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Abstract

We present a candid reflection on the issues surrounding virtual environment de-

sign and implementation (VEDI) in order to: (1) motivate the topic as a research-

worthy undertaking, and (2) attempt a comprehensive listing of impeding VEDI is-

sues so they can be addressed. In order to structure this reflection, an idealized

model of VEDI is presented. This model, investigated using mixed methods, resulted

in 67 distinct issues along the model’s transitions and pathways. These were clus-

tered into 11 themes and used to support five VEDI research challenges.

1 Introduction

Through reflection, [the practitioner] can surface and criticize the tacit under-

standings that have grown up around the repetitive experiences of a specialized

practice, and can make new sense of the situations of uncertainty or uniqueness

which he may allow himself to experience.

Schön, 1983, p. 61

Virtual environment design and implementation (VEDI) has long been

known to be demanding by its practitioners. Evidence for this is seen in the work-

shops focused on aspects of VEDI in the early and mid-1990’s (Green & Jacob,

1991; Herndon, Van Dam, & Gleicher, 1994) as well as a more recent CHI

workshop (Shaer, Jacob, Green, & Luyten, 2008) and the SEARIS series of work-

shops at IEEE Virtual Reality (2008, 2009) and OOPSLA (2009). Additionally,

several important papers have been written through the years commenting on spe-

cific VEDI issues; some examples include: VE specification (Jacob, Deligiannidis,

& Morrison, 1999), difficulties of interface design and implementation (Myers,

1993), issues with callback architectures (Myers, 1991), and issues with reuse and

toolkit death (Steed, 2008). To show how widely held this belief is, one simply

has to look at the number of virtual environment (VE) and 3D user interface

(3DUI) papers, from the 1990s up to the present day, that begin by discussing

the challenges of VEDI. From this, we conclude that in contrast to the tremen-

dous advances in processing and rendering power available for VEs, little has

changed regarding their design and implementation.

This work reflects on the design and implementation of virtual environments

(VEs) in order to: (1) motivate the topic as a research-worthy undertaking, and

*Correspondence to cwingrav@eecs.ucf.edu.
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(2) attempt a comprehensive listing of impeding VEDI

issues so they can be addressed. First, why is this impor-

tant? Despite the issues in VEDI, some successful appli-

cations have been built and VEs continue to be actively

researched. However, VEs offer greater possibilities yet

if they can be built and maintained faster and cheaper

than current approaches allow. Arguably more impor-

tant, many other interface types exist that share aspects

of VEDI; and if VEDI cannot be improved, the poten-

tial for a wider stagnation exists with implications for

gaming, entertainment, and other reality-based inter-

faces, including “virtual, mixed and augmented reality,

tangible interaction, ubiquitous and pervasive comput-

ing, context-aware computing, handheld, or mobile

interaction, perceptual and affective computing as well

as lightweight, tacit or passive interaction” (Jacob et al.,

2008). Identifying these issues and coming to a consen-

sus as a community is the first step in eliminating them.

A reflection using multiple investigative techniques is

discussed in Section 2. An idealized VEDI model is pre-

sented in Section 3 to drive issue identification and or-

ganization. The outcome of this model is given in the

many issues clustered into themes in Section 4. Section

5 is the complete listing of issues, organized by the ide-

alized VEDI model and cross-referenced with the

themes. Lastly, we explore the insight gained by looking

at the themes and issues and identify five VEDI research

challenges, discussed in Section 6.

2 Issue Identification Methodology

We used a mixed methods approach to identify

issues in VEDI. This incorporated our experiences, the

experiences of novice developers and practitioners, and

their artifacts and code.

2.1 Investigation: Interviews,

Artifacts, and Code

This first method, the investigation, collected in-

formation from many representations of VE systems.

First, interviews were conducted with VE practitioners

with their practitioner artifacts. Practitioner artifacts are

any form of communication relating to a VE for the

practitioner’s use, such as meeting notes, UML dia-

grams, implemented code, graphics, hand-drawn pic-

tures, diagrams, journal entries, conversations, and so

on. The interviews were semi-structured and based on

the cognitive dimensions questionnaire (CDQ; Black-

well & Green, 2000). Six interviews were performed

representing six different universities on four different

continents. Second, additional practitioner artifacts were

obtained from the 3DI Group at Virginia Tech and

from members of the 3DUI mailing list (3DUI Listserv,

n.d.). A full report of the collection can be found in

Wingrave (2008). Lastly, source code was collected

from internal projects, open source projects, and solici-

tation from the 3DUI Listserv. There were a total of 12

samples of source code selected in all, which covered

common 3D interface tasks (Bowman, Kruijff, LaViola,

& Poupyrev, 2004).

2.2 Rerepresentation

Developer language and pseudocode descriptions

of 3D interaction were collected from nine participating

developers, novices regarding VEDI. This provided in-

sight as to how developers, without the bias of existing

VEDI tools and any tool-imposed mindset, would natu-

rally think about VEs. These developers watched and

rerepresented in their own words a series of 3D interac-

tion video clips (Wingrave, 2008). A total of 2 hours

was spent with each participant.

2.3 Personal Experiences

The personal experiences of the authors also

play a role in this investigation. In a sense, we em-

body the knowledge we are seeking and used tools

such as the CDQ, thematic analysis, and model

driven exploration to elicit this knowledge. Both au-

thors have years of experience designing and imple-

menting VEs for academic and industrial applications.

Meeting notes and personal journals were investi-

gated. Additionally, both authors have multiple expe-

riences with students learning VEDI.
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3 Idealized Model of VEDI

An idealized VEDI model is presented in Figure 1 to

assist in uncovering and organizing VEDI issues reported

in Section 5. The model is a cyclic network of stages with

directed transitions between them. Because many stages

and transitions are understandable as higher-level struc-

tures, stages and transitions are assigned into transition

groups and pathways, respectively. This assignment enables

issue identification on both specific and broad issues.

3.1 Model Pathways

The four identified VEDI model pathways are iter-

ative development, problem resolution, success storage,

and system lifecycle. Iterative development refers to the

cycle of software development generally described as

design, implementation, and evaluation. Problem reso-

lution refers to the identification of problems and the

generation of solutions in VEDI. System lifecycle refers

to the maintenance and requirements changes for a VE

system. Success storage refers to the pathway where suc-

cessful VEs impact the state of the art, including: prac-

tices, tools, functionality, and body of knowledge.

