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Abstract: We derive the reflection and refraction laws for an electron spin incident from a quasi-
two-dimensional semiconductor region (with no spin–orbit interaction) on the metallic surface of a
topological insulator (TI) when the two media are in contact edge to edge. For a given incident angle,
there can generally be two different refraction angles for refraction into the two spin eigenstates in
the TI surface, resulting in two different ‘spin refractive indices’ (birefringence) and the possibility of
two different critical angles for total internal reflection. We derive expressions for the spin refractive
indices and the critical angles, which depend on the incident electron’s energy for given effective
masses in the two regions and a given potential discontinuity at the TI/semiconductor interface.
For some incident electron energies, there is only one critical angle, in which case 100% spin polarized
injection can occur into the TI surface from the semiconductor if the angle of incidence exceeds that
critical angle. The amplitudes of reflection of the incident spin with and without spin flip at the
interface, as well as the refraction (transmission) amplitudes into the two spin eigenstates in the TI,
are derived as functions of the angle of incidence.

Keywords: reflection and refraction of spin; spin-polarized injection; topological insulator

1. Introduction

Topological insulators (TI) have exotic metallic states on their surfaces that exhibit
intriguing properties, such as spin-momentum locking [1]. They have been used for spin
pumping into ferromagnets and the generation of spin orbit torques [2], and may have
other important applications as well [1]. A TI has a spin-polarized surface and hence can
drive a spin current into a ferromagnet that it is in contact with, which can then switch the
magnetization of the ferromagnet to orient along the spin polarization of the current [2,3].
If the magnetization of the ferromagnet is bistable, one can utilize this methodology to
switch between the two states. This has applications in magnetic logic and memory [4].
In this paper, we study the converse problem of driving a spin current into a TI. For this
purpose, we study the problem of the reflection and refraction of an electron spin at the
interface of a quasi-two-dimensional semiconductor quantum well (with weak or no spin–
orbit interaction) and the metallic surface of a TI when the two materials touch at their
edges. We show that when the electron is incident on the interface at an angle greater than
a critical value, it will lead to 100% spin-polarized injection of electrons into the TI under
carefully tailored situations, because the electron will refract into only one of the two spin
eigenstates and no refraction will occur into the other spin eigenstate. An arrangement
for restricting the angle of incidence to a selected value was described in ref. [5] and is not
repeated here for the sake of brevity. In this case, only one spin eigenstate in the TI will be
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populated and the corresponding spin current will be injected into a magnet that the TI may
be in contact with. This will switch the magnet’s magnetization to a desired orientation.

2. Theory

Consider the interface between a quasi-two-dimensional semiconductor and the sur-
face of a TI, as shown in Figure 1, where region I is the semiconductor and region II is the
TI. The edges of the two materials touch. Without loss of generality, we will consider that
only the lowest subband is occupied by electrons in region I. We also ignore any spin–orbit
interaction in region I. If region I is made of a wide bandgap semiconductor, then the
Rashba spin–orbit interaction is weak [6] and the Dresselhaus spin–orbit interaction can
also be weak, depending on the crystal structure. The semiconductor that we chose for our
example later in Section 5 is CdTe (a wide band semiconductor) which has a relatively small
Dresselhaus spin–orbit constant of 11.75 eV-Å3 [7]. Therefore, we can neglect spin–orbit
interaction in the semiconductor.
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Figure 1. (a) The interface between a quasi-two-dimensional semiconductor and the surface of a
TI when the two materials are placed edge to edge. An electron with arbitrary spin polarization is
incident from region I (semiconductor) onto region II (TI) with an angle of incidence θi. The spin
refracts into the TI with two different angles of refraction θ±r for the two spin eigenstates in the TI.
(b) Fabrication steps for the structure.

