting boundary problems

Here we consider several enclosed reflecting boundary problems. These problems involve an
initial pulse andBCs of either Dirichlet or Neumann type so that energy is conserved in the con-
tinuum limit. We consider three situations for this type of problem, first a Minkowski spherical
wave equation, second a static background Schwarzschild black hole in Kerr-Schild coordin-
ates, and third the fully dynamic problem around a black hole. In all of these examples, the
initial conditions and evolutions are kept as similar as possible to aid in a direct comparison.

Here, we consider a spatial domain r ∈ [3,8]M0 and a temporal domain t ∈ [0,200]M0. As
themassM0 is not relevant inMinkowski space, we simply take r ∈ [3,8] and t ∈ [0,200] in this
case. We use a Dirichlet type BC for r= a (i.e. ka =−1) and a Neumann type BC for r= b (i.e.
kb = 1). For the problems with a black hole, the internal mass is set toM0 = 1. The initial pulse
follows the model equation (56) with parameters µ= 6M0, 2σ =M0, and A= 0.05/M0. We
use initial condition equation (57) so that the pulse is initially traveling with speed c− =−1.

The time integration is done using 4th order Runge-Kutta time stepping, with time step size
ht = h/4. We also apply the numerical dissipation operator with strength ϵ= 1 in all cases so
that the energy loss is directly comparable to the fully dynamic case.

6.1.1. Static Minkowski background. Figure 1 depicts the IBVP of the flat spherically sym-
metric wave equation. To demonstrate the convergence of the solution, we define the solution
convergence order:

p(i)ϕ (t) = log2

(
||ϕ(i−2)(t)−ϕ(i−1)(t)||
||ϕ(i−1)(t)−ϕ(i)(t)||

)
(68)
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Figure 2. Convergence and solution for the static Schwarzschild background wave
equation in Kerr-Schild coordinates. At the top, the solution convergence order settles to
about 4th order as the resolution is increased, deviating when a reflection occurs where
the error is dominated by the boundary region accurate to 3rd order. At the bottom we
see the wave solution in the r–t plane, where it is apparent that a pulse propagating in the
−r direction has a constant characteristic speed while one traveling in the +r direction
appears to accelerate along curves.

where the ϕ(i) are the solutions obtained with a certain grid spacing h(i) and where the ℓ2 norm
is defined for a grid function f as

|| f ||2 =
ˆ b

a
f 2
√
γ dr ,

|| f ||2 ≈ || f (i)||2 =
(
f (i)
)T
Wf (i) . (69)

We use h(i) = h(i−1)/2 as the resolution is doubled each run. Five runs were conducted starting
at h(1) = 0.02M0. This leaves three subsets of resolutions to calculate the solution convergence
order p(i)ϕ , referred to as Low (i= 3), Mid (i= 4), and High (i= 5). The D6−3 SBP operator
coupled with 4th order Runge-Kutta time stepping demonstrates very consistent 4th order
convergence in this case. Since the characteristic speeds here are c± =±1, the pulse follows
a straight line in the r–t plane and returns back to r= 6 at precisely t= 200.

6.1.2. Static Schwarzschild background. Figure 2 depicts the numerical solution to the
IBVP with a static Schwarzschild background in Kerr-Schild coordinates. The same five resol-
utions are used to obtain the Low, Mid, and High convergence order plots, which shows once
again consistent 4th order convergence as the resolution is increased. Since the characteristic
speeds here are c− =−1 and c+ = (r− 2M0)/(r+ 2M0), pulses traveling in the −r direction
follow straight lines in the r–t plane and stay the same width, but pulses traveling in the +r
direction appear to accelerate along curves and have a characteristic speed that varies across
the pulse, so the width increases as the pulse propagates in the +r direction.

6.1.3. Dynamic Schwarzschild background. Here we demonstrate a fully dynamic IBVP,
where the scalar pulse is coupled to gravity. Along with the solution convergence order, we
also define the constraint convergence order

p(k)C = log2

(
||C(k−1)

tot ||
||C(k)

tot ||

)
, (70)
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Figure 3. Convergence and solution for the fully dynamic IBVP. Plot (A) shows the
solution convergence order that starts near 4th order but changes dramatically as the
solution becomesmore dependent on boundary interactions and the solution errors move
out of phase with each other. Plot (B) shows the constraint convergence order slowly
settles to about 4th order as the resolution is increased. Plot (C) shows the scalar field
solution shown as a function of the areal radius R=