3.2 Model Transition Groups

The three identified VEDI transition groups are de-

sign, implementation, and system inputs. The design

section focuses on turning the practitioner’s envisioned

system into a recognizable plan for its eventual implemen-

tation. This includes interface design as well as the design

of hardware and content. The implementation section fol-

lows from the design section, turning the design into an

executable system. Lastly, system inputs refers to the ideas

and resources that shape the practitioner’s envisioned sys-

tem, including available hardware, the system require-

ments, and the current state of the art in VEDI.

3.3 Model Stages

A stage in the model refers to an identifiable goal

in the VEDI system. The most identifiable VEDI stages

are in regard to the iterative development pathway.

These stages include: envisioned system, designed inter-

action, implemented interaction, content pipeline, hard-

ware configuration, system, and problems captured. The

envisioned system stage refers to the practitioner’s inter-

nal understanding of what the VE is to do. This stage

takes into account the practitioner’s understanding of

requirements, available hardware and the current state

of the art. The designed interaction stage is when the

practitioner has created a 3DUI plan, such as scenarios,

use cases, storyboards, paper prototyping, and so on.

The implemented interaction stage occurs when the

design has proceeded into an executable representation.

Commonly, the designed interaction and the imple-

mented interaction are iterative, capturing issues and

impacting the envisioned system accordingly. The con-

tent pipeline refers to the development of models,

graphics, sounds, animations, scripted behaviors, and

such that are used in VEs. The hardware configuration

refers to the selected tracking, displays, haptics, props,

and other specialized devices for the VE. Both the con-

tent pipeline and hardware configuration have design

and implementation elements to them but were not di-

vided into separate design and implementation stages

due to a lack of a clear divide. The content pipeline is

composed of much faster iterations of design and imple-

Figure 1. This idealized VEDI model contains transitions and

pathways that are used to structure and explore the identified issues.

Starting from the system inputs (upper left), we see how through

design and implementation (center) a system is built and through

problem resolution (bottom) the system is improved. Throughout the

system’s lifecycle, requirements change and successful systems have

an impact on the state of the art.
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mentation while hardware configuration is often the

result of the designed interaction. The system stage re-

fers to a complete VE. This does not necessarily imply a

finished system, as the system could be merely the be-

ginning of the iterative development pathway.

The system inputs section contains the final stages of

state of the art, available hardware, and requirements. The

state of the art refers to the current tools, best community

practices, the practitioner’s experiences, and their personal

libraries of code. The available hardware refers to the phys-

ical devices that are available at the current time, and to

some extent, the access that the practitioner has to that

hardware (purchase, borrow, build, etc.). Requirements

here refer to the standard software engineering definition

of requirements (Davis, 1993).

3.4 Model Transitions

A transition in the model refers to two things:

how one stage influences the next; and in the iterative

development pathway, the transformation of the VE to

the next stage. Because transitions deal with change,

that is where issues occur and are thus the focus of this

work. The issues attributed to each transition will be

discussed in detail in Section 5.

4 Eleven Themes for Reflection

Themes were developed to organize the large num-

ber of identified issues. These were developed by a manual

clustering process and are presented below in three theme

categories for improved presentation purposes. For trace-

ability, themes and issues are cross-referenced.

4.1 Themes Regarding VEDI Human

Aspects

4.1.1 Multiple Varied Skills (T:MVS; Issues 12,

31, 36, and 37). Practitioners require multiple and var-

ied skills for implementation, construction, and content

design.

4.1.2 Human Experience and Perception

(T:HEP; Issues 1, 13, 42, 43, 44, 46, and 47). A VE user

brings human experiences and evolutionary adaptations

to bear on their perceptions to create the VE experi-

ence; predicting user behavior and supporting the expe-

rience is difficult.

4.1.3 Content (T:C; Issues 14, 15, 32, and 33).

Attaining proper and effective content for a VE is

problematic.

4.2 Themes Regarding VE Design

4.2.1 Design Knowledge (T:DK; Issues 7, 48, 50, 51,

52, 57, and 58). The current means of creating, storing,

and reporting VEDI experiences are not effective.

4.2.2 Iterative Prototyping (T:IP; Issues 2, 3, 4,

8, 9, 10, and 53). VEDI requires more iterative proto-

typing than typical systems and suffers more acutely

from the process.

4.2.3 Models: Representation and Reuse

(T:MRR; Issues 5, 20, 59, 60, 61, 62, and 63). Despite

community efforts to standardize and build better tools,

it remains easier to build than to reuse, and models are

not widespread in use.

4.2.4 Complex, Chaotic, and Difficult (T:CCD;

Issues 6, 11, 21, 22, 23, 38, 39, 45, and 54). The nature

of VEDIs is that they are complex in dealing with many

different and connected parts, chaotic in that they con-

tain hidden and unpredictable connections, and difficult

in that solutions require intelligence, skill, and experi-

ence to understand and address.

4.3 Themes Regarding VE Development

4.3.1 Real-Time Operation (T:RTO; Issues 24,

25, 26, 27, and 34). VEs require extremely fast updates

to remain interactive, which is at odds with the algorith-

mic complexity of VEs and the desire for high quality

content.

4.3.2 Callbacks and Events (T:C&E; Issues 28,

29, 30, and 35). Callbacks and event handling, the dom-

inant architectures for VEDI, do not organize system
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complexity and lead to poorly maintainable and extend-

ible systems.

4.3.3 Hardware (T:H; Issues 16, 17, 18, 19, 40,

41, and 49). The best hardware configuration for a VE is

hard to identify and obtain.

4.3.4 Tools and Community (T:T&C; Issues 55,

56, 64, 65, 66, and 67). Practitioner communities are

separated by tools that do not allow for shared implemen-

tations and the growth of communal understanding.

5 Virtual Environment Design and

Implementation Issues

Each pathway and transition of the idealized

model of VEDI in Figure 1 has its issues, many of which

are interrelated. Below, the issues are listed by pathway

and transition, with interrelation accounted for by cross

references and connecting the issue to a theme. By real-

izing these issues and their impact on VEDI, we begin

the first step toward their resolution.

