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We have studied the problem of homogenous, isotropic non-local couple stress micropolar thermoelastic solid 
in the absence of body forces, couple density and heat resources. The reflection and transmission of waves at the 
interface of two distinct media have been investigated. It is observed that amplitude ratios of various reflected and 
transmitted waves are functions of wave number of incident waves and are affected by the non-local parameter of 
thermoelastic solid. 
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1. Introduction 

 
 It is well known that material response to external stimuli depends on the motions of its inner 
structures. Classical theory ignores this effect by describing only translation degrees of freedom to material 
points of body. Micropolar theory of Eringen provides a model that can support body and surface couples by 
including intrinsic rotations of microstructure. Linear theory of micropolar elasticity was introduced by 
Eringen [1, 2] to deal with a class of solids which respond to micro-rotational motions and spin inertia. These 
types of solids can also support couple stress and distributed body couples. Eringen and Edelen [3] obtained 
constitutive equations through the use of localized Clausius-Duhem inequality and variational statement of 
Gibbsian global thermodynamics. Chandrasekharaiah [4] investigated surface waves in a homogenous 
isotropic linear micropolar thermoelastic half space having a stress free plane boundary and found that there 
exist two types of families of waves in general. One of these families is the classical thermoelastic waves which 
are modified under the influence of micro-elastic field and the other one is a new type of surface waves which 
were not encountered in classical elasticity. He obtained the explicit expressions for the displacement vector, 
microrotation vector, temperature and analysed the nature of deformation. Eringen [5] also developed the 
theory of thermo-microstretch elastic solids. These solids can stretch and contract irrespective of their 
translations and rotations. Inan and Eringen [6] investigated longitudinal wave propagation in thermoelastic 
plates in the context of nonlocal elasticity and obtained field equations using integral form of constitutive 
equations, balance of momenta and energy. Eringen [7] formulated theories of nonlocal elasticity, fluid 
dynamics and electromagnetic field that included nonlocality in both space and time. Kumar and Deswal [8] 
studied the variation of phase velocity with wave number for a micropolar generalized thermoelastic (MGT) 
and a micropolar elastic (ME) medium and observed that velocity equations are dispersive in nature. Kumar 
and Chawla [9] studied reflection and transmission of plane waves at an interface between elastic and 
micropolar diffusion media. Kumar and Gupta [10] found that the amplitude ratios of various reflected and 
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refracted waves are functions of the angle of incidence and frequency of incident waves and are influenced by 
the fractional order thermoelastic properties of media. Kumar et al. [11] studied reflection and transmission 
between two micropolar thermoelastic half-spaces with a three-phase-lag model. Kumar [12] described two 
types of wave propagation in a microstretch thermoelastic diffusion solid. One is “propagation of waves in a 
microstretch thermoelastic diffusion solid of infinite extent” and the other one is “reflection and transmission 
of waves at a plane interface between an inviscid fluid half space and a micropolar thermoelastic diffusion 
solid half space”. It was observed that for a two dimensional space there exist four coupled longitudinal waves 
(LD, T, MD, LM) and two coupled transverse waves (CD-1 & CD-2). Kumar et al. [13] studied the problem 
of reflection due to longitudinal and transverse wave incident at a free surface of a couple stress generalised 
thermoelastic solid half space and found that amplitude ratios of reflected waves are influenced by the couple 
stress properties of the medium and also are the functions of the angle of incidence, frequency of incident 
wave. Khurana and Tomar [14] investigated the five basic waves consisting of three longitudinal waves and 
two transverse waves propagating through an isotropic non-local microstretch solid of infinite extent with 
distinct speeds. It was found that all waves are frequency dependent and hence dispersive in nature. Kumar 
[15] investigated reflection and transmission at a plane interface in a modified couple stress generalised 
thermoelastic solid half space and observed that amplitude ratios obtained due to incidence of a set of coupled 
longitudinal waves and coupled transverse waves are functions of the angle of incidence, frequency and are 
affected by the couple stress properties of media. Khurana and Tomar [16] investigated propagation of 
Rayleigh type surface waves in a nonlocal micropolar elastic solid half-space and found two modes of 
Rayleigh-type waves propagating under certain approximations. Singh et al. [17] derived governing relations 
and equations for a nonlocal elastic solid with voids and investigated propagation of time harmonic plane 
waves in an infinite nonlocal elastic solid material with voids. It was found that three basic waves consisting 
of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. 
Khurana and Tomar [18] studied reflection /transmission phenomena of plane waves at plane discontinuity 
separating the two distinct nonlocal micropolar solids in perfect contact. Variation of amplitude and energy 
ratios against the incidence angle was studied and phase shift was also depicted for incidence of a set of coupled 
transverse waves due to occurrence of complex valued amplitude ratios. Kaur et al. [19, 20] derived dispersion 
relation for the Rayleigh-type surface wave which was found to be complex in nature. It was found that only 
one mode of the Rayleigh-type wave exists, which faces a critical frequency same as the critical frequency of 
shear wave. Also, it was shown that dispersion arises due to the presence of voids and nonlocality in the 
medium. Sarkar and Tomar [21] investigated propagation of time harmonic plane waves in an infinite nonlocal 
thermoelastic solid having void pores and found there exist three sets of coupled dilatational waves and one 
independent transverse wave travelling with distinct speeds in the medium. All these waves were found to be 
dispersive in nature and influenced by a nonlocal parameter but coupled dilatational waves are attenuating 
while transverse waves are nonattenuating. Sarkar et al. [22] studied the problem of reflection of thermoelastic 
waves due to an incident coupled longitudinal elastic wave from the rigid and thermally insulated boundary of 
a homogenous, isotropic nonlocal thermoelastic half space. Singh et al. [23] considered the problem of 
reflection of plane waves from a thermally insulated surface with impedance boundary condition and also 
formulated appropriated potentials for incident and reflected waves satisfying boundary conditions at a plane 
surface. Das et al. [24] used GN model III and Eringen’s nonlocal elasticity model to study the propagation of 
harmonic plane waves in a nonlocal thermoelastic medium and found two sets of coupled longitudinal waves 
which were dispersive in nature and experienced attenuation. In addition to the coupled waves there also exists 
one independent vertically shear-type wave, which is dispersive but experiences no attenuation. Biswas [25] 
studied the wave propagation in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space 
and derived frequency equation of Rayleigh waves. Various effects of a nonlocal parameter on the phase 
velocity, attenuation coefficient, specific loss and penetration depth were also discussed. Sarkar et al. [26] 
studied reflection of magneto-thermoelastic plane wave from a stress free and thermally insulated surface in a 
homogenous isotropic thermally conducting elastic half-space medium. Analytical expressions for the 
reflection coefficients and their respective energy ratios for reflected thermoelastic waves were determined. 
Pramanik and Biswas [27] developed a new model of non-local thermoelasticity with energy dissipation and 
presented graphically the phase velocity, attenuation coefficients, specific loss with respect to frequency. 
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Poonam and Kumar et al. [28] investigated the fundamental solution in a non-local couple stress micropolar 
thermoelastic solid with voids and observed that the non-local and void parameter had a great effect on the 
penetration depth, specific loss and attenuation coefficients. Kaur and Singh [29] studied the propagation of 
plane wave in non-local magneto-thermoelastic semiconductor solid with rotation and computed plane wave 
characteristics such as the phase velocity, attenuation coefficient and penetration depth of various reflected 
waves. Reflection and transmission problem in non-local couple stress micropolar thermoelastic media has not 
been studied yet. In present work, we have obtained amplitude ratios of various reflected and transmitted waves 
at the interface of two distinct homogenous, isotropic non-local couple stress micropolar thermoelastic solids 
and plotted absolute values of amplitude ratios with respect to wave number of incident P-, T-, SV1-, SV2-wave. 
 