The Hamiltonian for the composite system can be written approximately as [8,9]

H = px
1

2m(x)
px +

p2
y

2m(x)
+ V(x) + }v0

(
kxσy − kyσx

)
+

λ

2
}3
(

k3
+ + k3

−

)
σz, (1)

where, k± = kx ± iky, v0 is the Dirac cone velocity, σ-s are the Pauli spin matrices, λ is the
band-structure warping constant and k+, k− are wavevectors in the two spin eigenstates
in the TI [8,9]. The quantities v0 and λ are zero in region I and non-zero in region II,
while V(x) = V in region I and V(x) = 0 in region II.

Let us assume that, in region I, the effective mass of an electron is mI and, in region II,
it is mII. Let us also call the wave vector components in region I (k′x, k′y) and in region II
(kx, ky). The energy dispersion relation of electrons in the surface of the TI (region II) can
be obtained by diagonalizing the TI Hamiltonian, and can be written as [9,10].

EII
± =

}2(k2
x+k2

y)
2mII

±
√
}2v2

k

(
k2

x + k2
y

)
+ }6λ2

(
k2

x + k2
y

)3
cos2(3φ)

≈ }2(k2
x+k2

y)
2mII

±
√
}2v2

0

(
k2

x + k2
y

)
+ }6λ2

(
k2

x + k2
y

)3
cos2(3φ)

(2)
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where the two branches represent the dispersion relations in the two spin bands and φ is
the azimuthal angle subtended by the electron wave vector with the x-axis. From Figure 1,
it is obvious that φ is also the angle of refraction in region II. The energy dispersion relation
in the quasi-2D semiconductor (region I), on the other hand, can be written as:

EI =
}2
(

k
′2
x + k

′2
y

)
2mI

+ V, (3)

where V is the (step) potential discontinuity at the interface.
The “spin refractive indices” (nI, nII) of the two regions for any incident electron

energy will obey the relation [5]:

kI

kII
=

√
k′2x + k′2y√
k2

x + k2
y

=
nI

nII
, (4)

where kI and kII are the magnitudes of the electron wave vectors for an arbitrary electron
energy E in the two regions.

Using Equation (4), we will now define a quantity k as:

k =

√
k′2x + k′2y

nI
=

√
k2

x + k2
y

nII
. (5)

The angles of incidence θi and refraction θr are defined in Figure 1. We note from this
figure that k′x = nIk cos θi, k′y = nIk sin θi, kx = nIIk cos θr, ky = nIIk sin θr.

Since the Hamiltonian in Equation (1) is invariant in the y-coordinate, ky is a good
quantum number. In other words, it is conserved across the interface, and hence k′y = ky,
which immediately yields the equivalent of Snell’s law from the last set of relations:

ky = k′y ⇒
sin θi
sin θr

=
nII

nI
. (6)

It is also easy to see from the conservation of the wave vector’s y-component that the
angle of reflection is always equal to the angle of incidence in region I. This is, of course,
identical to the situation in conventional optics.

We will now show that for any angle of incidence, there will be two different angles of
refraction into the two spin eigenstates in the TI surface, and hence there will be two dif-
ferent refractive indices as well, as we had tacitly assumed. Since energy is conserved in
the process of reflection/refraction (which are elastic events), we must have EI = EII

± = E,
which yields from Equations (2) and (3):

}2(k2
x+k2

y)
2mII

±
√
}2v2

0

(
k2

x + k2
y

)
+ }6λ2

(
k2

x + k2
y

)3
cos2(3φ) =

}2
(

k
′2
x +k

′2
y

)
2mI

+ V = E. (7)

This equation immediately shows that there will be generally two different solutions
for kx for the two spin eigenstates at any incident energy E and hence, according to
Equation (4), there will be two different refractive indices n±II for refracting into the two spin
eigenstates in region II. Snell’s law (Equation (6)) will then ensure that, for a fixed angle of
incidence, there will be two different refraction angles θ±r which will obey the relation