√
γθθ over coordinate time t. It is

apparent that over the course of the evolution, the inner boundary falls toward the horizon
by∼0.5M0 and the outer boundary by∼2.7M0. The pulse also appears to disperse much
more than in figure 2, due to the variation of c± as the Misner–Sharp massM(r) changes
across the pulse width. Plot (D) shows the Misner–Sharp mass in the same R–t plane,
demonstrating the coupling to gravity.

where the norm of the constraints is defined as

||Ctot||2 ≡
ˆ b

a
(C2 + γijCiCj)

√
γ dr (71)

||Ctot||2 ≈ ||C(k)
tot ||2

≡
(
C(k)

)T
WC(k) +

(
C(k)
r

)T
W
(
Cr
)(k)

. (72)

This somewhat simpler definition for the constraint convergence order is possible because
we know the exact solution (i.e. C= Cr = 0) whereas we do not necessarily know the exact
solution for the scalar field ϕ.

We use total reflection BCs on the scalar field equations (40) and (41) with ka =−1 and kb =
+1. We use angular BCs equations (42) and (43) withM(a) =M0 = 1 andM(b) =Mtot for all
time, where the value of Mtot is given from the integration of equation (58) at the initial time
slice and in this case isMtot ∼ 1.18M0. And finally, we use radial BCs equations (51) and (52).

The results are plotted in figure 3. At the initial time slice, c+ = [r− 2M(r)]/[r+ 2M(r)],
so the outgoing characteristic speed varies across the pulse as in the static background case,
but also as M(r) changes across the pulse width, so there is an additional dispersion due to
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Figure 4. Energy loss for various resolutions of the three enclosed boundary scenarios.
Here,∆EM = EM(0)−EM(200) and dashed lines are∝h6. The static background cases
converge to exact conservation at 6th order. The dynamic case appears to diverge from
this power law at the highest resolutions.

the coupling to gravity. In this particular gauge, ∂tc± =±α̃∂tγθθ, so the characteristic speeds
change proportional to the change in the areal radius, R=

√
γθθ. We notice that our choice

of BCs causes the boundaries to move inward in R, making the reflected pulse at the inner
boundary move more slowly as time progresses.

In the continuum limit, each of the above IBVPs conserves the energy equation (39).
Figure 4 shows that the energy loss at t= 200M0 in these discrete problems converges to
zero at about 6th order. Since the strength of the SAT boundary at r= a depends on the char-
acteristic speed c+, it is applied more weakly in the Kerr-Schild and dynamic cases, leading
to significantly more energy dissipation at the boundary. This is apparent in figure 4 as the
energy decreases about three orders of magnitude more in the Kerr-Schild case than the flat
spherical case at t= 200M0, although still converges to zero at 6th order.

6.2. Reflections close to the horizon

Black hole echoes are usually discussed in the context of quantum gravity, suggesting that
quantum phenomena may result in a reflecting surface. If this is the case, one might expect
such a surface to be a distance on the order of the Planck scale away from the horizon (e.g.
[5, 6, 22]). To simulate this, one might be interested in applying reflecting BCs very close to
the horizon. Although this problem is well-posed in principle, in practice it can be difficult to
achieve numerically.

In the context of the static black hole background, if a pulse of width w is incident on a
reflecting surface, the reflected pulse will have width ∼w|c−/c+|, so one should be sure that
h is at least several times smaller than this. There is also usually a significant amount of high
frequency noise that propagates at high speed off of the boundary r= a, which may need to
be controlled with numerical dissipation. When c+ is very small at r= a, the SATs become
very weak and thus lose much more energy, so in order for the discrete problem to conserve
energy to a certain tolerance, much more resolution might be required than the naive estimate
h< w|c−/c+|.

Figure 5 depicts a fully dynamic simulation of a scalar pulse incident on a reflecting surface
at coordinate radius a= 2.01M0 with ka =+1. For a stellar mass black hole, a= 2.01M0 is of
course far fromPlanck scale.Wemean this as a demonstration of the difficulties onewould face
in simulating Planck-scale reflections. To achieve a conservation of the Misner–Sharp energy
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Figure 5. A fully dynamic simulation of a scalar pulse incident on a reflection boundary
at a= 2.01M0. Here the Misner–Sharp mass of the pulse is Mϕ =M−M0.

EM to within a tolerance of ∼10−5M0, a grid spacing of h∼ 6× 10−5M0 was needed. The
parameters of the initial scalar pulse are A= 0.001/M0, 2σ =M0, and µ= 3M0, which results
in a total massMtot ∼ (1+ 10−4)M0 which seems to be about the highest mass allowed (given
our gauge and BCs) before the apparent horizon moves into the domain and the boundary can
no longer reflect.