2. Formulation of problem 
 
 We consider a homogenous, isotropic non-local couple stress micropolar thermoelastic solid in the 
absence of body forces, couple density and heat sources. In three-dimensional Euclidean space 3E , let ( ), ,x y z  
be point coordinates and t represent time variable then basic equations are given by: 
 
  ( ) ( ) ( ) grad grad div curl2 2 2

0 T 1 0−β + λ + μ + λ + μ ∇ + κ − ρ − ε ∇ =u u φ u , (2.1) 

 
  ( ) ( ) grad div  curl2 2 22 j 1 0α + β + ϒ∇ + κ − κ − ρ − ε ∇ =φ φ u φ φ , (2.2) 

 

  ( ) 
' .2

0 E 0K T 1 C YT
t

T∂ ∇ = + τ ρ


+ ∇ ∂
u  (2.3) 

 
where u  is the displacement vector; ( ), ,0 0= ϕφ  is the rotational vector; 0β  is the coefficient of linear thermal 
expansion; T  is the temperature change measured from the absolute temperature 0T ; λ  and μ  are Lame's 

constants; , ,α β ϒ  and κ  are micropolar constants; ρ  is the density of the medium; 2∇  denotes the Laplacian 
operator; 0e aε = ′  is the non-local parameter; 0e  corresponds to the material constant; a′  denotes the 
characteristic length; j  is micro-inertia; 0τ  denotes relaxation time; K  is the thermal conductivity; EC  is 
the specific heat, ( ) 0Y 3 2µ= λ + β  and dot signifies the differentiation with respect to time. 
 For a two-dimensional problem, we suppose that all quantities related to the medium are functions of 

Cartesian coordinates ,  x z  and time t and are independent of  . . y i e 0
y

 ∂ ≡ ∂ 
. We take displacement vector as: 

 
  ( ), ,1 3u 0 u=u . (2.4) 
 
The displacement vector u  is related to the potential functions ( ), ,1 x z tψ  and ( ), ,2 x z tψ  as: 
 

    ,       1 2 1 2
1 3u u

x z z x
∂ψ ∂ψ ∂ψ ∂ψ= + = −
∂ ∂ ∂ ∂

. (2.5) 

 
Basic Eqs. (2.1)-(2.2) are obtained by using governing equations:  
 
  , ij j iuσ = ρ , (2.6) 
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  , ijk jk ji j ie µ jσ + = ρ ϕ  (2.7) 
 
and constitutive equations 
 
  ( ) ( ), , , 2 2

ij ij k k j i i j ijk k 0 ij1 u u u e T− ε ∇ σ = λδ + μ + μ + κ + κ ϕ − β δ , (2.8) 

 
  ( ) , , , 2 2

ij ij k k j i i j1 µ− ε ∇ = αδ ϕ + βϕ + ϒϕ , (2.9) 

 
in a homogenous isotropic non local couple stress micropolar thermoelastic solid in the absence of body force, 
couple density and heat sources, where ijσ  are the stress components; µij  are the components of couple stress; 

ijδ  is the Kronecker delta; ijke  is the permutation symbol and the comma symbol denotes spatial derivatives. 
For simplification, we introduce the following dimensionless quantities: 
 

  

( )

' '
  

' '

,         ,        ,       ,  ,

,   ,      ,  µ µ

2
0 0 0 0 1 0 0 1 3 0 0 3 0 0

ij
ij ij ij

0 0 0

x c x z c z u c u u c u t c t

TT
T µ µ c µ

′ = η = η = η = η = η

σκ κ= ϕ = ϕ σ = =
κ + κ + η κ +

′
ϒ

′ ′

′

 (2.10) 

 

where µ ,          .2 E
0 0

C2c
K

ρλ += η =
ρ

 

 
Now using Eq. (2.10) in Eqs (2.1)-(2.3); the field equations take the form: 
 

  ( ) 
22 2

2 2 2 2 231 1
3 1 1 2 1 4 12 2

uu uT 1 u u 0
x x z zx z

∂∂ ∂∂ ∂ϕβ + β + β − + − − β + β ∇ =
∂ ∂ ∂ ∂∂ ∂

  , (2.11) 

 

  ( ) 
2 22

2 2 2 2 23 31
3 1 1 2 3 4 32 2

u uuT 1 u u 0
z x z xz x

∂ ∂∂∂ ∂ϕβ + β − + β + + − β + β ∇ =
∂ ∂ ∂ ∂∂ ∂

  , (2.12) 