}2(n±II )2k2

2mII
±
√
}2v2

0
(
n±II
)2k2 + }6λ2

(
n±II
)6k6 cos2

(
3θ±r

)
=

}2n2
I k2

2mI
+ V. (8)
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The last equation is derived by using Equation (5) in (7) and can be recast (using
Equation (6)) as:

}2k2

2mII

sin2 θi
sin2 θ±r

±
√

}2v2
0k2

n2
I

sin2 θi
sin2 θ±r

+ }6λ2 sin6 θi
sin6 θ±r

(nI)
4k6 cos2

(
3θ±r

)
= }2k2

2mI
+ V

n2
I

⇒ 1 + 2mIV
n2

I }2k2 = mI
mII

sin2 θi
sin2 θ±r

±√
4m2

I v2
0

}2k2n2
I

sin2 θi
sin2 θ±r

+ 4m2
I}2k2λ2 sin6 θi

sin6 θ±r
(nI)

4 cos2
(
3θ±r

)
(9)

Because there are two different refractive indices in region II, it is obvious that there
can be none, one, or two different critical angles of incidence. If there are two, we can find
them by setting θ±r = π/2 radians in Equation (9). This yields an equation for the critical
angle associated with the first refracted beam (or first spin eigenstate in region II) as:

E
E−V

=

(
mI

mII

)
sin2 θ+c + v0

√
2mI

E−V
sin θ+c , (10)

where we made use of the relation E =
}2n2

I k2

2mI
+ V.

Equation (10) is a quadratic equation that yields two solutions for the critical angle of
incidence for a spin refracting into the first spin eigenstate:

θ
(1)
c = arcsin

[
− v0

√
mI√

2(E−V)
+

√
v2

0mI
2(E−V)

+
(

mII
mI

)
E

E−V

]

θ
(2)
c = arcsin

[
− v0

√
mI√

2(E−V)
−
√

v2
0mI

2(E−V)
+
(

mII
mI

)
E

E−V

] (11)

The solution θ
(2)
c is negative and is hence an extraneous solution. Negative refraction

is a well-known phenomenon in optics, but is not relevant here.
The critical angles of incidence for a spin refracting into the second spin eigenstate are

found from the quadratic equation:

E
E−V

=

(
mI

mII

)
sin2 θ−c − v0

√
2mI

E−V
sin θ−c , (12)

which again yields two solutions:

θ
(3)
c = arcsin

[
v0
√

mI√
2(E−V)

+

√
v2

0mI
2(E−V)

+
(

mII
mI

)
E

E−V

]

θ
(4)
c = arcsin

[
v0
√

mI√
2(E−V)

−
√

v2
0mI

2(E−V)
+
(

mII
mI

)
E

E−V

] (13)

The solution θ
(4)
c is negative and hence extraneous.

In order to obtain simplified and tractable expressions for the two refraction angles
for a given angle of incidence, we will next neglect the warping effects and set λ = 0. Band
warping has a strong effect on such phenomena as circular dichroism [11], but not so much
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on spin properties that we study here. Then, from Equation (9), we obtain the following
expressions for the two refraction angles as a function of the incident angle:

sin θ±r = sin θi

∓mIv0
}nIk +

√(
mIv0
}nIk

)2
+

mII
mI

(
1+ 2mIV

}2n2
I k2

)
= sin θi

∓v0

√ mI
2(E−V)

+
√ mI

2(E−V)
v2

0+
mII
mI
( E

E−V )
.

⇒ n±II
nI

= sin θi
sin θ±r

=

√
mI

2(E−V)
v2

0 +
mII
mI

(
E

E−V

)
∓ v0

√
mI

2(E−V)

(14)

It is easy to see from Equation (14) that:

sin θ+r − sin θ−r = 2
mI

mII

v0

E

√
mI(E−V)

2
sin θi, (15)

which tells us that θ+r ≥ θ−r . This then also means that n−II ≥ n+
II and θ

(3)
c ≥ θ

(1)
c .