6.3. Apparent horizons

Finally, as a response to [16], we can study when an apparent horizon moves into the domain
of the simulation, making BC equation (40) ill-defined. In [16], Guo and Mathur argue that for
merging equal mass black holes, one should never expect echoes of GWs due to the formation
of an apparent horizon that envelopes the waves. They make the assumption that the waves
have a wavelength on the same order of the black hole masses, but any localized wavepacket
should contain shorter, as well as longer, wavelengths. If a black hole absorbs a sufficiently
localized infalling wavepacket with a total mass Mϕ =Mtot −M0, then the apparent horizon
should move from R= 2M0 to R= 2Mtot as t→∞. This suggests that a reflecting surface
should be located at R> 2Mtot to ensure that the wavepacket does not become enveloped by
a trapped surface. We demonstrate, however, that this estimate can be relaxed for sufficiently
wide pulses, and thus the frequency content of a wavepacket plays an important role in whether
a reflection can occur.

We consider a domain r ∈ [2.1,203]M0 with the initial pulse location µ= 103M0 and vary
its width from σ = 10M0 to σ = 100M0. We consider two situations, one where the boundary
r= a has Neumann type reflective condition ka =+1, and one where it has transmitting (or
absorbing) condition ka = 0. If the mass of the initial pulseMϕ is too large, the apparent hori-
zon will move into the domain from its initial position of r= 2M0 which is initially outside of
the domain. We then maximize the mass of the initial pulse by adjusting the amplitude A to just
before this occurs, and plot the results of this maximum mass for the varying initial widths.
The transmitting case ka = 0 demonstrates reflection just from the Schwarzchild potential, a
feature that occurs regardless of BCs we apply.
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Figure 6. Plot of the maximum pulse mass Mϕ of an initial pulse before the appar-
ent horizon moves into the domain for various widths of the initial pulse. Each case is
asymptotic to Mϕ = 0.05M0 as the width goes to zero (σ→ 0), which corresponds to
an infinitely sharp pulse with a= 2Mtot.

Figure 6 shows that the case ka =+1 (reflective BC) allows a significantly higher maximum
massMϕ than the transmitting case ka = 0 (absorptive BC), which suggests that there is a pos-
sibility for low frequency constituents of the incident scalar pulse to reflect near the horizon in
a way discernible from reflection due just to the Schwarzchild potential. Indeed, low frequency
(or wide) pulses, comparable to the Hawking frequency 1/(8πM0) are also expected to have
the largest reflection (from the horizon) based on quantum mechanical arguments [6].

It is important to note that as we have observed previously, our gauge conditions tend to
move the boundaries inward, and so the apparent horizon can move into the domain either
because it is growing in areal radius, or due to the boundary r= a shrinking in areal radius.
The orange curve in figure 6 should then be thought of as a lower bound that could be higher
if the boundary was fixed in areal radius (through a different choice of gauge/BCs).

7. Conclusion and future prospects

In this work, we developed and demonstrated a full IBVP in numerical relativity in spherical
symmetry. In particular, we derived BCs based on conservation laws involving a quasi-local
mass-energy measure, which is the main result of this work. These BCs are general, allowing
one to dictate how much mass-energy enters or leaves the domain. We demonstrated how this
framework can model black hole echoes, which has mostly been discussed previously either
within linear perturbation theory that ignored backreaction or order of magnitude estimates.

However, we only considered a gauge condition where α̃ and βr were both time independ-
ent. The BC framework presented in section 3 can be applied in the case of a different gauge
choice, although the characteristic structure of the evolution equations may change in a non-
trivial way. To properly model a black hole echo event, one may want some way of controlling
the position of the boundary r= a relative to the apparent horizon. For example, one might
require that the reflection surface remain a constant proper distance from the apparent hori-
zon, so that a pulse can be reflected without the concern that the apparent horizon would move
into the domain. Similar conditions are considered in [23, 24], where gauge conditions that
ensure the inner boundary of the domain stays just inside the apparent horizon are used, which
could be adapted to our case where we want the boundary just outside the apparent horizon.

16



Class. Quantum Grav. 40 (2023) 195007 C Dailey et al

We leave a better understanding of how to control the boundary r= a to future work, that may
be prescribed by yet-unknown quantum gravitational processes.

