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MASTER . . 

Summary .-A fundamental problem in the analysis of fluid-filled pipeline systems 

containing various types of joints and fittings (such as tees, elbows, U-joints. and omega- 

bends) arises when the effects of such structural parts on the propagation of pressure 

transients through the system are considered. Often, all that is desired is a simple 

characterization of these "discontinuities" in terns of reflection and transmission pressure 

coefficients that can be incorporated into one-dimensional pressure transient algorithms or 

computer codes. In this context, the present paper considers the problem of characterizing 

elbow-like structural members (including elbows and U-joints) . 
The theoretical analysis is based on a Timoshenko-like treatment of 'a curved 

elastic tube element containing a'compressible ~ewtonian fluid moving at low velocity. . Four 

equations of motion (governing the fluid pressure and the axial force, transverse shear force, 

and bending moment in the tube) and four associated constitutive equations are generated. 

For a given frequency w ,  there are- generally eight distinct wave numbers k and eight 

associated "modes" %* Superposition of these modes and the matching of certain variables at 
interfaces allow the prediction of the strengths of waterhammer-like waves that' are trans- 

mitted and reflected at a finite-radius elbow joining two straight sections of tube, when an 

input waterhammer-like wave is prescribed. 

Theoretical results indicate that for high frequency waves, virtually all of the 

wave is transmitted through the elbow, regardless of  elbow geometry. For low frequency 

waves, a partial negative pressure reflection occurs at the elbow and the strength of this 

reflection is of the order of 15% to 30% of.that of the incoming wave; the amount of 

reflection depends strongly upon the.ratio of the wall thickness to the mean tube radius, is 

somewhat dependent upon the total bend angle, but ,is relatively insensitive to the radius of 

curvature of the elbow. 

Some simple experiments with two straight sections of water-filled aluminum 

electrical . . conduit welded to either end of a gentle ,900-elbow tend to confirm certain aspects. 

of the theory. A short, impact-generated positive pressure pulse in one of the straight 

sections disperses somewhat at the elbow, producing a broad partial negative reflection; the 

rest is transmitted. By varying the static pressure head in the system, it has been 

ascertained that cavitation. at the inlet side of the elbow can.occur if the static head is 

L not large enough to overcome the partial negative reflection. 1 



* , . 

, 1, Int'roduc.ti on 
. . .. . . . . . 

A consequence of t he  c l a s s i c a l  waterhammer theory f o r  s t r a i g h t  tubes i  i s  t h a t  f l u - id  

I * 

t r a n s i e n t s  pr-opagate unat tenuated with t h e  .Joukowski2 .wave speed 

c J = { p  f K  ( L + 2 L ) }  , , 
e E 

(1) 

where p and R a r e  t h e  mass dens i ty  and bulk modulus of t h e  f l u i d ,  and a ,  e and E a r e  t h e  
f  

. . i n s i d e  r ad ius ,  wa l l  th ickness  and Yo'ung's modulus , . respec t ive ly ,  of t h e  tube. Many exper i -  

ments, Lncluding those  of P h i l l i p s  and ~ a l k e r , ~  have v e r i f i e d  t h e  a p p l i c a b i l i t y  of t h e  
. . 

c l a s s i c a l  theory f o r  non-cavi tat ing,  low-velocity flows i n  s t r a i g h t  tubes .  .D i sc repanc ie s  

between the  c l a s s i c a l  theory and experimental  r e s u l t s  do. a r i s e ,  however, when segments of  

curved tubing a r e  i n s e r t e d  i n t o  p ip ing  n e t ~ o r k s . ~  An i n v e s t i g a t i o n  of wave propagat ion  i n  

curved condui t s  was begun with t h e  goa l  of p r e d i c t i n g  a n a l y t i c a l l y  t h e  t ransmiss ion  and 

r e f l e c t i o n  c h a r a c t e r i s t i c s  o f , c u r v e d  elements such a s  elbows and U-bends. 

2. Analysis o f  waves i n  an unbounded c o n d u i t  hav ing  i n i t i a l  c u r v a t u r e  

The a n a l y s i s  begins with a  cons idera t ion  of t h e  propagat ion of coupled, one-. 

dimensional waves i n  a curved, f l u i d - f i l l e d  conduit .  For t h i s  p u r p o s e ,  a  ~ imoshenko- l ike4  

theory5 f o r  t h e  propagation of extensional-bending waves i n  a  s o l i d  rod i s  mod i f i ed  t o  

account f o r  t h e  presence of a  compressible,  non-cavi tat ing f l u i d  moving a t  a ' l o w  v e l o c i t y ,  