From Equations (11), (13) and (14), we can also recover the familiar relations (familiar from
optics) that sin θ

(1)
c = n+

II /nI; sinθ
(3)
c = n−II /nI.

3. Calculating the Refraction and Reflection Amplitudes

The wave function of an electron in region I (with arbitrary spin polarization) can be
written as:

ΨI(x, z) =
(

a
b

)
ei(k′x x+kyy) + r

(
a
b

)
e−i(k′x x−kyy) + r′

(
a′

b′

)
e−i(k′x x−kyy), (16)

where the first term on the right-hand side is the incident wave and the last two terms
constitute the reflected wave, with r being the reflection amplitude into the incident spin
eigenstate and r’ the reflection amplitude into the orthogonal spin eigenstate, i.e., reflection
with a spin flip. Note that

[
a∗a′ + b∗b′ = 0; |a|2 + |b|2 = |a′|2 + |b′|2 = 1

]
, where the aster-

isk denotes a complex conjugate. There can be a spin-flip at the interface for the reflected
electron in the semiconductor quantum well (region I), and hence we will have to consider
that possibility here.

Neglecting warping effects, the Hamiltonian in region II (see Equation (1)) can be
written as:

HII =
}2
(

k2
x + k2

y

)
2mII

+ }v0
(
kxσy − kyσx

)

=


}2
(

k2
x + k2

y

)
2mII

0

0
}2
(

k2
x + k2

y

)
2mII


+

(
0 −i}v0kx

i}v0kx 0

)
−
(

0 }v0ky
}v0ky 0

)
(17)

Using the result kx = nIIk cos θr, ky = nIIk sin θr, we can find that the two eigenspinors
of this Hamiltonian are:

ΦII
± =

1√
2

(
1

±ieiθ±r

)
. (18)

Because θ+r 6= θ−r , the two eigenspinors are not mutually orthogonal. They do not have
to be since they are actually eigenspinors of two different Hamiltonians due to the fact that
k+x 6= k−x . Note that the spin orientations in these two eigenstates are perpendicular to the
directions of the corresponding refracted beams, which is characteristic of spin-momentum
locking. To see this, note that the spin polarization components in the two beams are S+

x =



Magnetism 2022, 2 122

(}/2)
[
ΦII

+

]†
[σx]

[
ΦII

+

]
= − sin θ+r = −ky

/√(
k+x
)2

+ k2
y, S−x = (}/2)

[
ΦII
−

]†
[σx]

[
ΦII
−

]
=

sin θ−r = ky

/√(
k−x
)2

+ k2
y, S+

y = (}/2)
[
ΦII

+

]†[
σy
][

ΦII
+

]
= cos θ+r = k+x

/√(
k+x
)2

+ k2
y,

S−y = (}/2)
[
ΦII

+

]†[
σy
][

ΦII
+

]
= − cos θ−r = −k−x

/√(
k−x
)2

+ k2
y, S+

z = S−z = 0. This im-

mediately shows that in region II,
→
S⊥
→
k II in either refracted beam. Note also that, as a

consequence of birefringence, which makes θ+r 6= θ−r , the spins in the two beams are not
mutually antiparallel, since S+

x 6= −S−x and S+
y 6= −S−y . This of course happens due to the

fact that the two eigenspinors in Equation (18) are not orthogonal.
The wave function of the refracted electron can be written as:

ΨII(x, y) = t+
1√
2

(
1

ieiθ+r

)
ei(k+x x+kyy) + t−

1√
2

(
1

−ieiθ−r

)
ei(k−x x+kyy), (19)

where t+ is the transmission amplitude into the first spin eigenstate and t_ is that into the
second spin eigenstate in the refraction medium (TI). The x-components of the wave vectors

in the two refracted beams are, of course, k±x . For an electron of energy E =
}2n2

I k2

2mI
+ V

incident from region I at an angle θi on the interface, and these wavevector components in
region II (TI) are given by the relations:

k+x =
n+

II
nI

nIk

√√√√1−
n2

I(
n+

II
)2 sin2 θi =

n+
II

nI

√
2mI(E−V)