This BC framework may also be applied in a full 3D simulation. We considered here in
spherical symmetry the Misner–Sharp mass as a way to measure the quasi-local mass-energy
of the spacetime, but this is not a unique choice. In three dimensions, one would need to choose
a quasi-local mass-energy measure (e.g. those found in [25]) and derive BCs such that it can
be conserved in the same sense as what we have done here. Future work may include a 3D
generalization of this framework.
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Appendix A. Enclosed boundary problem for cylindrically symmetric GWs

Black hole echoes have been discussed in the literature in the context of both scalar waves and
GWs. Defining reflecting BCs in the context of a quasi-local mass-energy for scalar waves
was done in section 3, but this can also be done for GWs. There are no GWs in the restriction
of spherical symmetry, however there are well known examples in the framework of Einstein-
Rosen waves [28, 29]. These vacuum solutions use coordinates xµ = (t,ρ,z,φ) and have the
line element

ds2 = e2(γ−ψ)
(
−dt2 + dρ2

)
+ e2ψdz2 + ρ2e−2ψdφ2 , (A1)

where ψ and γ are functions of ρ and t only. Einstein’s vacuum field equations dictate that ψ
satisfies the cylindrically symmetric wave equation:

∂2
t ψ = ∂2

ρψ+
1
ρ
∂ρψ , (A2)

and that the time dependence of γ is dictated by

∂tγ = 2ρ∂tψ∂ρψ , (A3)
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and is subject to the constraint

∂ργ = ρ(∂ρψ)
2
+ ρ(∂tψ)

2
. (A4)

The quasi-local mass-energy of the spacetime is measured with the so-called C-energy [29],
which is simply given by

M(ρ, t) = γ/4 , (A5)

and thus equations (A3) and (A4) are proportional to its ρ and t derivatives. We can then write
the conservation law

∂t

ˆ b

a

1
2

[
(∂ρψ)

2
+(∂tψ)

2
]
ρdρ= ρ∂tψ∂ρψ

∣∣∣b
a
, (A6)

which happens to be identical to the conservation law for the cylindrically symmetric wave
equation outside of the context of GR. The BCs that keep the C-energy from changing are
then given by the classical Dirichlet/Neumann conditions ∂tψ = 0 and ∂ρψ = 0. We can then
define a reflecting IBVP as we did in spherical symmetry. The BCs are simple due to the gauge
fixed assumption of the line element considered here, but this may not be the case if a more
general line element where the ‘perimeter radius’ ρ is allowed to be dynamic, as it was in our
dynamic examples in spherical symmetry.

Appendix B. Static scalar field summation by parts

TheKlein–Gordon equation∇µ∇µϕ−m2ϕ = 0 can be reduced to a first order systemwith the
definition of two different auxiliary variables than those considered in the main text: Π≡ ∂tϕ
and ψi ≡ [(α2 −βjβ

j)∂iϕ +βi∂tϕ]/α. The evolution equations in spherical symmetry for a
static background look particularly simple,

∂tϕ=Π , (B1)

∂tψ
r = βr∇rψ

r+α∂rΠ−m2αβrϕ, (B2)

∂tΠ= α∇rψ
r+βr∂rΠ−m2αϕ, (B3)

where ∇rψ
r = (

√
γ)−1∂r(

√
γψr) is the 3-divergence. This system of equations admits the

following conservation law as long as c+c− < 0 throughout the domain:

∂t

ˆ b

a

1
2

(
αΠ2 +αψrψ

r− 2ψrβrΠ
(α2 −βrβr)

+m2ϕ2

)
√
γ dr=Πψr

√
γ
∣∣∣b
a
. (B4)

Distributing the time derivative and substituting the evolution equations, we obtainˆ b

a
Π∇rψ

r√γ dr+
ˆ b

a
(∂rΠ)ψr

√
γ dr=Πψr

√
γ
∣∣∣b
a
. (B5)

Crucially, the definition of the auxiliary variables Π and ψr make the flux term on the right
hand side a simple multiple of the two variables and equation (B5) is in exactly the same form
as equation (61), which will set up the problem to be directly mimicked by the covariant SBP
property when Π and ψr become grid functions:

ΠTW∇ψr+(DΠ)TWψr =Πψr
√
γ
∣∣b
a
, (B6)

where the operator ∇≡ Γ−1DΓ approximates the covariant 3-divergence of 3-vectors, the
operator D approximates the covariant scalar gradient, and W≡ ΣΓ is the covariant norm
operator and approximates covariant integration.
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