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Summary 

The problem of the reflection and transmission of Rayleigh waves in an 
elastic wedge discussed in an earlier paper for the case of incidence from 
infinity is now studied in more detail and for the more general case of an 
incidence from a finite distance from the corner. A detailed application is 
made of the effect of the critical regions of Rayleigh waves in Lamb's 
half-space problem when a series of interactions with the wedge faces are 
considered. These interactions are two-fold, viz. those due to the inwardly 
progressing waves and those due to the outwardly receding waves. Both 
lead to contributions given by certain integral equations. While in the 
latter case the integral equations behave like the Fredholm equations, in 
the case of the former the behaviour is like Volterra equations of second 
kind at lower range of wedge angles and like the Fredholm equations at 
higher range and there is a mixed character in the intermediate values. 
These approximations lead to dividing the range of the wedge angle, which 
we take to be from 0" to 180", into five parts at points depending on the 
critical angles of Lamb's problem. The solutions in these parts are piece- 
wise continuous. A brief outline of the corner wave effects is also included. 
The numerical results show that the present theory can explain well some 
of the important experimental features of the problem that were only 
partially achieved by previous theories. 

1. Introduction 

In a previous part of this work Viswanathan, Kuo & Lapwood (1971) showed 
that the problem of the reflection and transmission of Rayleigh waves in an elastic 
wedge is significantly influenced by the actual regions in which these waves can exist 
in the more fundamental problem of a half-space with a source usually known as the 
Lamb's problem. 

In the above work which we refer to as Part I henceforth, we treated the case 
when the incident field was from infinity. Moreover, the effects of the critical regions 
for the existence of Rayleigh waves defined in the context of the Lamb's problem were 
only partially incorporated while dealing with the interactions with the wedge 
boundaries. In particular such effects were not applied to the waves that travel 
towards the corner. 

The purpose of the present work is to study the more general case when the source 
of the initial Rayleigh field lies at a finite distance 1 from the corner. Further, we 
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460 I(. Viswaoathan and Arabimda Roy 

attempt to incorporate the effects of the critical regions referred to above also to all 
the incoming and outgoing waves. It is shown that this leads to dividing the range 
of the wedge angle 0 into five parts between 0" and 180" at points depending on the 
critical angles defined later. The approximations for the reflection and transmission 
coefficients in these regions will be distinct but piece-wise continuous. These arise 
from certain integral equations behaving like the Volterra or Fredholm equations as 
determined by the wedge angle chosen. 

Another aspect which we briefly discuss is the effect of the corner. A workable 
method is indicated for modifying certain routine steps for minimizing the cost of 
ignoring the corner altogether in the conventional approach. 

2. The problem 

Fig. 1 shows an elastic wedge of angle 0 < 180" bounded by the stress-free planes 
S ,  and S2. A Rayleigh wave issues from a source at the point Po on S ,  towards the 
corner 0. It is required to find the reflected and transmitted Rayleigh waves produced 
on S,  and S2 respectively. 

The situation that we consider here is one of two-dimensional plane strain. 
Further, we deal with time-harmonic solutions and define two elastic potentials 
4 and $ in the usual form 

84 a* , #J=- + -- a4 a* #,=--- ax, ax, ax, ax, 

where (u,, u3) are the displacements in the (x i ,  x3) system so that 4 and are solutions 
of the Helmholtz equations 

where u, f l  are the velocities of the compressional and shear waves. The incident field 
is now assumed in the form 

FIG. 1. The geometry of the problem (OP.=T). 
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Reflection and transmission of Rayleigh waves in a wedge-I1 46 1 

where y denotes the velocity of Rayleigh waves, and 

Since the incident field arises from a source at a jlnite distance from the corner, we 
must invoke the critical regions associated with these pair of potentials. Fig. 2 shows 
these regions in terms of the critical angles 8, = COS-’ (y/ct) and 8, = COS-’ ( y /B )  from 
which we notice that the functions 4o and $o in (3) must be multiplied by the factors 

H (xl+Z-x3 cote,) for +o; 

H (x ,+ l -xx ,  cote,) for +o;  
(4) 

where H ( x )  denotes the step function being equal to zero or unity according as 
x 5 0. For the limiting case of incidence from infinity, I + co, these factors become 
unity and hence no longer require special mention. 