While t r ansve r se  momentum of e n t i r e  tube  elements,  conta in ing  f l u i d ,  is  accounted f o r ,  t h e  
I. . r a d i a l  momentum of t h e  f l u i d  and of t h e  tube w a l l  w i th in  t h e  c ross -sec t ion  is neglec ted .  It 

fol lows t h a t  t h e  hoop s t r e s s  a due t o  i n t e r n a l  pressure  p is given by 
8 

I: There a r e  four  genera l ized  c o n s t i t u t i v e  equat ions govern ing . the  a x i a l  t u b e  fo rce .N ,  t h e  

t r ansve r se  shear  fo rce  Q, t h e  bending.moment M, and t h e  i n t e r n a l  p r e s s u r e  p: 

I n  t hese  equat ions,  A denotes  t h e  c ros s - sec t iona l  a r e a  of t h e  t u b e  w a l l ,  d denotes  t h e  
t 

t r a n s v e r s e  displacement of t h e  tube c e n t e r l i n e ,  R t h e  r a d i u s  of n a t u r a l  cu rva tu re  of t h e  tube  

c e n t e r l i n e ,  u  t h e  a x i a l  displacement of t h e  tube,  E,  G and v t h e  Young's modulus, s h e a r  . . 

modulus and Poisson 's  r a t i o ,  r e spec t ive ly ,  of t h e  tube ma te r i a l ,  K~ t h e  s h e a r  c o . r r e c t i o n .  
' 

f a c t o r ,  ,$ t he  t o t a l  r o t a t i o n  of a  tube  c ross-sec t ion ,  I t h e  moment o£ i n e r t i a  of t h e  t u b e  
t 

cross-sec t ion ,  s the  coord ina te  along t h e  tube  c e n t e r l i n e ,  t t h e  t ime,  V t h e  f l u i d  c e n t e r l i n e  

v e l o c i t y ;  a  s u p e r s c r i p t  do t  denotes  d i f f e r e n t i a t i o n  wi th  r e spec t  t o  time.   here a r e  a l s o  

four  equat ions  of motion, which in t roduce  a d d i t i o n a l l y  t h e  mass d e n s i t i e s  p, and p+ of t h e  



fluid and tube, respectively, and the cross-sectional area A of the fluid: 
f 

The constitutive equations (3)-(5) may be differentiated once with respect to time, rendering 

the eight governing equations (3)-(10) in first-order differential form, 

t S L(:) 5 4 g,t + 4 :,s + R U  = 0,' 
'b - - (11). 

. . 
. - . . 

where - u is. the solution vector with components (N, Q, M, p, G, d, 6 ,  V) and et, and are 

8 x 8  constant coefficient matrices. 

i(wt-ks) Harmonic solutions to eqs. (ll), in the forni u = - %I , where w is the 
circular frequency andk is the wave number, may be assumed; it follows .that u must satisfy 

-0 

where 

i 
I (iw kt - ik kS + R) = 

In order for a right null vector (eigenvector) u to exist, the determinant' of (iwkt - i q s  
-4 

+ $3) -must vanish, i. e. 



.. . - - - - - 
- - 

. . -  
F(k) a det (iw &L - ik as + t) = 0. ' (14) 

. - 
1' . . . . . 

On physical,grounds, it can be argued that, if k is a solution to F(k) = 0, then so is -k; 

and consequently ~(k), being a polynomial in k, must be of the form 

where the c are functions of the frequency w. youngdah16 has evaluated the, c. (w) by direct 
i 1 

expansion of the deter~inant.~ The general form of k .is complex, i.e. k = : Re(k) + i lm(k) 

so that u is of the form u = - - % iCwt - Re(k) , There are eight, generally 
distinct, roots to -eq. (14), and radiation conditions7 'at s = i- may be invoked to select 'the 

. .  . . . 
appropriate four of these 'eight roots for problems ,involving semi-infinite conduits. . . 

Generally the roots satisfying the radiation conditions lie in the fourth quadrant of the 

k-plane, as depicted in the phase cusves given schematically in Figs. 1 and 2 for straight 

and curved conduits, respectively. . . 

In the case of the straight tube, the right null vectors u have distinct 
-0 

characteristics that depend upon the particular branch of the w-k curves under consideration, 

and the branches in Fig. 1 have been named accordingly. The "fluid" wave will be 05 

particular interest in this paper; it corresponds closely with the usual waterhammer wave 

described by elementary theory.l In a curved tube, all modes involve all the dependent - - 
variables, and it is difficult to give meaningful names to all the branches in w-k space. 

One exception to this last statement, however, concerns the portions of the two branches that 

would correspond to the one "fluid" branch in the straight tube case; these portions have 

strong pressure components in their associated eigenvectors and are consequently labelled 

'primary "fluid" wave segnents' in Fig. 2. 