}

√√√√1−
n2

I(
n+

II
)2 sin2 θi

k−x =
n−II
nI

nIk

√√√√1−
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I(
n−II
)2 sin2 θi =

n−II
nI

√
2mI(E−V)

}

√√√√1−
n2

I(
n−II
)2 sin2 θi

(20)

and in region I (semiconductor), they are given by the relations:

k′x = nIk
√

1− sin2 θi =

√
2mI(E−V)

}

√
1− sin2 θi

ky = k′y = nIk sin θi =

√
2mI(E−V)

} sin θi

(21)

Since sin θ
(1)
c = n+

II /nI; sinθ
(3)
c = n−II /nI, the wave vector k+x becomes imaginary

when θi > θ
(1)
c , while the wave vector k−x becomes imaginary when θi > θ

(3)
c indicating the

well-known fact that the refracted wave will be evanescent when the angle of incidence
exceeds the critical angle.

Enforcing the continuity of the wave function at the junction between the two regions
(at x = 0), we get that:

t+
1√
2

(
1

ieiθ+r

)
+ t−

1√
2

(
1

−ieiθ−r

)
= (1 + r)

(
a
b

)
+ r′

(
a′

b′

)
, (22)

which can be re-written as:

1√
2

[
1 1

ieiθ+r −ieiθ−r

][
t+
t−

]
−
[

a a′

b b′

][
r
r′

]
=

[
a
b

]
. (23)

Enforcing current continuity across the interface, we get that at x = 0:[
px

mII
+ v0σy

]
ΨII(x, y)

∣∣∣∣
x=0

=
px

mI
ΨI(x, y)

∣∣∣∣
x=0

, (24)
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which yields:

}k+x
mII

1√
2

t+

(
1

ieiθ+r

)
+ }k−x

mII
1√
2

t−

(
1

−ieiθ−r

)
+ i√

2
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(
−ieiθ+r

1

)
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2
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(
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1

)
= [1− r] }k′x
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(
a
b

)
− r′ }k′x
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(
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) (25)

and that can be recast as:[
α β
χ δ

][
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]
+
(
}k′x/m1

)[ a a′

b b′

][
r
r′

]
=
(
}k′x/m1
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b

]
, (26)

where:
α = 1√

2

(
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)
; β = 1√

2

(
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)
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)
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Defining new matrices as [A] = 1√
2

[
1 1

ieiθ+r −ieiθ−r

]
; [B] =

[
a a′

b b′

]
; [C] =

[
a
b

]
and

[
A′
]
=

[
α β
χ δ

]
, we can re-write Equation (23) as:

[A]

[
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]
− [B]

[
r
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]
= [C], (28)

and Equation (26) as:

[
A′
][ t+
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]
+
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[B]
[

r
r′

]
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}k′x
mI

[C]. (29)

From Equation (28), we get:[
r
r′

]
= [B]−1[A]

[
t+
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]
− [B]−1[C]

= [B]†[A]

[
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]
− [B][C]

= [B]†[A]

[
t+
t−

]
−
[

1
0

]
,

(30)

where the dagger denotes Hermitian conjugate. Note that the matrix [B] is unitary,
and hence its inverse is its Hermitian conjugate matrix.

Substituting the last result in Equation (29), we get:

([
A′
]
+
(
}k′x/mI

)
[A]
)[ t+

t−

]
= 2

(
}k′x/mI

)
[C]

⇒
[

t+
t−

]
= 2

(
}k′x/mI

)([
A′
]
+
(
}k′x/mI

)
[A]
)−1

[C]

⇒
[

r
r′

]
= 2

(
}k′x/mI

)
[B]†[A]

([
A′
]
+
(
}k′x/mI

)
[A]
)−1

[C]−
[

1
0

] (31)
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Let us now define a new 2×2 matrix [D] = 2
(
}k′x/mI