Now we turn to the main problem and let AR(Z) and A,(Z) denote the reflection and 
transmission coefficients of the Rayleigh waves generated at large distances from the 
corner on S1 and S2. For convenience we write them in the form 

where the leading terms denote the contributions from the interaction of the incoming 
waves with the wedge, the middle terms those from outgoing waves on reintersecting 
the wedge, and the last terms those from the corner effects. These are next discussed. 

3. The integral equations for A,“) ( 1 )  and A,“) ( l )  

Let us suppose that a first-order approximation be worked out similar to that of 
Ma1 & Knopoff (1966) in which we define suitable virtual sources on S2 which give a 
transmitted Rayleigh wave on S2 of amount T(0,  I). Also let each virtual source’s 
contribution to the excitation of an additional incoming Rayleigh wave, now on S2, 
be cr(tl’, 1) where (tl’, 0) denotes the virtual source on S2. Further, let the first-order 
approximation to the reflected Rayleigh wave on S1 be R1(8, Z). This is again given by 
Ma1 & Knopoff, and will be discussed shortly. 

Since the Rayleigh wave on S2 excited towards the corner by any virtual source 
will further be reflected and transmitted just as the field from Po, it is readily possible 

Po - 

FIG. 2. The critical regions for the Rayleigh potentials in the wave travelling to the 
right. Vertical arrows show the depths of penetration. 
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462 K. Viswanathan and Arabinda Roy 

to generalize the above first-order approximation to yield the higher-order formulae 
for Ad’) ( l )  and A;l)(I): 

m 

0 

These integral equations are easily decoupled by mutual substitution. 

tionally. 

point ( t l f ,  0) on the boundary S,: 

Now we outline how exactly the first-order approximations are obtained conven- 

First we note that the incident field (3) gives rise to the following stresses at any 

1. (7) 
~ ( 5 ~  - 5 - D (t@--tl’)} 6 1 3 ‘  ( t l f ,  0) = -pw2{c1 e-iwaos‘l‘ e- i w b d l ‘  H 

(tl’, 0) = pw2 {C, e-iwantl’H(to-tl’)- D3 e-i”’botl’H(~fi-~l’)} 

Here we have used the appropriate components in the (tl, t3) system of co-ordinates 
and also omitted the factor e-im(t-’’y) to save it from being repeatedly reproduced. 
Other symbols have been defined in the Appendix. In deriving (7) we have used the 
actual portions of S ,  which will lie within the regions of the incident field shown in 
Fig. 2 and thus we have 

to = kl l , c g  = k, 1 ;  (0 < 0 < 180”-0,) 

t6 = 00, tfi = k, I ; (1800-o, G e G i8o”-e,) 

to = t@ = a ; (1800-0, < e G 1800) 

where 

k, = sin8, cosec (O+O,) 

k, = sin 0, cosec (0 + Op). 
(9) 

Since S ,  is a stress-frce boundary, we can imagine every point of it to act as a virtual 
source with a stress across S2 being equal to the negative of (7). Then as a first 
approximation, we ignore the presence of S1, and solve a half-space problem for 
&‘, : 5 ,  > 0, - 00 < tl c 00 in which on t3 = 0 for t1 > 0 these virtual sources are 
present while for the remaining part < 0 of the boundary we assume a stress-free 
condition to hold good. This last piece of assumption is the most common to come 
across in literature and we shall return to its discussion later in Section 5. 

Now the solution to the first-order problem for a?, defined above is straight- 
forward being also the formula (1  1) of Ma1 & Knopoff (1966), when we perform the 
integration over the virtual sources. Using their equation (13) the corresponding parts 
of the Rayleigh waves that are generated in the two directions tl f a are readily 
obtained. Thus it is not difficult to show that the functions T(8,l) and a(tl’, I) are 
given by 

W 

T ( &  0 = af(t l ’ ,  O&l’, (10) 
0 
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Reflection and transmission of Rayleigh waves in a wedge-I1 463 

where the various symbols have been defined in the Appendix. a((1’, 1) and a’ ( ( , I ,  1) 
denote the amounts of incoming and outgoing Rayleigh wave on S, due to one virtual 
source. 