Fig .  1 .  Phase space (w-k  curves) for har- F ig .  ' 2 .  Phase space (o-k curves) for .  Gar-' , ., 

monic disturbances in a s t raight  fluid-' - . monic 'disturbances in a .curved. . . f luid-f i l l  ed . ' 

f i l l ed  conduit. Curves are not necessarily conduit.. Curves are not necessarily drawn. 
drawn t n  ~ c a l e .  tn  ~ c a l  P 

p- -~ 



'The cu tof f  f requencies  w ( i n  Fig.  1 )  .and w w ( i n  Fig.  . 2 )  can be c a l c u l a t e d  by 
C c l '  c2 

s e t t i n g  k = 0 i n  eq. (14) .  ' The r e s u l t  f o r  a  s t r a i g h t  tube i s  t h a t  t he re  i s  one cu to f f  va lue ,  

above which the re  a r e  four  r e a l  r o o t s  and below which t h e r e  a r e  t h r e e  r e a l  r o o t s  and one 

imag ina ry  root  a s soc i a t ed  with bending and shear  only.  The r e s u l t  f o r  a curved conduit  is  

1 t h e r e  a r e  two cutof f  frequenci.es,  given by 
. . 

a  
*f - < *t 

EAt + (1-2v) 
a n d .  w 

c  2 

. . 
. . 
.In a d d i t i o n ,  i n  a  curved condui t ,  t h e r e  a r e  two o t h e r  saddle-point f requencies  w '  and w" . . 

where t h e  wave numbers change from complex t o  r e a l ,  o r  from complex t o  imaginary, 

r e spec t ive ly .  Expressions f o r  t h e s e  f requencies  have not  been found. 

3. Analysis of waves propagating through an elbow o f  a r b i t r a r y  bend angle e 

I n  t h i s  s e c t i o n ,  t h e  problem of wave propagat ion through an elbow jo ined  wi th  . .  

continuous tangent  t o  two s t r a i g h t  tubes  on e i t h e r  s i d e  i s  s tud ied .  It is assumed t h a t  t h e  

- incoming wave is a  " f lu id"  wave possessing a  s t r o n g  pressure  component and no bending o r  

shear .  The elbow i s  assumed t o  have t h e  same c ros s - sec t iona l  dimensions and m a t e r i a l  

p r o p e r t i e s  t h a t  t h e  s t r a i g h t  tubes have. . 

Let - u1 be t h e  s o l u t i o n  f o r  a l l  ( e i g h t )  waves i n  t h e  f i r s t  s t r a i g h t  tube ;  l e t . =  b e  

t h e  s o l u t i o n  f o r  a l l  ( e igh t )  waves i n  t h e  curved tube;  and l e t  ug denote' t h e  s o l u t i o n  for - 
t h e  fou r  waves, s a t i s f y i n g  t h e  r a d i a r i o n  condi t ions  a t  i n f i n i t y ,  i n  t h e  second s t r a i g h t  tube.  

Then t h e  assumed con t inu i ty  condi t ions  r e q u i r e  t h a t  

1 1  = 2 a t s = O  and 9 = 23, a t  s = Re (17a,b) 

f o r  a l l  t ,  where 0 is  t h e  t o t a l  bend angle.  D e t a i l s  can be found i n  ~ e f e r e n c e  7.. O f  a l l ' t h e  

dependent v a r i a b l e s  t h a t  could be  s tud ied ,  only two w i l l  be  d iscussed  i n  t h i s  paper ,  namely, 

t h e  s t r e n g t h  of t he  p re s su re  term i n  t h e  " f lu id"  wave r e f l e c t e d  i n  t h e  f i r s t  s t r a i g h t  t ube ,  . 
. . 

and t h a t  o f , t h e  p re s su re  term i n  t h e  " f lu id"  wave t r ansmi t t ed  i n t o . t h e  second s t r a i g h t  tube .  

4. Numerical r e s u l t s  f o r  e l  bows I 
I 

Computer r e s u l t s  f o r  t ransmission and r e f l e c t i o n  c o e f f i c i e n t s  have been genera ted  I 

f o r ,  comparison with experiments i n  progress .  I n  t h e  experiments,  water-'£ i l l e d .  aluminum 
I 

i 
e l e c t r i c a l  conduit  of 314-in.ch t r a d e  dimension is  employed, and ,  t h e  fol lowing parameters  

a r e  used: a  = 10.6 mm, A = 190 mm2, e  = 2.54 mm, v = 0.33, E = 72.4 GPa, K = 2.09 GPa, 
t 

, .  Pt  = 2 . 6 9 ~ 1 0 ~  kg/m3, p f  = 1 . 0 0 ~ 1 0 ~  kg/m3, K~ = .rr2/12. Calcu la t ions  f o r  va r ious  bend, ang le s ,  

1 inc luding  90°, have been made. f o r  two bend r a d i i ,  namely R = 120 rnm (R/a = 11.3) and 