 

   
2 2

23 1
1 2 3 42 2

u ug g g g 0
x zx z

∂ ∂∂ ϕ ∂ ϕ  + − − − ϕ − ϕ + ∇ ϕ = ∂ ∂∂ ∂  
  , (2.13) 

 

   
2 2 2

31
1 22 2 2

uuT T h T h
t x zx z t

   ∂∂∂ ∂ ∂ ∂  + = + + +     ∂ ∂ ∂∂ ∂ ∂    
, (2.14) 

 
where 

  ,µ ,          ,        ,         
µ µ µ

2
2 2 2 2 4 20 0 0
1 2 3 4 0 0

c T2 cρ βλ + + κβ = β = β = β = ρε η
κ + κ + κ +

 

  
( )

 ,          ,        ,         ,
2 2 4 22
0 0 0

1 2 3 42 2 2 2
0 0 0 0

jc j c2g g g g
µ c c

ρ ρ ε ηκ κ= = = =
ϒ ϒκ + η ϒ η ϒ
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    ,    2
1 0 0 0 2

0
h c h ϒ= τ η =

κη
 

 
and the constitutive equations (2.8), (2.9) take the form: 
 

  ( )2 2 3 1
1 zz 1 2 3

u u1 T
z x

∂ ∂− δ ∇ σ = β + δ + β
∂ ∂

, (2.15) 

 

  ( ) ,2 31
1 zx 3

uu1
z x

∂∂− δ ∇ σ = δ + + ϕ
∂ ∂

 (2.16) 

 

  
( ) µ2

1 zy1
z

∂ϕ− δ ∇ =
∂  (2.17) 

 

where   ,    ,   2 2 2
1 0 0 2 3c λ μδ = ε η δ = δ =

κ + μ κ + μ
. 

 
Using Eq.(2.5) in (2.11)-(2.14), we obtain: 
 

  
    

,

2
2 2 2 21 2 1 2

3 1 2 2

2
2 2 1 2
4 2

T
x x z z x zt

0
x zt

∂ψ ∂ψ ∂ψ ∂ψ∂ ∂ϕ ∂  β + β ∇ + ∇ − − β + + ∂ ∂ ∂ ∂ ∂ ∂∂  

∂ψ ∂ψ∂  +β ∇ + = ∂ ∂∂  

 (2.18) 

 

  
  

,

2
2 2 2 21 2 1 2

3 1 2 2

2
2 2 1 2
4 2

T
z z x x z xt

0
z xt

∂ψ ∂ψ ∂ψ ∂ψ∂ ∂ϕ ∂  β + β ∇ − ∇ − − β − + ∂ ∂ ∂ ∂ ∂ ∂∂  

∂ψ ∂ψ∂  +β ∇ − = ∂ ∂∂  

 (2.19) 

 

  ,
2 2

2 2 2
2 3 4 1 22 2g g g g

t t

 ∂ ∂∇ − − + ∇ ϕ = − ∇ ψ  ∂ ∂ 
 (2.20) 

 

  ( ) .
2

2 2
1 2 12T h T h

t t

 ∂ ∂∇ = + + ∇ ψ  ∂ ∂ 
 (2.21) 

 
 Without loss of generality, we assume that all quantities are initially zero. Then Eqs (2.18) and (2.19) 
reduce to the following form: 
 

    ,
2 2

2 2
5 6 1 72 2 T

t t

 ∂ ∂∇ − β + β ∇ ψ = β  ∂ ∂ 
 (2.22) 

 

   ,
2 2

2 2 2 2
2 4 22 2t t

 ∂ ∂−∇ + β + β ∇ ψ = −ϕ  ∂ ∂ 
 (2.23) 
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where  
2
2

5 2
1

ββ =
β

, 
2
4

6 2
1

β
β =

β
, 3

7 2
1

−β
β =

β
. 

 
3. Plane wave analysis 
 
  { } { }( ) ( )* * * * * *

,    , , , , µ , , , , , µ exp1 2 ij ij 1 2 ij ijT T z wt iaxψ ψ ϕ σ = ψ ψ ϕ σ +  (3.1) 

 
where w  is the angular frequency and a  is the wave number. 
 Using Eq. (3.1) in Eqs (2.20)-(2.23), we obtain: 
 
  ( ) ( )* *  2 2 2

2 3 1D T D a− ε = ε − ψ , (3.2) 

 
  ( ) ( )* *  2 2 2

4 5 2D D a− ε ϕ = ε − ψ , (3.3) 

 
  ( ) * *

 
2

6 1 7D T− ε ψ = ε , (3.4) 

 
  ( ) * *

 
2

8 2 9D − ε ψ = ε ϕ  (3.5) 

 
where  
 
  1 11 h wε = + ,     2

2 1aε = + ε ,     3 1 2hε = ε , 
 

   
2 2 2 2

2 3 4
4 2

4

a g g w g w a
1 g w

+ + +
ε =

+
,     1

5 2
4

g
1 g w

−ε =
+

,     
2

2 5
6 2

6

wa
1 w

β
ε = +

+ β
, 

 

   7
7 2

61 w
β

ε =
+ β

,     
2 2

2 2
8 2 2

4

wa
1 w

βε = +
+ β

,     9 2 2
4

1
1 w

ε =
+ β

. 

 
Solving Eqs (3.2), (3.4) for *T , *

1ψ  and Eqs (3.3), (3.5)for * *, 2ϕ ψ  ,we get: 
 
  ( )( )* * , 4 2

1 1 1D A D B T 0− + ψ = , (3.6) 

 
  ( )( )* * , 4 2

2 2 2D A D B 0− + ψ ϕ =  (3.7) 

 
where  
 

, ,

, .