)([
A′
]
+
(
}k′x/mI

)
[A]
)−1

=[
d11 d12
d21 d22

]
. Then, from Equation (31), we get the transmission amplitudes in the three dif-

ferent intervals
[
0, θ

(1)
c

]
,
[
θ
(1)
c , θ

(3)
c

]
,
[
θ
(3)
c , π/2

]
for a given incident angle θi as

t+ =


d11a + d12b

0
0

(
for 0 ≤ θi < θ

(1)
c

)(
for θ

(1)
c ≤ θi < θ

(3)
c

)(
for θ

(3)
c ≤ θi ≤ π/2

)

t− =


d21a + d22b
d21a + d22b

0

(
for 0 ≤ θi < θ

(1)
c

)(
θ
(1)
c ≤ θi < θ

(3)
c

)(
for θ

(3)
c ≤ θi ≤ π/2

) ;

(32)

while the reflection amplitudes are found from Equation (31).

4. Conservation of Probability Current

If we pre-multiply Equation (24) with
[
ΨII(x, y)

]†
(where the dagger denotes the

Hermitian conjugate) we get that at x = 0[
ΨI(x, y)

]†
[

px

mII
+ v0σy

]
ΨII(x, y)

∣∣∣∣
x=0

=
[
ΨI(x, y)

]† px

mI
ΨI(x, y)

∣∣∣∣
x=0

. (33)

However, at x = 0, ΨI(x, y) = ΨII(x, y) because of the continuity of the wavefunction.
Using this result in the left-hand side of Equation (33), we get that at x = 0[

ΨII(x, y)
]†
[

px

mII
+ v0σy

]
ΨII(x, y)

∣∣∣∣
x=0

=
[
ΨI(x, y)

]† px

mI
ΨI(x, y)

∣∣∣∣
x=0

(34)

Equating the real parts on both sides of the previous equation we get that, in the most
general case, when the angle of incidence does not exceed either critical angle and both
angles of refraction are real, the probability current continuity equation becomes:

}k+x
mII

[
|t+|2 + 1

2 Re(t+t∗−)− 1
2 Re(t+t∗−) cos(θ+r − θ−r ) + 1

2 Im(t+t∗−) sin(θ+r − θ−r )
]

+ }k−x
mII

[
|t−|2 + 1

2 Re(t−t∗+)− 1
2 Re(t−t∗+) cos(θ−r − θ+r ) + 1

2 Im(t−t∗+) sin(θ−r − θ+r )
]

+ν0

[
|t+|2 cos θ+r − |t−|

2 cos θ−r

]
− 1

2 ν0[Re(t−t∗+)(cos θ−r − cos θ+r )− Im(t−t∗+)(sin θ−r + sin θ+r )]
+ 1

2 ν0[Re(t+t∗−)(cos θ+r − cos θ−r )− Im(t+t∗−)(sin θ+r + sin θ−r )]

= }k′x
mI

[
1− |r|2 − |r′|2

]
.

(35)

When there is no birefringence so that t+ = t− = t/
√

2; θ+r = θ−r ; k+x = k−x = kx,
the above equation reduces to the familiar current continuity equation:(

kx/mII

k′x/mI

)
|t|2 = 1− |r|2 −

∣∣r′∣∣2. (36)

5. Numerical Examples

For numerical examples, we consider the semiconductor material to be CdTe and the
topological insulator to be Bi2Te3. This means mI = 0.11m0 and mII = 0.32m0, where m0 is
the free electron mass. The band alignment of this heterostructure is shown in Figure 2 [12].
This means that V = +1.12 eV. The conduction band offset at the interface causes a delta-
function electric field which can give rise to a localized Rashba-type spin–orbit interaction
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at the interface which might cause a spin-flip at the interface as the electrons transmit into
region II. We ignore that effect here.
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Figure 2. Band alignment in the CdTe/Bi2Te3 hetero-interface.