The procedure for obtaining R1(8, 1) is slightly different. Here we start with the 
elastodynamic representation theorem 

uk(x) = J {Gki (X’, X) rij(rl)-ui (X’) Ti/ (Gk)} TIjdS (XI) (13) 

where S is a closed contour enclosing the ficld point x, nj is the outward unit normal 
to S at x’, and Gk (x’x’) is the Green’s function, which, for a fixed k, gives the 
displacement vector due to a point source at x’ where a force is prescribed in the 
k-th direction. To calculate R 1  (0,1), the contour S is taken as the sum of S,, S, 
and two perpendiculars S3 and S ,  to these at large distances from the corner. Also 
the Green’s function is chosen to satisfy stress-free conditions on S,. Then the 
integral over S, will vanish identically. Similar is the case of the integral over S4 the 
perpendicular to S,. The integral over S3,  the perpendicular to S,, when subtracted 
from the left-hand side will balance the incident field part there. Thus the remainder, 
viz. the reflected Rayleigh wave on S1 will be given by the integral over S ,  of which 
the first term on the right of (13) is zero due to our boundary conditions and the 
remaining term involves only the unknown displacement of S,. Therefore, in deriving 
R @ , I )  we deal with certain displacement-sources within the half-space 

S 

3, :x1> 0, -a < x ,  < 00 

being distributed over the position of S,. For the first approximation, the displace- 
ment of S ,  is taken to be the sum of those in the primary field (3) and its reflected 
(body) waves calculated on the plane-wave reflection theory. These steps are sum- 
marised by Ma1 & Knopoff (1966) which give the following expression for R,  (8, I) 
in our case: 

m 

where 

1 a* (ti’, I )  = wH(t6-(,’){El e-Z’““Ott’+E, e-iw(uo+bo)ti’ 

1, (15) + w ~ ( ( $ - ( l ~ ) { ~ 3  ,-iw(ao+bo) h ’ + ~  e - 2 i o b ~  { I ’  
4 

and other symbols have been defined in the Appendix. 

and AJ1)(l). Their solution will be discussed in Section 6. 
This completes the necessary definitions for the integral equations (6) for AR(l)(I) 

4. The integral equations for AJ’) ( I )  and A,’,) (1) 

Next consider the terms AdZ)( l )  and AJ’’(1) which arise from a further interaction 
between the above outgoing reflected and transmitted waves and the faces of the 
wedge. This is possible at least for adequately small values of 8. Note that this effect 
will disappear for 8 > 0,. 

Although the solution of (6) contains a sequence of outgoing contributions on the 
two faces, we pick out only the leading terms here for constructing AdZ)(I) and 
AJ’’(1). The contributions from the remaining terms can be obtained in the same 
manner but will be relatively small and hence not evaluated here. 
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464 K. Viswanathan and Arabinda Roy 

We recall that the function T(8,  I) defined in (10) is an integral of contributions 
from several outgoing waves from various virtual sources on S2. And for any virtual 
source, the outgoing wave is restricted by the corresponding critical lines for 4 and I). 
By construction it is quickly seen what parts of S1 come under their interaction. 
This interaction is again a first-order problem like the previous analysis and we can 
evaluate the Rayleigh wave part of this half-space problem for S‘,. Of these, the 
waves going along S ,  towards x1 + - 00 give the first approximation to Ad2)(r).  
This is seen to be 

m m 

Ad2’(0 = la’ ( 5 1 ’ 9  0 d51’ J 0’’ ( 5 1 ’ ’ Y  5,’) &l” (16) 
0 0 

where a’’ (<,’,l) is the counterpart of ~ ( ( ~ ’ , r )  defined in (12) and it represents the 
amount of outgoing Rayleigh wave produced on one boundary by a virtual source on 
it caused by a unit outgoing Rayleigh wave from an initial source on the other 
boundary. In (16) we have considered the synthesis over 5,’ to get the contribution 
corresponding to T(8,  I). For favour of future use we give below the expression for 
a” (ti’, I) : 