 2
1 6 2 3 7 1 2 6 3 7

2
2 4 8 9 5 2 4 8 9 5

A B a

A B a

= ε + ε + ε ε = ε ε + ε ε

= ε + ε + ε ε = ε ε + ε ε
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Solutions of Eqs (3.6), (3.7) are given as follows: 
 

  ( ) ( ) ( )* , ,j j
2 4

z z
1 j j

j 1 j 3
z L a w e L a w e−λ λ

= =
ψ = +  , (3.8) 

 

  ( ) ( ) ( )* ' '   , ,j j
2 4

z z
j j

j 1 j 3
T z L a w e L a w e−λ λ

= =
= +  , (3.9) 

 

  ( ) ( ) ( )*   , ,j j
6 8

z z
2 j j

j 5 j 7
z L a w e L a w e−λ λ

= =
ψ = +  , (3.10) 

 

  ( ) ( ) ( )* ' '   , ,j j
6 8

z z
j j

j 5 j 7
z L a w e L a w e−λ λ

= =
ϕ = +  . (3.11) 

 
where ( ),  jL a w and ( ) ( )' ,   , ..jL a w j 1 2 8= …  are parameters depending on a  and w  and ( ) , , ,j j 1 2 3 4λ =  are 

roots of equation: 4 2
1 1A B 0λ − λ + = , whereas ( ), , ,  j j 5 6 7 8λ = are roots of equation: 4 2

2 2A B 0λ − λ + =  
Using Eqs (3.8), (3.9) in Eq. (3.4) and Eqs (3.10), (3.11) in Eq. (3.5), we obtain: 
 

  ( ) ( ) ( )'  ,    , ,                   , , ,
2
j 6

j j
7

L a w L a w j 1 2 3 4
 λ − ε
 = =
 ε 

, (3.12) 

  ( ) ( ) ( )'  ,    , ,                   , , ,
2
j 8

j j
9

L a w L a w j 5 6 7 8
 λ − ε
 = =
 ε 

. (3.13) 

 
Using Eqs (35), (36) in Eqs (32), (34) we obtain: 
 

  ( ) ( ) ( )* ,     ,    ,  j j
2 22 4

z zj 6 j 6
j j

7 7j 1 j 3
T z L a w e L a w e−λ λ

= =

   λ − ε λ − ε
   = +
   ε ε   

   (3.14) 

 

  ( ) ( ) ( )*     ,    ,  j j
2 26 8

z zj 8 j 8
j j

9 9j 5 j 7
z L a w e L a w e−λ λ

= =

   λ − ε λ − ε
   ϕ = +
   ε ε   

  . (3.15) 

 
Using Eqs (2.5), (3.1), (3.8) and (3.10), we obtain the displacement components as: 
 

  ( ) ( )* j j j j
2 4 6 8

z z z z
1 j j j j j j

j 1 j 3 j 5 j 7
u ia L e ia L e L e L e−λ λ −λ λ

= = = =
= + − λ + λ    , (3.16) 

 

  ( ) ( )* j j j j
2 4 6 8

z z z z
3 j j j j j j

j 1 j 3 j 5 j 7
u L e L e ia L e ia L e−λ λ −λ λ

= = = =
= − λ + λ − −    . (3.17) 
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To obtain the stress and couple components, using Eqs (2.15), (2.16), (2.17), (3.1) and Eqs (3.14)-(3.17), we 
obtain the following: 
 

  * j j j j
2 4 6 8

z z z z
zz 1 j j 1 j j 1 j j 1 j j

j 1 j 3 j 5 j 7
t L e L e L e L e−λ λ −λ λ

= = = =
= α + α + β − β    , (3.18) 

 

  * j j j j
2 4 6 8

z z z z
zx 2 j j 2 j j 2 j j 2 j j

j 1 j 3 j 5 j 7
t L e L e L e L e−λ λ −λ λ

= = = =
= α − α + β + β    , (3.19) 

 

  * j j
6 8

z z
zy 3 j j 3 j j

j 5 j 7
m L e L e−λ λ

= =
= α − α   (3.20) 

 
 where 
 
  ( )( ) * * , 2 2

1 zz zz1 D a t− δ − σ =  

 
  ( )( ) * * , 2 2

1 zx zx1 D a t− δ − σ =  (3.21) 

 
  ( )( ) * * 2 2

1 zy zy1 D a µ m− δ − =  

 
and 

  ( ) ( )  , ,  ,
2 2
j 6 j 82 2 2

ij 2 1 j 3 2 j 1 j j 3 j j
7 9

a ia ia
   λ − ε λ − ε
   α = −δ + β λ + β α = −δ λ − λ α = −λ
   ε ε   

 

 

  ( ) ( )  .,
2
j 82 2 2

1 j 2 j 1 j 2 j 1 j
9

ia ia a
 λ − ε
 β = −δ λ + β λ β = δ λ + +
 ε 

 

 
4. Reflection and transmission  
 
 We consider longitudinal waves (P), thermal waves (T), transverse waves (SV1 and SV2) propagating 
through medium M  and incident on the plane z 0= . Corresponding to every incident wave, we obtain 
reflected longitudinal wave (P), thermal wave (T), transverse waves (SV1 and SV2) in medium M  and 
transmitted longitudinal wave (P), thermal wave (T), transverse waves (SV1 and SV2) in medium M  as shown 
in Fig.1. 
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Fig.1. Geometry of the problem. 
 
5. Application 
 
 Consider two distinct homogenous, isotropic non-local couple stress micropolar thermoelastic semi-
infinite spaces separated by a plane interface z 0=  ( xy  plane), the z -axis is taken normal to the xy  plane 
vertically downward. We denote medium ( ){ }, , : ,  ,   M x y z x y 0 z= −∞ < <∞ ≤ < ∞  as the lower half space and 

medium ( ){ }, , : ,  ,   M x y z x y z 0= −∞ < <∞ −∞ < ≤  as the upper half space. All quantities in medium M  are 
denoted with bar and in medium M  without bar. The appropriate boundary conditions are the continuity of 
stress components, couple components, displacement and microrotation at the interface of two half spaces. In 
view of the above boundary conditions, it can be written as: 
 

  ( )( ) ( )( )* *2 2 2 2
1 zz 1 zz1 D a 1 D a− δ − σ = − δ − σ , 

 

  ( )( ) ( )( )* * 2 2 2 2
1 zx 1 zx1 D a 1 D a− δ − σ = − δ − σ , 

 

  ( )( ) ( )( )* * µ µ2 2 2 2
1 zy 1 zy1 D a 1 D a− δ − = − δ − , 

 

  
* *

* * * * * * * * , , , ,  at  .1 1 3 3
T Tu u u u T T K K z 0
z z

∂ ∂= = = ϕ = ϕ = =
∂ ∂

 

 
Now using Eqs (44), boundary conditions may be expressed as: 
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* * * * * * * * * * * *

* *
* *

  ,     ,    ,    ,   ,   

 ,     at  .