5.1 Iterative Development Pathway

The iterative development pathway is composed of

iterating cycles of design (see Section 5.1.1), implemen-

tation (see Section 5.1.2), and problem resolution (see

Section 5.1.3) until such time as the necessary usability

is achieved, the budget is depleted, a deadline is

reached, the project is cancelled, or the system ends its

operational lifetime.

5.1.0.1 Issue 1 (T:HEP): Many Issues Are Not Identi-

fied Until Late in Development when a Human Can Enter

the VE, Because VEs Are a Human Experience. Issues can

stem from the interaction between content, interface, and

hardware affordances, as well as difficult to predict human

factors such as fatigue, stress, and nausea. For example, in a

fear of heights rehabilitator, users were heavily distressed

that they could not see their feet, generating new require-

ments in a nearly complete VE.

5.1.0.2 Issue 2 (T:IP): Implementation Is Iterative

but the Iteration also Causes Design Changes, Which

Forces the Implementation of a Moving Target. Practitio-

ners are not always aware of their design assumptions

(issue 60) as there are too many details to fully explore

during design. While practitioners might know what

they want to happen, they do not know how to imple-

ment it with their current tools. They are forced to im-

plement following their tool’s path of least resistance

(Myers, Hudson, & Pausch, 2000).

5.1.0.3 Issue 3 (T:IP): As on the Fly Design

Changes Are More Prevalent in VEDI (Issue 1), They

Lack the Full Impact Analysis that Is Performed During

Design. Over time, practitioners’ understanding of the

system and their informal practitioner artifacts become out

of date, compounding this and other issues (issue 2).

5.1.0.4 Issue 4 (T:IP): The Power of Thought Exper-

iments in Iterative Design Is Not Fully Appreciated and

Formalized in 3DUIs, So the Original Intent Is Often

Lost in Iteration (Issue 2). Practitioners deal with VEDI

issues by an informal process of problem statement and

hypothesis checking, a reflection in action (Schön,

1983), in journals and on scratch paper. This is not sup-

ported by their design and implementation tools.

5.1.0.5 Issue 5 (T:MRR): Higher Level Models of

Systems Are Helpful in System Building but Without Round

Trip Engineering (Selic, 2003), They Do Not Fit into Itera-

tive Development (Issue 2). Higher level representations

have been used to generate code and stub files, but this is

generally a one-way process. Representation changes

caused by iteration overwrite the existing development.

5.1.0.6 Issue 6 (T:CCD): VEDI’s “Hidden Depen-

dencies” (Blackwell & Green, 2000) Result in No Por-

tion of the Implementation Ever Being Fully Complete.

Each change has the potential to chaotically impact the

system, so every iteration (issue 2) requires the entire

system to be fully tested and debugged. In contrast to

WIMP implementations, VE events and callbacks are

not scoped to individual panels or windows, operate on

nondiscrete data, have temporary states that operate
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over time and in parallel, and have more contextual vari-

ations (Jacob et al., 1999). Additionally, this is further

exacerbated by the common use of global variables,

threads, and distributed and parallel implementations.

5.1.1 Design Group. The transitions in the de-

sign group are concerned with creating a solution to the

practitioner’s envisioned system.

Transition from Envisioned System to Designed In-

teraction. The transition from envisioned system to

designed interaction can be thought of as the 3D user

interface (3DUI) and system behavior design.

5.1.1.1 Issue 7 (T:DK): 3DUI Design Lacks a

Standard Metaphor to Simplify Design. A metaphor can

organize the design of an interface between the human

and computer such as the ubiquitous desktop and WIMP

metaphors (Hutchins, 1987). With no common metaphor

in 3DUIs (Bowman et al., 2004), practitioners are forced

to design for the experiences, background, strategies,

goals, preferences, and innate abilities (Wingrave, Tintner,

Walker, Bowman, & Hodges, 2005) of all users (issue 46).

As such, it is more craft than engineering.

5.1.1.2 Issue 8 (T:IP): 3DUI Design Is Difficult to

Mediate with Current Prototyping Approaches. Wire-

frames, storyboards, and other prototyping approaches

are easily hand sketched or explored with 2D diagram-

ming tools. In 3D, they are more difficult to sketch due

to 3D perspectives, have more intermediary steps that

operate over time (4D) and are not as well supported by

design tools. As such, we found that storyboards were

used by only some practitioners, were not the first form

of design, and quickly became out of date during itera-

tive design (issue 2). Some storyboards were created

after the system was built, but this did not inform de-

sign.

5.1.1.3 Issue 9 (T:IP): The Earliest Designs of

3DUI Are Found in Practitioner Journals and Scratch

Paper But These Were Not Considered Part of the Design.

Most practitioners have journals or write design ideas

on paper, both functioning as practitioner artifacts

(Wingrave, 2008) that were hastily sketched, incom-

plete, and were of private ideas. As such, they were

seen as inferior (practitioners were even embarrassed

to share these, apologetic of their condition) and not

managed as part of the design and documentation

process.

5.1.1.4 Issue 10 (T:IP): Design and Natural Prac-

titioner Representations Make Great Use of Loaded

Terms, Simple Diagrams, and Causal Language, But Do

Not Match Implementation Representations. For exam-

ple, practitioners can use words such as point, grab, and

travel to communicate design simply and without un-

necessary details. Causal statements such as “When X

then Y” are also commonly used. Some support for this

can be seen in Alice (Alice.org, n.d.) and Concept-

Oriented Design (Wingrave & Bowman, 2008; Wing-

rave, LaViola, & Bowman, 2009) in the use of loaded

terms and causal language.

5.1.1.5 Issue 11 (T:CCD): Unintended Behavior and

Errors Result from the Inability of Practitioners to Mentally

Simulate Every Interaction in a System. In the investiga-

tion, even an expert describing a simple raycasting selec-

tion technique failed to identify all its behaviors. This issue

is compounded by the constant design changes (issue 3)

that require constant repetition of this simulation. In Win-

grave et al. (2009), an attempt was made to quantify sys-

tem complexity through an analysis of spaces and demon-

strate that exhaustive consideration is unfeasible with

typical representations.

Transition from Envisioned System to Content Pipe-

line. The transition from envisioned system to con-

tent pipeline is about designing the look and feel of

the system.