. F ig .  5. Transmiss ion c o e f f i c i e n t  f o r  a  F i g .  '6. Transmiss ion c o e f f i c i e n t  f o r  .a ' ' 

g e n t l e  e l  bow ( R  = 120 mm) as a  f u n c t i o n  o f  sharp elbow ( R  = 12  mm) as a f u n c t i o n  o f  i 
t h e  t o t a l  bend ang le  8, f o r  t h e  parameters t h e  t o t a l  bend ang le  8, f o r  the parameters  1 
g i ven  i n  t h e  t e x t .  g i ven  i n  t h e  t e x t .  1 

i 
R = 12.0 mm (X/a = 1.13). The results for a 90'-elbow are shown in Figs. 3 and 4 for the 

gentle and sharp bends, respectively. It will be seen that, for low frequencies, the 

strength of the transmitted wave is virtually independent of The frequency and is in,phase 

I ' with the incoming wave; its magnitude is about 85% of that of the input wave. In the same 

frequency range, the reflected wave is also approximate,ly constant, but is 180' out-of-phase 

with the input wave, meaning that it is negative if the input wave is regarded as positive; 

its magnitude-is about 15% of that of the input wave. For higher frequencies, the results 

indicate that more of the pulse should propagate through the elbow. It is remarkable that 

the transmission and reflection coefficients do not appear to be strongly influenced by the 

magnitude of the radius of curvature of the elbow.. 

.The effect of.altering the elbow angle 8 has been investigated and the results are 

shown in Figs. 5 and 6 for R/a =.11.3 and 1.13, respectively. For a gentle elbow (Fig. 5), 

it will be seen that, for low frequencies, the transmission coefficient drops quickly with.8 

for small values of 0 ,  but generally levels out'for values of 8 exceeding 90'. For higher 

frequencies, virtually all the wave is transmitted regardless of the value of 8. The trends' 

£.or. a. sharp elbow (Pig. 6) are similar, except that at higher frequencies not all the wave is . ' 

. . 
. . . . 

transmitt-ed. The results in Ffgs. 5 and 6' suggest that the transmission and reflection 

characteristics for a U-bend are about the same as tlhasP far a QnO -IF.--- 
~ ~ 



k . .  - It has ..been show11 t h e o r e t i c a l l y  t h a t  when a  w a t e r h ~ m e r - t y p e '  crave.or pu l se  e n t e r s  + 
-. 1 .  : t y p i c a l  elbow jo in ing  two s t r a i g h t  cqndui t s ,  a non-dispersed pulse  having an  ampl i tude  about 

' , 85% o i  t h a t  of the  incoming pulse  should be d e t e c t e d ,  i n  t h e  downst reamtube ,  a s  long  a s  t h e  

i 
I dominant f requencies  a s soc i a t ed  wi th  the  pulse  a r e  s u f f i c i e n t l y  low. A nega t ive  r k f  l e c t e d  

pulse  having a  s t r e n g t h  of approximately 15% of t he  incoming pu l se  i s  a l s o ' g e n e r a t e d  a t  t h e  
. . 

elbow. Generally speaking, .  t h e  t ransmission c o e f f i c i e n t  i nc reases  w i th  i n c r e a s i n g  frequency 

and with decreasing bend,angle .  On t h e  b a s i s  of o t h e r  r e s u l t s  (no t  shown), i t  can be  s t a t e d  

t h a t  t ransmission c o e f f i c i e n t s  decrease s i g n i f i c a n t l y  wi th  decreas ing  wall-thickness-to-tube- 

r ad ius  r a t i o .  

Although t h e  model w i l l  not  be a p p l i c a b l e  i f  c a v i t a t i o n  occurs ,  ' t h e  model can s t i l l :  

be  used co p r e d i c t  t h e  i n i t i a t i o n  of c a v i t a t i o n .  Consider,  f o r  example, t h e  exper imenta l  
. .  . . . 

arrangement descr ibed.  in .  previous work,3 where a  s h o r t  p ressure  pulse  i s  propagated toward an 

elbow. According t o  the  theory presented he re ,  i f  t he  s t a t i c  p re s su re  head i n  t h e  f l u i d  does 

nor equal  o r  exceed the  magnitude of t h e  negat ive  r e f l e c t e d  pulse ,  then  c a v i t a t i o n  can  occur.. 

Prel iminary experimental  r e s u l t s  tend t o  v e r i f y  t hese  f ind ings .  I n  p a r t i c u l a r ,  nega t ive ,  

long-wavelength p re s su re  r e f l e c t i o n s  have been observed a t  t h e  i n l e t  t o  a g e n t l e  90'-elbow, 

but  only wi th  a  s u f f i c i e n t l y  h igh  s t a t i c  p re s su re  head present .  
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