,zz zz zx zx zy zy 1 1 3 3t t t t m m u u u u

T TT T K K z 0
z z

= = = = = ϕ = ϕ

∂ ∂= = =
∂ ∂

 (5.1) 

 
 For medium M  the values of * * * * * *, , ,  ,  , 1 3 zz zxu u T t tϕ , *

zym  are given by (3.14)-(3.20) and for medium 

M  are given by: 
 

  ( )* , j j
2 4

z z
1 j j j

j 1 j 3
u ia L e L eλ λ

= =
= + λ   (5.2) 

 

  ( )* , j j
2 4

z z
3 j j j

j 1 j 3
u L e ia L eλ λ

= =
= λ −   (5.3) 

 

  * , j

22
zj 6

j
7j 1

T L eλ

=

 λ − ε =
 ε
 

  (5.4) 

 

  * ,  j

24
zj 8

j
9j 3

L eλ

=

 λ − ε ϕ =
 ε
 

  (5.5) 

 

  * ,  j j
2 4

z z
zz 1 j j 1 j j

j 1 j 3
t L e L eλ λ

= =
= α − β   (5.6) 

 

  * ,  j j
2 4

z z
zx 2 j j 2 j j

j 1 j 3
t L e L eλ λ

= =
= − α + β   (5.7) 

 

  * .  j
4

z
zy 3 j j

j 3
m L eλ

=
= − α  (5.8) 

 
 Making use of boundary conditions given by (5.1) with the aid of (3.14)-(3.20) and (5.2)-(5.8), we get 
a system of eight non-homogenous equations which can be written as: 
 

                  , ,
8

ij j i
j 1

C y d i 1 2 3 8
=

= = ……  (5.9) 

 
where 
 
   ,   ,   ,   ,   ,   , ,   11 12 13 7 14 8 15 16 17 7C ia C ia C C C ia C ia C= = = λ = λ = − = − = −λ  
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  ,     ,   ,    ,   ,    ,   ,18 8 21 3 22 4 23 24 25 1 26 2C C C C ia C ia C C= −λ = λ = λ = − = − = −λ = −λ  
 
   ,    ,   ,   ,    ,   ,  ,27 28 31 13 32 14 33 17 34 18 35 11C ia C ia C C C C C= = = α = α = −β = −β = −α  
 
   ,    ,      , ,   ,  , ,     36 12 37 13 38 14 41 23 42 24 43 27 44 28C C C C C C C= −α = β = β = −α = −α = β = β  
 
  ,   ,    ,      ,   ,    ,   ,45 21 46 22 47 23 48 24 51 52 53 37C C C C C 0 C 0 C= α = α = −β = −β = = = −α  
 
  ,   ,   ,   ,    ,   ,   ,54 38 55 56 57 33 58 34 61 62C C 0 C 0 C C C 0 C 0= −α = = = α = α = =  
 

  ,   ,   ,   ,   ,  ,
2 22 2

7 8 8 8 3 8 4 8
63 64 65 66 67 68

9 9 9 9
C C C 0 C 0 C Cλ − ε λ − ε λ − ε λ − ε

= = = = = − = −
ε ε ε ε

 

 

   ,   ,   ,   ,  ,    ,
2 22 2

3 6 4 6 1 6 2 6
71 72 73 74 75 76

7 7 7 7
C C C 0 C 0 C Cλ − ε λ − ε λ − ε λ − ε

= = = = = − = −
ε ε ε ε

 

 

  ,    , ,   ,   ,   ,
2 2
3 6 4 6

77 78 81 3 82 4 83 84
7 7

C 0 C 0 C K C K C 0 C 0
   λ − ε λ − ε= = = λ = λ = =      ε ε   

 

 

  ,   ,    ,    ,
2 2

1 6 2 6
85 1 86 2 87 88

7 7
C K C K C 0 C 0

   λ − ε λ − ε   = − λ = − λ = =
   ε ε   

 

 

  ,   ,   ,   ,    ,   ,   ,    .3 4 7 8 3 41 2
1 2 3 4 5 6 7 8

L L L L L LL Ly y y y y y y y
L L L L L L L L

= = = = = = = =  

 
For incident P-wave: 
 
    ,     ,1 2 5 6L L L L L 0= = = =  
 
   ,   ,   ,   ,   ,   ,1 2 1 3 11 4 21 5 6d ia d d d d 0 d 0= − = λ = −α = −α = =  
 

    ,   .
2 2
1 6 1 6

7 8 1
7 7

d d K
 λ − ε λ − ε= − = λ   ε ε 

 

 
For incident T-wave: 
 
    ,     ,2 1 5 6L L L L L 0= = = =  
 
   ,   ,   ,   ,   ,   ,1 2 2 3 12 4 22 5 6d ia d d d d 0 d 0= − = λ = −α = −α = =  
 

   ,   .
2 2
2 6 2 6

7 8 2
7 7

d d K
 λ − ε λ − ε= − = λ   ε ε 

 

For incident SV1-wave: 
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    ,     ,5 1 2 6L L L L L 0= = = =  
 
   ,   ,   ,   ,   ,   ,1 5 2 3 15 4 25 5 35d d ia d d d= λ = = −β = −β = −α  
 

   ,  ,   .
2
5 8

6 7 8
9

d d 0 d 0λ − ε
= − = =

ε
 

 
For incident SV2-wave: 
 
    ,     ,6 1 2 5L L L L L 0= = = =  
 
   ,   ,    ,   ,   ,1 6 2 3 16 4 26 5 36d d ia d d d= λ = = −β = −β = −α  
 

   ,  ,   .
2
6 8

6 7 8
9

d d 0 d 0λ − ε
= − = =

ε
 

 
6. Numerical results and discussion 
 
 In order to study the wave propagation through an isotropic non-local couple stress micropolar 
thermoelastic solid, the amplitude ratios corresponding to reflected waves and transmitted waves due to 
incidence of longitudinal waves (P), thermal waves (T), transverse waves (SV1 and SV2) at free surface have 
been computed numerically. For the purpose of numerical computations, values of relevant parameters 
corresponding to two different mediums M  and M  are given in Tab.1. 
 