5.1.1.6 Issue 12 (T:MVS): Practitioners Do Not

Necessarily Possess the Broad Range of Skills to Create the

Varied Content Modalities for VEs. Content creation

requires the ability to generate graphics, images, audio,

3D models, animations, touch and vibration content,

smells, tastes, and so on. Few practitioners have the

skills or resources to create professional content.
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5.1.1.7 Issue 13 (T:HEP): Humans Are Extremely

Adept at Noticing Unrealistic Content. The more realis-

tic and humanlike, the more humans are able to identify

anomalies. This is especially true during moving con-

tent. In applications using higher realism for greater

presence, this is problematic. Some have claimed nearly

realistic humans invoke a feeling of revulsion, called the

uncanny valley (Mori, 1970).

5.1.1.8 Issue 14 (T:C): Finding Content Is Prob-

lematic. It is difficult to find content that: has a consis-

tent look and feel, is the correct file format and is of the

proper detail (see Transition from Content Pipeline to

System, below). As such, many VEs have a simplified

look and feel, are composed of mixed-themed models,

or have an odd mix of high and low detail.

5.1.1.9 Issue 15 (T:C): Users Expect Hollywood

Glitz. Movie interfaces are often impractical due to issues

such as arm fatigue in Minority Report or the effectiveness

of file cabinets in Disclosure. As well, the glitz of movie

interfaces is difficult to build and style (issue 12).

Transition from Envisioned System to Hardware

Configuration. The hardware selection for a VE

greatly impacts the potential immersion levels and

interfaces that can be designed.

5.1.1.10 Issue 16 (T:H): Hardware Selection Does

Not Adhere Strictly to an Analysis of Requirements. The

cause for this is the expense and installation time of

hardware. Instead, hardware is generally selected for a

system because it has already been purchased, there is

expertise in-house, it is currently installed, or tool sup-

port exists. As such, there is little opportunity to iterate

with and test multiple hardware configurations.

5.1.1.11 Issue 17 (T:H): There Is No Best Hard-

ware Solution, Leading to Issue 18. For three practition-

ers, the same tracking system may be good because of

its small trackers, bad because of poor latency, or unus-

able as it does not track enough points. Tracking hard-

ware is about trade-offs in update rate, latency, encum-

brance, cost, tracked area, tethering, interference, and

so on. Display hardware is about trade-offs in cost, field

of regard, field of view, brightness, pixel resolution,

pixel density, space requirements, power consumption,

time to failure, fragility, stereo capability and quality,

shared views, occlusion of the real world, installation

issues, maintenance, and so on. Haptics and audio hard-

ware have their own associated trade-offs. Quantifying

these trade-offs is problematic. As an example, an early

prototype of the SSWIM technique (Wingrave, Haciah-

metoglu, & Bowman, 2006) failed because the tech-

nique blocked the hardware’s acoustic sensor; but a

magnetic tracker would not have had the same issue.

5.1.1.12 Issue 18 (T:H): There Is No Standard Hard-

ware Platform Because of Issue 17. VEs are often custom-

ized to a particular installation and thus not transferable

between practitioners. Practitioners have to be aware of

how the hardware affects all aspects of their system.

5.1.1.13 Issue 19 (T:H): Cables Encumber and En-

tangle. VE hardware has many cables that quickly be-

come tangled on the user and with each other. Com-

pounding the problem is the expense and fragility of the

hardware that is knocked around during the untangling

process. While wireless devices are becoming more com-

mon, they are more expensive and their use of batteries

creates new issues.

5.1.2 Implementation Group. The transitions

in the implementation group are concerned with realiz-

ing the design in an implemented and executing system.

Transition from Designed Interaction to Imple-

mented Interaction. This transition is about the

issues regarding the implementation of the system’s

interaction.

5.1.2.1 Issue 20 (T:MRR): Several Notions Are

Important for 3D Interfaces But Are Not Always Sup-

ported by the Tools. The problem has been referred to as

the “tools not speaking the language of the program-

mer” (Conway et al., 2000). A reason could be that

tool creators have a graphics viewpoint, not an interac-

tion viewpoint. Nearly every interviewee expressed a de-
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sire for plug and play interfaces or the ability to build inter-

faces as easily and interchangeably as LEGO blocks. Some

functionality could assist practitioners as follows. (1) Tools

that support interaction over time and simplify animations;

(2) the interdependence of code is problematic, so tool

support for mutual exclusion and race condition detection

would help; (3) interaction has a system context and state

that needs to be managed through formalized means; (4)

the ability to temporarily switch on and off particular func-

tionality; (5) support of more natural statements regarding

sets of things in interaction (Weinberg, 1998) for state-

ments such as, “select all ducks with green heads” or

“move all the molecules within 5 ft of the user.”

5.1.2.2 Issue 21 (T:CCD): Implementation Is

Complex. Each additional feature increases the number of

actions and states of the user, environment, and interface.

Since each action must be considered with regard to each

state, linear growth in actions and states results in nonlin-

ear growth of complexity. Failing to examine all cases leads

to unexpected system behavior (issue 11). As such, systems

having only slightly more functionality become much

more complicated to design and implement. This problem

has been noted as a classical problem of software engineer-

ing (Brooks, 1987), referred to as the state space explosion

(Harel & Politi, 1998).

5.1.2.3 Issue 22 (T:CCD): “Graphics Transforma-

tions Are Brutal,” Said an Interviewee. Practitioners

have trouble understanding coordinate systems and ro-

tation axes, which they can freely simulate in their heads

and discuss with others. One reason might be a lack of

progressive evaluation (T. Green, 1989), the ability to

check work as it is being performed, as graphics and

interaction are only experienced as a finished product.

Second, matrices and quaternions are write-only repre-

sentations, in that interpreting them can be difficult.

Third, matrices can decompose into alternate but equiv-

alent angular representations, making direct compari-

sons difficult. Fourth, gimbal lock is problematic in ma-

trix representations. Lastly, quaternions, which address

some of these issues, are not widely understood by prac-

titioners or supported in tools.

5.1.2.4 Issue 23 (T:CCD): Everything Is an Algo-

rithm. Nearly all functionality requires a nontrivial algo-

rithm or mathematical description such as collision detec-

tion, gesture recognition, simulated physics, intersections,

animations, and so on.