We will assume that an electron is incident on the interface from region I (CdTe) with a
kinetic energy E − V of 0.05 eV. If this is the Fermi energy, then this corresponds to a Fermi
wave vector of 3.8 × 108 m−1 and hence an electron concentration of ~2.29 × 1016 m−2 in
the CdTe layer. This means E = 1.12 + 0.05 = 1.17 eV in the TI. The Dirac cone velocity
ν0 in Bi3Te2 is about 4 × 105 m/s [13]. From Equation (14), we get that for this energy,
n+

II /nI = 7.3 and n−II /nI = 9.3. Since both ratios are greater than unity, there are no real

solutions for the critical angles θ
(1)
c and θ

(3)
c . In other words, an incident spin will transmit

into the topological insulator, regardless of the angle of incidence.
In order to have the lower refractive index ratio n+

II /nI ≤ 1, which will permit a real

solution for at least the critical angle θ
(1)
c , we will need the Fermi energy E − V in CdTe to

be so high that it will require an impractical carrier concentration. Hence, for this material
system, there are no critical angles, i.e., all incident angles will transmit and there will be
no total internal reflection.

In Figure 3, we plot the refraction angles θ+r and θ−r as functions of the incident angle θi
of the electron in region I (CdTe) obtained from Equation (14). We have verified that the two
refraction angles satisfy the relation in Equation (15). In Figure 4, we plot k+x and k−x as func-
tions of the incident angle θi obtained from Equation (20). We then calculate the squared mag-
nitudes of the transmission amplitudes into the two spin eigenstates in the TI as well as the
squared magnitudes of the reflection amplitudes with and without spin flip, |t+|2, |t−|2, |r|2,
and |r′|2, as functions of the incident angle of the electron in region I for two different spin polar-
izations: x-polarized spin

[
a = 1/

√
2, b = 1/

√
2, a′ = 1/

√
2, b′ = −1/

√
2
]

and z-polarized

spin [a = 1, b = 0, a′ = 0, b′ = 1]. These results are obtained from Equations (26)–(32) and
shown in Figures 5 and 6.
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Figure 6. Transmission and reflection probabilities as functions of angle of incidence at the
CdTe/Bi2Te3 interface for an incident z-polarized spin where a = 1, b = 0, a′ = 0, b′ = 1 for
incident electron energy of 1.17 eV in the topological insulator (0.05 eV in the semiconductor).

We call these quantities “squared magnitudes of the amplitudes”, instead of trans-
mission and reflection “probabilities” for a reason. A probability cannot exceed unity,
but the squared magnitudes can, as is obvious from Equation (36). This is the reason why in
quantum transport literature the transmission probability is usually defined as

(
kx/mII
k′x/mI

)
|t|2

instead of as |t|2 because the former quantity cannot exceed unity, but the latter can.
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One interesting feature in Figure 6 is that |t+|2 = |t−|2 and |r|2 = |r′|2 for all incident
angles for z-polarized spin, but not for x-polarized spin. This feature can be derived
analytically from the results presented here.

6. Conclusions

In conclusion, we have derived the laws of reflection and refraction of a spin at the
interface of a quasi-2D semiconductor region and a topological insulator, touching on their
sides, neglecting band warping effects.

Note that the problem we explored in this paper is not a transport problem; rather,
it is an “interface” problem. The sharp interface between the semiconductor and the TI is
of zero physical extent, and hence no transport can occur through the interface. Only what
happens at the interface matters. What happens to the spin before reaching the interface
(i.e., whether it suffers scattering, etc.) and what happens to the spin after it passes through
the interface, are of no consequence and do not affect the laws of reflection and refraction.
In the case of optics or electromagnetics, the laws of reflection and refraction are determined
by the continuity of the electric and magnetic field components at the interface only, and what
scattering the electromagnetic wave or light wave experiences before reaching the interface
or after passing through the interface, does not affect Snell’s law. The same is true here.
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