Table 1. Numerical values of parameters. 
 

Medium M  Medium M  
Notation Value Notation Value 

0β  . 10 22 68 10 Nm−×  0β  . 12 24 0 10 Nm−×  
λ  . 10 218 78 10 Nm−×   λ  . 12 20 088 10 Nm−×  

µ  . 10 28 76 10 Nm−×  µ  . 11 20 4 10 Nm−×  
 α  . 1017 2 10 N×  α  98 10 N×  
 β  . 105 06 10 N×  β  1010 N  
 ϒ  . 88 99 10 N×   ϒ  . 90 779 10 N×  
 κ  108 10 N×   κ  . 110 1 10 N×  

 ρ  174 Kg m-3 ρ  3233Kgm−  
j  . 29 21m  j  . 22 9m  

0e  0.48 
0e  0.67 

a′  . 90 543 10 m−×  a′  . 90 421 10 m−×  
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Cont. Table 1. Numerical values of parameters. 
 

Medium M  Medium M  
Notation Value Notation Value 

  EC  . 3 11 04 10 CalK −×  EC  . 3 12 3 10 CalK −×  

  K  . 1 1 11 7J m s K− − −  K  . 1 1 10 016 J m s K− − −  
   0T  298 K 

0T  298 K 

   0τ  0.8 s 
0τ  0.02 s 

 
For numerical calculation, other constants are taken as follows: 
 
  ,   ,   w 2 w 3 a 1= = = . 
 
To find amplitude ratios with respect to wave number of the incident longitudinal wave (P), thermal wave (T), 
and transverse waves (SV1 and SV2), we have used MATLAB software. The amplitude ratios for reflected 
longitudinal waves, reflected thermal waves, reflected transverse waves in medium M  and corresponding 
transmitted waves in medium M  are shown graphically. Also, effects of non-local and local parameters on 
amplitude ratios as a function of wave number of the incident longitudinal wave (P), thermal wave (T), and 
transverse waves (SV1 and SV2) are compared. For the local parameter, we used 0e 0= . In all graphs, a solid 
line and a dotted line represent the values of amplitude ratios corresponding to non-local and local parameters, 
respectively.  
 
6.1. Incident P-wave 
 
 The variations of absolute values of the amplitude ratios of various reflected and transmitted waves 
with respect to the wave number of incident P-wave for 0 a 10≤ ≤  have been shown in Figs 2-9. 
Figure 2 shows the variation of amplitude ratio of reflected P-wave with the wave number of incident P-wave 
for non-local and local parameter of the micropolar elastic solid. It has been seen that initially the amplitude 
ratio for the non-local parameter increases and for the local parameter decreases for 0 a 1≤ ≤ . After this, in  
 

 
  

       Fig.2. Variations of amplitude ratios of 
reflected P-wave. 

          Fig.3.Variations of amplitude ratios of 
reflected T-wave. 
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the case of the non-local parameter the amplitude ratio decreases up to a 2=  and for higher values of wave 
number, it becomes oscillatory. In the case of the local parameter, the amplitude ratio becomes oscillatory after 
a 1=  and onwards. Also, it has been observed that there are some values of wave number corresponding to 
which the amplitude ratio for the non-local and local parameters coincide. For higher values of wave number, 
the amplitude ratio for the non-local parameter is higher than the corresponding local elastic solid. 
 Figure 3 represents variations of amplitude ratio of reflected T-wave with the wave number of incident 
P-wave for non-local and local parameters of the elastic solid. It is observed that the amplitude ratio has a great 
decline in its values for 0 a 1≤ ≤  in both cases (local as well as non-local). For intermediate and higher values 
of wave number, the amplitude ratio oscillates.  
 

 
  

        Fig.4.Variations of amplitude ratios of 
reflected SV1-wave. 

         Fig.5. Variations of amplitude ratios of 
reflected SV2-wave. 

 

 
  

   Fig.6. Variations of amplitude ratios of 
transmitted P-wave. 

       Fig.7. Variations of amplitude ratios of 
transmitted T-wave. 
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amplitude ratio 3y  increases for the non-local parameter. For both parameters, the amplitude ratio oscillates 
corresponding to intermediate and higher values of a  and coincides for some values of a . 
 

 
  

    Fig.8. Variations of amplitude ratios of 
transmitted SV1-wave. 

      Fig.9. Variations of amplitude ratios of 
transmitted SV2-wave. 

 
 Figure 5 depicts the variations of amplitude ratio of reflected SV2-wave with the wave number of 
incident P-wave. In  0 a 1≤ ≤ , there is a point where the amplitude ratio for both parameters are equal. For non-
local solid amplitude ratio oscillates for a 2≥  whereas for local solid, it oscillates for a 2≥ . For a 6≥  
amplitude ratio for both parameters coincide. 
 It has been observed from Fig.6 that the pattern of variation of amplitude ratio 5y  (transmitted P-
wave) with wave number of incident P-wave is similar for both local and non-local parameters. The value of 
amplitude ratio firstly increases then decreases for small values of a . For higher values of a , there are small 
oscillations in both cases. Also, it is observed that the value of 5y  is greater for the local parameter than for 
the non-local parameter. 
 The variations of amplitude ratio of transmitted T-wave with the wave number of incident P-wave are 
shown in Fig.7. The amplitude ratio for the non-local solid sharply increases in 0 a 1≤ ≤  and decreases in 

.1 a 2≤ ≤ For local solid 6y  sharply decreases in 0 a 1≤ ≤ , oscillates in 1 a 5≤ ≤  and becomes stationary for 

higher values. Also, there are some values of a  for which 6y  in both cases becomes equal. 