5.1.2.5 Issue 24 (T:RTO): VEs Can Be Computa-

tionally Constrained. This requires practitioners to con-

sider runtime performance and ensure interactive rates

while they simulate the system in their heads (issue 11).

A system that runs too slowly could even affect the us-

er’s performance, experience, and health (Park & Ken-

yon, 1999; Ellis, Young, Adelstein, & Ehrlich, 1999;

LaViola, 2000).

5.1.2.6 Issue 25 (T:RTO): Heuristics Improve Per-

formance (Issue 24) But Heuristic Assumptions (Issue 60)

Cause Problems. Heuristic assumptions can simplify an

algorithm and reduce computation, but when these as-

sumptions do not hold in other systems or over time,

the algorithm is no longer a solution. In collision detec-

tion, assumptions include: detection only on a 2D

plane, that objects move slowly, or that bounding boxes

or spheres are sufficiently accurate. When assumptions

change, the solution is no longer applicable.

5.1.2.7 Issue 26 (T:RTO): Concurrency, Thread-

ing, Optimized Code, Multiprocessing, and Distributed

Computation Create Problems. VEs commonly separate

the simulation thread from the visualization thread so they

can update at their own rates (Shaw, M. Green, Liang, &

Sun, 1993); however, writing code for these architectures

can be problematic. Distributed VEs have several issues,

making them “. . . number among the most complex soft-

ware systems ever constructed” (Stytz, 1996, p. 21).

5.1.2.8 Issue 27 (T:RTO): Concurrent Operations

on Scenegraphs Are Problematic for Reasons Other than

just Mutual Exclusion. A scenegraph animation could

be implemented by setting the value of a scenegraph’s

node, but this has the potential to overwrite other ani-

mations. In another approach, an animation could oper-

ate by incrementing a node’s value, but this is more

complex to implement and debug, and numerically
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prone to error. Alternatively, a node could be inserted

into the scenegraph, but this creates a deeper scene-

graph, and the ordering of the nodes can be problem-

atic and limit reuse.

5.1.2.9 Issue 28 (T:C&E): The Dominant Archi-

tectures for 3D Interfaces, Event-Based and Callback Ar-

chitectures, Are Poorly Suited to Operate Over Time and

Break Traceability. In a single interface, a button press

event could select an object, release an object, add an-

other object to the list of selected, travel, bring up a

menu, and so on. In this way, the state of the system, or

the context in which the event/callback is occurring,

must be manually determined through a series of condi-

tional statements on global variables and/or by deter-

mining which callback is currently active. This is both

error prone and time consuming as implementation re-

quires splitting functionality from the practitioner’s

flowing understanding into unencapsulated event han-

dlers and callbacks, losing traceability in the process.

5.1.2.10 Issue 29 (T:C&E): Functionality is Over-

Called to Ensure the Correct System State, Leading to Un-

intended Consequences. While often nondetrimental

other than wasting computation (e.g., setting an ob-

ject’s color every time step), over-calling can limit reuse

and have unintended consequences.

5.1.2.11 Issue 30 (T:C&E): Event Handling and

Callbacks as Implemented in the Tools Can Be Problem-

atic for Many Reasons. First, not all systems support the

ability to create new events/callbacks for new hardware,

recognition interfaces, or event composition. If they can

be created, these new events are problematic, because

they must now be maintained (e.g., a new event com-

posed of simultaneous button presses could break if one

of the button presses is captured in other code). Sec-

ond, new events/callbacks may not make sense to oth-

ers, which limits their reuse (issue 59; i.e., is a “gesture”

a hand gesture or a sketching gesture?). Third, higher

level events may be more useful, but more difficult to

learn or modify for divergent functionality (Myers et al.,

2000). Lastly, is an event/callback immediately acted

upon, immediately interrupting execution, or is it added

to a queue? Imperative languages expect immediate exe-

cution, but infinite loops are easily created due to code

interdependence.

Transition from Content Pipeline to System. This

transition is about correctly bringing content into a VE.

5.1.2.12 Issue 31 (T:MVS): Artists Are Not Practi-

tioners. Gaps in models and improper texturing are not

always visible until in a VE and knowledge of level of

detail and Z-buffering are not usually the focus of train-

ing for graphic artists. The rise of game design is lessen-

ing this issue.

5.1.2.13 Issue 32 (T:C): High Quality Content

Creates Performance Issues. Though hardware perfor-

mance has drastically improved, it still does not match

the level of quality of human perception. As such, high

quality content impacts performance, which is impor-

tant as VEs require real-time response and lag has been

shown to impact presence (Meehan, Razzaque, Whit-

ton, & Brooks, 2003).

5.1.2.14 Issue 33 (T:C): Many Technical Details

Hamper Bringing Content into the VE. Content format

conversion and loading, especially of animations, is

prone to errors and impasses due to technical glitches

and limitations of the representations. Content version-

ing is also problematic. X3D and COLLADA are both

working to improve this.

Transition from Implemented Interaction to Sys-

tem. This transition is about debugging and opti-

mizing the system.

5.1.2.15 Issue 34 (T:RTO): Performance Limita-

tions Require Different Implementations that Are

More Complex to Debug. Algorithms can take too

long to run in the current callback, and so must be

implemented in more complex ways, such as in sepa-

rate threads, distributed among multiple processing

units, or split between multiple callbacks (issue 26).

Each approach is more difficult to debug than just run-

ning a single algorithm.
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5.1.2.16 Issue 35 (T:C&E): Debugging Events and

Callbacks Is Problematic (Myers, 1991). Events/call-

backs often lack metadata or the ability to understand

the system context, limiting the ability to know what

the actual event/callback is, what caused it, and what it

will cause. Multiple triggers can make events even fire

twice. Lastly, debugging actions over time is problem-

atic as reality has no breakpoint.

Transition from Hardware Configuration to Sys-

tem. This transition is about building and integrat-

ing all the hardware devices and props.

5.1.2.17 Issue 36 (T:MVS): Practitioners Must Be

Carpenters, Electricians, Engineers, Artists, and Masters

of Duct Tape and Velcro. VEs require the creation of,

for example, hardware cable systems, comfortable and

configurable straps for devices, customized displays,

near-field haptics and camera, tracker and sensor

mounts, and sometimes even artistic decorations of

hardware to improve immersion.

5.1.2.18 Issue 37 (T:MVS): Practitioners Must Un-

derstand Material Properties, Physics, and Optics. Many

display types function due to the special properties of ma-

terials. Many tracking technologies rely on physics and

magnetism. Knowledge of these properties is required to

build working systems and avoid expensive mistakes.

Transition Between Hardware Configuration to Im-

plemented Interaction. This transition is about

how hardware impacts the user interface.

5.1.2.19 Issue 38 (T:CCD): VE User Interfaces Are

Complex and Flood the Practitioner with Problematic

Data. Implementing a WIMP interface requires manag-

ing a single pointing device, with its position accurately

described with a stream of two values (x, y). Implement-

ing a VE interface requires managing several tracked

points, described as six (x, y, z, �, �, �) values, at faster

update rates with jitter, drift, and commonly experi-

enced tracking loss.

5.1.2.20 Issue 39 (T:CCD): 3DUIs Can Be

Recognition-Based Interfaces (Mankoff, Hudson, &

Abowd, 2000). Recognition-based interfaces must in-

terpret the data passed to them to determine the correct

action to take. In many cases, there can be multiple in-

terpretations. As such, these interfaces need to also al-

low for recovery of incorrect recognition (Mankoff,

Hudson, & Abowd, 2007), which is made problematic

by the difficulties in making an undo feature for 3DUIs

(Jacob et al., 1999).

5.1.2.21 Issue 40 (T:H): Small Configuration Dif-

ferences Impact the Interface. Affordances of the hard-

ware impact the interface, such as the grip of devices or

their size. The availability of buttons, joysticks, and tactile

feedback also impact interface design. The lack of a stan-

dard hardware platform (issue 18) compounds this issue.

5.1.2.22 Issue 41 (T:H): Display Selection Can Im-

pact what VEs Can Be Used for and Their Effectiveness.

CAVEs and projected displays allow users to see them-

selves and interact with others. HMDs have a larger

field of regard. Stereo can improve some tasks, yet leads

to other issues. Understanding the benefits of immer-

sion by identifying its key factors is an open area of re-

search (Bowman & McMahon, 2007).

System Integration. This transition is about integrat-

ing the content, hardware, and interaction into a

complete VE.

5.1.2.23 Issue 42 (T:HEP): Immersion Hinders

Traditional Methods of Debugging. Debugging is hin-

dered by HMD or glasses covering the eyes, holding a

device, tangled cables, bulky gloves, keyboard and mon-

itor not in front of the practitioner, and so on. Because

of this, debugging is often performed in pairs.

5.1.2.24 Issue 43 (T:HEP): “Incorrect” and “Cor-

rect” Are Not Always Obvious. Users quickly adapt and

adjust to a VE because they respond to an experience as

opposed to knowing how to behave (Wingrave, 2001).

Users are easily manipulated by rotations while walking

(Razzaque, Swapp, Slater, Whitton, & Steed, 2002) and

during hand movements (Burns et al., 2005).
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5.1.2.25 Issue 44 (T:HEP): Testing and Debug-

ging the VE Experience Is Not Automatable. Auto-

mated unit testing compares outputs of a system; but

users, to determine their satisfaction, must experience

the VE. This is more problematic due to the never-

complete testing of VEs (issue 6).

5.1.2.26 Issue 45 (T:CCD): Where Did It Go? It

is all too common for content to never be seen be-

cause: an object was not added to the scenegraph,

texture coordinates are inside out, texturing images

cannot be found, scale too large or too small, the

model is in different units from the system, incorrect

model translation, incorrect user position, the system

moved it, the user using the interface moved it,

graphics card issues, clipping, it was loaded behind

the user, and on and on. This was discussed in terms

of the gulf of evaluation in Conway et al. (2000).

5.1.3 Problem Resolution Pathway. Prob-

lems arise in all steps of iterative development and are

resolved. This pathway is tacit for smaller issues, but

formalized system evaluations (Bowman, Gabbard, &

Hix, 2002) find larger problems. Identifying solu-

tions is an informal process, where practitioners apply

their own experiences and understanding, but some

methodologies exist (Pierce & Pausch, 2006; Win-

grave, 2009).

Transition from System to Problems Captured.

Evaluation of VEs is a difficult task, more so than

even in desktop interfaces. The topic was covered

extensively in Bowman et al. (2002).

5.1.3.1 Issue 46 (T:HEP): Users Vary Widely in

Their Ability to Operate in VEs, Making Results Difficult

to Generalize and Coverage Difficult to Judge. The re-

sults from college-age gamers are likely to be inapplicable

to, say, older adults or nongamers. Demographics and

cognitive aptitudes can account for variance (Wingrave et

al., 2005) but not all studies incorporate this, and further,

there is no standard method of user reporting.

5.1.3.2 Issue 47 (T:HEP): Maintaining Presence

Can Be Difficult During Evaluations. Any real world

activity, such as noise, sight of the evaluator or

passer-by, as well as common evaluation techniques

such as the “think aloud” protocol, can inhibit and

break presence. As such, it is difficult to observe users

from all angles, manage cables, and discuss ideas dur-

ing evaluations, with only post-experiment discus-

sions possible.

5.1.3.3 Issue 48 (T:DK): It Can Be Difficult to

Capture and Report All the Relevant Information in an

Experiment. The volume of data is large and recording

it can hamper performance of already stressed systems.

Not all data are in the system, such as untracked points

of the user, real-world objects and activities, and user

experiences, aptitudes, and demographics (issue 46).

5.1.3.4 Issue 49 (T:H): VE Hardware and Soft-

ware Are Not Robust, Impacting Scheduled Appoint-

ments with Participants and Experiment Repeatability.

Gloves become sweaty and stop working, projectors go

out of alignment, cables tangle, software has bugs, and

hardware breaks.

Transitions from Problems Captured to Envisioned

System. This transition generates solutions to the

captured issues.

5.1.3.5 Issue 50 (T:DK): Generating a Solution

to Problems for a VE Is More Art than Science. Gener-

ating a solution involves understanding the user’s per-

ception and mental model of the VE, relying on the

practitioner’s experience. Assumptions breaking (Pierce

& Pausch, 2006) and Flavors are two proposed meth-

ods of addressing this issue (Wingrave, 2009).