 From Fig.8, it is clear that the behavior of amplitude ratio 7y  for transmitted SV1-wave is similar to 

6y  in 0 a 1≤ ≤  with a difference in the magnitude values. For 5 a 10≤ ≤ the amplitude ratio 7y  for both 
local and non-local solid coincides. 
 Figure 9 shows the variations of amplitude ratio 8y  for transmitted SV2-wave. For 0 a 1≤ ≤ , there is a 
sharp decrease in the amplitude ratio for local solid, whereas the value of amplitude ratio increases gradually for 
non-local solid. For higher values of the wave number the amplitude ratio for both type of solids coincides. 
 
6.2. Incident T-wave 
 
 Figure 10 shows that behavior of the amplitude ratio 1y  for reflected P-wave (for incident T-wave) 

is similar to 8y  for transmitted SV2-wave (for incident of P-wave) in 0 a 1≤ ≤  with difference in the 
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magnitude values. For a 4≥ , the amplitude ratio for the non-local solid increases sharply whereas decreases 
very slowly for the local solid. Also, magnitude for the non-local solid is much higher than for the local solid 
corresponding to higher values of wave number. 
 

 
  

     Fig.10. Variations of amplitude ratios of 
reflected P-wave. 

        Fig.11. Variations of amplitude ratios of 
reflected T-wave. 

 

 
  

      Fig.12.Variations of amplitude ratios of 
reflected SV1-wave. 

        Fig.13. Variations of amplitude ratios of 
reflected SV2-wave. 
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the amplitude ratio increases. For 1 a 4≤ ≤ , the amplitude ratio oscillates in both graphs with different 
magnitude and for higher values of a , the value of the amplitude ratio decreases continuously. 
 From Fig.13 it is clear that the behavior of the amplitude ratio 4y  for reflected SV-2 wave (for 

incident T-wave) is similar to 8y  for transmitted SV-2 wave (for incident P-wave) in 0 a 4≤ ≤  with 
difference in the magnitude values. For a higher value of wave number, the amplitude ratio for the local and 
non-local solid is approximately same. 
 Figure 14 shows the variation of the amplitude ratios 5y  for transmitted P-wave. For the non-local 
solid the amplitude ratio increases sharply for 0 a 1≤ ≤  and decreases sharply for 1 a 2≤ ≤ . For 2 a 4≤ ≤ , it 
oscillates and increases continuously for higher values of a . For the local solid, the amplitude ratio increases 
smoothly for a 2≥  and for a 2≤ , it fluctuates slowly.  
 

 
  

 Fig.14. Variations of amplitude ratios of 
transmitted P-wave. 

    Fig.15. Variations of amplitude ratios of 
transmitted T-wave. 

 

 
  

 Fig.16. Variations of amplitude ratios of 
transmitted SV1-wave. 

    Fig.17. Variations of amplitude ratios of 
transmitted SV2-wave. 
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 Figure 15 shows that for the local solid, variation of the amplitude ratio 6y  for transmitted T-wave (for 
incident T-wave) is similar to the variation of the amplitude ratio of reflected SV2-wave (for incident P-wave) with 
difference in magnitude. For the non-local solid, for 0 a 4≤ ≤ , the variation of the amplitude ratio is same as the 
variation of the amplitude ratio 5y  for transmitted P-wave (when T-wave is incident) with difference in magnitude. 
 For higher values of a , the amplitude ratio for non-local solid is much higher than that of the local solid. 
The variations of the amplitude ratio 7y  of transmitted SV1-wave with the wave number of incident T-wave is 
shown in Fig.16. For the non-local solid, the behavior of the amplitude ratio is similar to the behavior of the 
amplitude ratio 2y  for reflected T-wave (for incident T-wave) with difference in magnitude. For the local solid 
the amplitude ratio decreases initially for 0 a 1≤ ≤  and remains constant for higher values of a . 
 From Fig.17, it is clear that the behavior of the amplitude ratio 8y  for transmitted SV2-wave is similar to 

the behavior of the amplitude ratio 2y  for reflected T-wave (for incident T-wave) with difference in magnitude. 
 
6.3. Incident SV1-wave 
 
 It is clear from the Fig.18 that the behavior of the amplitude ratio 1y  for reflected P-wave with respect 

to wave number of incident SV1-wave is similar to the behavior of the amplitude ratio 2y  for reflected T-
wave with respect to the wave number of incident T-wave with difference in magnitude. 
 From Fig.19 it is observed that variations of the amplitude ratio 2y  with respect to the wave number of 
incident SV1-wave is similar in both (local and non-local) type of solid with difference in magnitude values. For 
0 a 1≤ ≤  the amplitude ratio increases sharply and then decreases for 1 a 2≤ ≤ . For a 2≥  variation is very small. 
 Variations of the amplitude ratio for reflected SV1-wave with the wave number of incident SV1-wave 
are shown in Fig.20. It is clear that the amplitude ratio 3y  increases with an increase in the wave number of 
incident wave in both type of solid (local and non-local). The Magnitude of the amplitude ratio for the non-
local solid is more than that of the local solid corresponding to same wave number. 
Figure 21 shows that the amplitude ratio for reflected SV2-wave decreases smoothly in 0 a 1≤ ≤  for the local 
solid whereas for the non-local solid it decreases in 0 a 2≤ ≤  . For a 1≥ , for the local solid and for a 2≥ , for 
the non-local solid, the variations in the amplitude ratio are very small with respect to the wave number. 
 

 
  

     Fig.18. Variations of amplitude ratios of 
reflected P-wave. 

       Fig.19. Variations of amplitude ratios of 
reflected T-wave. 
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 Figure 22 shows the behavior of transmitted P-wave when SV1-wave is incident. For the local solid, 
the amplitude ratio decreases initially for very small values of ' 'a  and then increases up to a maximum value 
corresponding to a 2= . After a 2=  variations are very small. In the non-local solid, for 0 a 1≤ ≤  the 
amplitude ratio increases sharply and then decreases for 1 a 2≤ ≤ . For a 2≥  variations are very small. 
 It is observed from Fig.23 that the behavior of the amplitude ratio 6y  for transmitted T-wave with 

respect to the wave number of incident SV1-wave is similar to the behavior of the amplitude ratio 7y  for 
transmitted SV1-wave with respect to the wave number of incident P-wave with difference in magnitude values. 
 It is clear from Figs 24 and 25 that the behavior of the amplitude ratio 7y  for transmitted SV1-wave 

and  8y  for transmitted SV2-wave with respect to the wave number of incident SV1-wave is similar to the 

behavior of the amplitude ratio 2y  for reflected T-wave with respect to the wave number of incident SV1-
wave with difference in magnitude values. 
 

 
  

     Fig.20. Variations of amplitude ratios of 
reflected SV1-wave. 

       Fig.21. Variations of amplitude ratios of 
reflected SV2-wave. 

 

 
  

 Fig.22. Variations of amplitude ratios of 
transmitted P-wave. 

   Fig.23. Variations of amplitude ratios of 
transmitted T-wave. 
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 Fig.24. Variations of amplitude ratios of 
transmitted SV1-wave. 

   Fig.25. Variations of amplitude ratios of 
transmitted SV2-wave. 

 
6.4. Incident SV2-wave 
 
 Figure 26 shows the variations of the amplitude ratio of reflected P-wave with respect to the wave 
number of incident SV2-wave for the non-local and local micropolar elastic solid. In the local solid the 
amplitude ratio decreases for 0 a 1≤ ≤ . For a 1≥  the amplitude ratio becomes oscillatory. For the non-local 
solid, for 0 a 5≤ ≤  the amplitude ratio is constant and for a 5≥  it becomes oscillatory. Also, there are some 
values of ' 'a  corresponding to which the amplitude ratio coincides for both types of solid.  
 It is clear from Fig.27 that there is only one value of ' 'a  corresponding to which the amplitude ratio for 
both solids (local and non-local) coincides. For a 2≤ , the amplitude ratio of the non-local solid is more than that 
of the local solid while for a 2≥  the amplitude ratio of the local solid is more than that of the non-local solid. 
 

 
  

     Fig.26. Variations of amplitude ratios of 
reflected P-wave. 

        Fig.27.Variations of amplitude ratios of 
reflected T-wave. 
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incident wave in both type of solid (local and non-local). The Magnitude of the amplitude ratio for the local 
solid is more than that of the non-local solid corresponding to same wave number. 
 It is clear from Fig.29 that the behavior of the amplitude ratio 4y  for reflected SV2-wave with respect 

to the wave number of incident SV2-wave is similar to the behavior of the amplitude ratio 3y  for reflected 
SV1-wave with respect to the wave number of incident SV1-wave with difference in magnitude values. 
 Figure 30 shows that the behavior of transmitted P-wave for the local solid (when SV2-wave is 
incident) is similar to the behavior of transmitted P-wave (when SV1-wave is incident). For the non-local solid, 
the amplitude ratio oscillates for 0 a 4≤ ≤  and for a 4≥ , it increases smoothly. 
 It has been observed from Fig.31 that the behavior of the amplitude ratio 6y  for transmitted T-wave 

with respect to the wave number of incident SV2-wave is similar to the behavior of the amplitude ratio 1y  
for reflected P-wave with respect to the wave number of incident T-wave with difference in magnitude values. 
 

 
  

     Fig.28. Variations of amplitude ratios of 
reflected SV1-wave. 

       Fig.29. Variations of amplitude ratios of 
reflected SV2-wave. 

 

 
  

 Fig.30. Variations of amplitude ratios of 
transmitted P-wave. 

   Fig.31. Variations of amplitude ratios of 
transmitted T-wave. 
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 Fig.32. Variations of amplitude ratios of 
transmitted SV1-wave. 

     Fig.33. Variations of amplitude ratios of 
transmitted SV2-wave. 

 
From Figs 32 and 33 it is clear that the amplitude ratio 7y  for transmitted SV1-wave and  8y for transmitted 
SV2-wave increases with an increase in the wave number of incident SV2-wave except some points. In both 
graphs, there is only one point where amplitude ratios for the local and non-local solid coincides. For a 1≥ , 
for transmitted SV1-wave the amplitude ratio for the local solid is more than that of the non-local solid while 
for transmitted SV2-wave the amplitude ratio for the non-local solid is more than that of the local solid. 
 
7. Conclusions 
 
 In the present work, we have obtained the expressions for the amplitude ratios of reflection and 
transmission of waves at the interface of two distinct homogenous, isotropic non-local couple stress micropolar 
thermoelastic solids. The variations in absolute values of the amplitude ratios of various reflected and 
transmitted waves with respect to wave number of incident P-, T-, SV1-, SV2-waves are shown graphically in 
the local as well as the non-local solid. It is observed that the non-local parameter plays a vital role in reflection 
and transmission phenomenon. Results obtained from the graphs of this model may be very useful for scientists 
working in various fields of mechanics. 
 
Nomenclature 
 
 a′  – characteristic length 
 EC  – specific heat 
 ijke  – permutation symbol  
 0e  – material constant 
 j  – micro-inertia 
 K  – thermal conductivity 
 T  – temperature change measured from the absolute temperature 0T  
 u  – displacement vector 
 Y  – ( ) 03 2µ= λ + β   
 , ,α β ϒ , κ  – micropolar constants 
 0β  – coefficient of linear thermal expansion 
 ijδ  – Kronecker delta 
 0e aε = ′  – non-local parameter 
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 λ  and μ  – Lame's constants 
 µij  – components of couple stress 
 ρ  – density of medium 
 ijσ  – stress components 
 0τ  – relaxation time 
 ( ), ,0 0ϕφ  – rotational vector 

 2∇  – Laplacian operator 
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