5.1.3.6 Issue 51 (T:DK): Each Solution Has a Cha-

otic Effect on the Interaction. The SSWIM technique

(Wingrave et al., 2006) aligned the WIM with the

world to improve orientation, but this changed their

mental model of the WIM from that of a model

(Pausch, Burnette, Brockway, & Weiblen, 1995) to that

of a map, necessitating a change of animated move-
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ments. According to Krueger (1996, p. 130), “The hu-

man interface has too many interrelationships and too

many possible manifestations for rigorous experimenta-

tion to fully explore them all in the near future, espe-

cially since all of the attendant trade-offs are changing

almost daily.”

5.1.3.7 Issue 52 (T:DK): Solutions Are About

Trade-Offs and Understanding and Representing These

Trade-Offs Is Problematic. For example, raycasting is

faster to point than occlusion selection (Bowman, John-

son, & Hodges, 2001; Wingrave & Bowman, 2005), but

nonexperts prefer occlusion selection (Wingrave & Bow-

man) and occlusion selection gives more fatigue. Guide-

lines (Bowman et al., 2004) are a current method of repre-

sentation, but are problematic (see issue 57), with other

approaches including claims (Carroll & Rosson, 1992;

Payne, Allgood, Chewar, Holbrook, & McCrickard,

2003) and iterative issue solution maps (Wingrave, 2009).

5.2 System Lifecycle Pathway

History has shown that successful systems are re-

warded with new requirements (Lehman, 1980). Addi-

tionally, VE hardware further impacts systems.

5.2.0.1 Issue 53 (T:IP): The Rewards of a Successful

System Are New Requirements (Lehman, 1980) and Im-

plemented Systems Are Difficult to Retrofit. This is a

given for any system.

5.2.0.2 Issue 54 (T:CCD): Nonpractitioners Are

Not Able to Judge and Understand the Time and Cost

Impacts of Additional Functionality and Changes. Col-

laboration can be strained by seemingly simple function-

ality taking a long time to develop, or when a collabora-

tor’s grand ideas are required to be scaled back.

5.2.0.3 Issue 55 (T:T&C): The Software Tools

Change Over Time, Making VEDI a Constant Process of

Adapting to New Tools. SGI’s Performer is a highly op-

timized tool for rendering large models, but with ad-

vances in graphics hardware, tool emphasis moved away

from optimization. Reasons for changing tools accord-

ing to Steed (2008) include that tools lose support,

tools are no longer effective compared to other tools,

tools are evaluated and determined to be inadequate,

tools lack functionality, or tools do not support a hard-

ware or software platform. Importantly, many new tools

fail to include historically useful functionality.

5.2.0.4 Issue 56 (T:T&C): Virtual Environments

Have a Deep Connection to the Tools and Hardware Used

in Their Development, Tying Their Lifetime to the Hard-

ware and Tools. Reasons for this connection include

content transferability issues, differences between events

and callbacks, and selection of a tool explicitly for a spe-

cific feature not common to other tools. Upgrading an

existing system may not be worth the effort when hard-

ware support is dropped, hardware breaks, a company

closes, a project is abandoned, or the developer leaves.

5.3 Success Storage Pathway

Successful systems advance the state of the art by

increasing knowledge, promoting reuse, and feeding

back into the community.

5.3.0.1 Issue 57 (T:DK): Guidelines, the Dominant

Means of Storing 3D Interface Success, Are Not Serving

the Needs of Practitioners. Only one interviewee claimed

to look to the literature for design assistance, while others

said they did not use guidelines or the literature at all.

While this might be seen as practitioner failing, it shows

either that the guidelines are too vague, too general, or so

straightforward that practitioners tacitly understand them.

Claims analysis has been proposed in other fields, but has

not been used in VEDI (Sutcliffe, 2000).

5.3.0.2 Issue 58 (T:DK): Guidelines, Created by

Experimentation, Have Little External Validity. The

conditions affecting a VE experience are still not fully un-

derstood (see issues 46 and 51) so the same guideline

might not hold under a different VE. This is exacerbated

by experimental reporting that often unknowingly, or due

to a lack of rigor, leaves important conditions unreported.

Due to the lack of system longevity (issue 55), the experi-

mental conditions cannot be retested.
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5.3.0.3 Issue 59 (T:MRR): It Is Easier to Build

than to Reuse. The “not invented here” mentality un-

fortunately and regretfully has some truth. It can be

better to write code that a practitioner understands than

to understand someone else’s complex code with hid-

den assumptions (issue 60). The net effect is a lack of

higher level constructs or a refinement of existing tools

for the community; both are lost opportunities for ad-

vancing the state of the art.

5.3.0.4 Issue 60 (T:MRR): Practitioners Are Often

Unaware of Their Own Assumptions and Intent that

Must Be Preserved During Maintenance and Reuse. Us-

ing a red raycasting ray has an implicit assumption

that selectable objects are not red. An animation

could assume that no other animation is acting on an

object. Practitioner intent can include the state of

data, the content model configuration, the outcome

of the task, or the order of how actions will be per-

formed. Creating general solutions to problems is

also hindered by algorithmic and computational com-

plexity (issue 25).

5.3.0.5 Issue 61 (T:MRR): Critical Points in the

Flow of a System Are Not Available to “Hook” into for

Reuse (Polys & Ray, 2006). Often, a system’s state is

spread among global variables, callbacks, and events, or

is hidden from external code. Whether a state is spread

out or hidden, the result is systems that are difficult to

extend, with solutions often involving code to implicitly

determine a system’s state. This is often imperfect, be-

ing based upon assumptions, and difficult to maintain

when system changes occur.

5.3.0.6 Issue 62 (T:MRR): Actions Over Time, or

Flows of Behavior, Are Difficult to Implement, Maintain,

and Reuse. Flows are often woven together across simi-

lar events and callbacks and lack proper hooks to the

implementation’s internals (issues 28 and 61).

5.3.0.7 Issue 63 (T:MRR): Attempts to Create For-

mal Models for VEs are Helpful but Tend to Break What

Already Works. Model based systems, in addition to

requiring time to learn (Pausch, Conway, & Deline,

1992), can impede the use of existing VEDI toolkits,

development tools, and coding paradigms with which

practitioners are familiar. Additionally, models that lack

end to end (Selic, 2003) development, in that they can

be used to generate code but lack the ability to absorb

back into the model, are not suited for iteration in

VEDI development (issue 2).

5.3.0.8 Issue 64 (T:T&C): It Is Difficult to Ad-

vance the State of the Art When Communities Are Frac-

tured by the Tools They Use, Which Do Not Allow for

Shared Implementations and the Growth of Communal

Understanding. The use of in-house tools means com-

munities form around spatially related groups, academic

lineage, or arbitrary requirements, hindering the sharing of

implementations and reproducibility of results.

5.3.0.9 Issue 65 (T:T&C): Expertise Is Toolkit

Based and Not Generally Transferable Between Tools. In

a first assignment of a 3DUI course, a simple VE was to

be implemented using SVE (Kessler, Bowman, &

Hodges, 2000) which took roughly 1 hour to imple-

ment by those familiar with SVE. In contrast, those

without VEDI experience and those with VEDI experi-

ence with other tools, took between 10–20 hr. This was

due to how tools provide access to functionality, as-

sumptions held by other tools, and even naming

schemes for function calls, events, and the scenegraph.

This limits the ability for practitioners to switch to new

tools that might be better for their needs but that

would require time to ramp up to a level of expertise.

5.3.0.10 Issue 66 (T:T&C): Fractured Communi-

ties Mean Little Contribution, Documentation, Examples,

and Tool Growth. Communities contribute bug patches,

documentation, example code, new features, and new

ideas. Because of fractured communities (issue 64),

these benefits do not occur and this creates barriers to

entry (Myers et al., 2000) that make it harder for others

to enter the community.

5.3.0.11 Issue 67 (T:T&C): There Is Little Reward

for Building Tools. Academics are not rewarded for

building and maintaining tools. Businesses form niche
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markets, such as game development, and develop spe-

cialized functionality and closed tools for their own

needs. Business partnerships have traditionally had little

impact. As such, the resources available to advance the

state of the art are limited.

6 Research Challenges

The following research challenges are proposed as

having the greatest impact on improving VEDI and ad-

dressing its issues. These were synthesized by clustering

possible solutions to the issues above into the following

five challenges.

6.1 Natural Representations

Supporting the informal natural representations

already used in design, and incorporating them in the

implementation, is a means to improve understandability

for the practitioners and their team, and to improve com-

munal interaction. In the investigation, there were several

structures found in practitioner language useful for captur-

ing practitioners’ streaming thoughts, abstractly represent-

ing familiar concepts and expressing flows of functionality.

Language and practitioner artifacts are able to represent

intent, presenting it at the proper level of abstraction for

the need of collaborators, reusers, or the practitioners

themselves. Related topics include natural programming,

concept oriented design, and literate programming.

Themes impacted include T:MVS, T:DK, T:IP, and

T:T&C.

6.2 Layered Abstractions

Dividing the representation and functionality into

layers, similar to the seven layer OSI model, can create

interoperability and work toward standardization, even

with the widely varied requirements that exist for VEDI.

No single tool has yet addressed all VEDI needs and it

is doubtful any single tool ever will. Layers allow tools

to narrow their focus, providing clearly defined func-

tionality in a single layer and then communicating with

other tools at clearly defined interfaces. In this way, bar-

riers between the tools are removed, communities can

form around their domain as opposed to their tools,

practitioners can quickly incorporate new functionality,

and the longevity of systems can be increased. One ini-

tial framework was proposed in Wingrave (2006).

Themes impacted include T:IP, T:MRR, and T:C&D.

6.3 Models of Systems

A model operates at a higher level of representation;

affording easier iterative development, improving reuse,

containing complexity, reducing chaos, and addressing

many of the issues with callbacks and events. A model

should also support the strengths of existing development

and allow for round-trip engineering (Selic, 2003). Mod-

els, and user interface management systems, have many

issues in their use (Myers et al., 2000). However, a model,

natural and layered, holds promise for creating useful ab-

stractions at a level higher than code.

Themes impacted include T:IP, T:MRR, T:CCD, and

T:C&E.

6.4 Create an Archive

A community archive for content, usability claims,

solutions to interaction issues, code, unit tests, UI research

results, and algorithms (with assumptions listed), can re-

duce costs, time, and barriers to entry in future VEDI.

Tremendous efforts have already created freely available

tools and online archives of royalty-free content. Unfor-

tunately, a VEDI archive is more than an organizational

task or repeating the methods that created, for example,

the comprehensive Perl archive network (CPAN). 3D

applications on the web may motivate solutions. Lastly,

an archive of VE systems could allow greater reproduc-

ibility and experimental validity of scientific studies.

Themes impacted include T:MVS, T:C, T:DK,

T:MRR, T:RTO, and T:T&C.

6.5 Solve the Difficult Problems

Tasked with recreating many aspects of reality,

VEDI is difficult but practitioners commonly create and

recreate solutions; definitive solutions are required so that
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practitioners can return to their main task. Solutions will

have to be flexible to the trade-offs inherent to VEs,

settling for “good” answers by a choice between possi-

ble solutions. VE practitioners should solicit help from

others in addressing these difficult problems, including

researchers in graphics, hardware, machine learning, AI,

software engineering, and the like.

Themes impacted include T:CCD, T:RTO, T:H, and

T:T&C.

7 Conclusions

We believe that VE design and implementation

remains an active topic of research. Many issues remain

to be addressed and solving them will improve VE ap-

plications and remove the potential stagnation for re-

lated fields. We identified 67 unique issues related to

the design and implementation of VEs, clustered them

into 11 themes, and have proposed five research chal-

lenges for VEDI improvement. It is thus our conclusion

that there is no single issue afflicting VEDI and thus no

single solution; that is (as in software engineering),

there is no silver bullet (Brooks, 1987). As such, solu-

tions will require multiple researchers with varied ap-

proaches.

We hope this reflection will stimulate research by

identifying VEDI issues so they can be analyzed, tar-

geted, and addressed in an organized manner. In the

current state, VE design and implementation is advanc-

ing very slowly but we have hope that this will change.

Lastly, we recognize that there are potentially other is-

sues that we have not examined in this paper and as

such, this should be considered a living work, adding

and removing issues over time.
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