{Aexp ( i o B 0 r , ’ ) H ( 5 , ’ - 5 ~ ’ ) + B  exp (iw605,’)H(51’-5s’)} (17) 

where X = conjg (x), 

5; = t*’ = 00 (8, < 8) I 
and 

k,‘ = sin 8, cosec (8,-8) 

k2’ = sin 8, cosec (8, -6) . 
In order to get a similar result for AJ2)( l )  that arises from R,(8, 1) we note from (14) 
that the sources contributing to R,(8, I )  are internal sources of displacements in the 
half-space problem for S‘, : xg 2 0, - 00 < x, < co. Fig. 3 shows the critical lines 

I 

I 
I 

1 

x3 

FIG. 3. Critical regions for the Rayleigh waves due to a buried source in a half- 
space. Only the far sides of the solid lines represent the regions of existence of the 
Rayleigh waves. These lines are inclined at the critical angles e., and 0, to the 

horizontal boundary. 
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Reflection and transmission of Rayleigh waves in a wedge-I1 465 

associated with an internal source. The interaction of an outgoing wave on S, ,  for 
this geometry, with the second face is again governed by the appropriately modified 
parts of S ,  which can intersect these waves. This involves a modified form for 
a” (tl’’, 5,‘)  and the corresponding contribution from R ,  (0, I) to AT(’) (I) is given by 

00 

AT’”(I> = J a*(t,’, Odtl’ j. fJ1lf (tl”, 51’) d51” (20) 
0 0 

where we have defined a,” ( t l f ,  1) for internal sources by 

with 

and 

(23) I kl” = sin (e+e,) cosec (e,-O) 

kz” = sin (0 + 0,) cosec (0, - 0) . 
(16) and (20) represent two independent first-order contributions, one for Ad’)(Z) 
and the other for AT(’’(1). From each of these there will arise by further sequence of 
interactions with the wedge-faces an appropriate higher-order contribution for both 
the functions. From the definition of 0‘’ ( t l f ,  I) as the counterpart of a (tl’, I), the 
combined generalization becomes 

where fR (I) and fT(I) are determined from the pair of integral equations 
co 

fR(I) = 1 + 1 0’’ ( t i ’ s  l)fT (51‘) dtl’  
0 

OD 

.fTT(l) = a” ( t l ‘~ (tl’)dtl’ 
0 

These equations will also be discussed in Section 6. 

5. Corner-waves and contributions to Ad3)  (1 )  and A J 3 )  ( I )  

contribute to the reflected and transmitted Rayleigh waves. 
It remains to say on the role of the corner waves and to assess how far these 
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466 K. Viswanathan and Arabinda Roy 

Obviously we have posed a sequence of auxiliary problems at each stage of our 
approximation for the two half-spaces %, and S2. In each case S1 or Sz forms one 
half of the half-space boundary on which we take the stress to be the negative of a 
contribution from the waves of an earlier approximation but over the remaining half 
of the boundary we arbitrarily impose a stress-free condition. This conventional 
approach is capable of modification and one can think of a more suitable choice of 
conditions on these remaining parts of the boundaries beyond S ,  or Sz as the case 
may be. 

Consider for instance the problem for iV2 which gave rise to the first-order 
transmission coefficient T(O, I). There, we assumed that Sz is under stresses being the 
negative of (7) from the incident field. But over 5, = 0, t, < 0 we supposed a stress- 
free condition. Thus we had introduced a stress-jump in the boundary-values of both 
the normal and shear stresses at the corner point. Looking at (7) these are seen to be 

, for normal stress. (26) I [a,,]:? = ,uo2 ( C , - D , )  = p o z  (q:-qp2) sin28, for shear stress; 

[a33]8? = (- c3 -k 03) 
= (q,z - q s 2 )  (1 - cos 28) 

The factors depending on the wedge angle 8 in these jumps are shown in Fig. 4. We 
note that the strongest discontinuity occurs in the normal stress at O = 90" and 
moreover the combined jump values indicate that the whole range from 0 = 45" to 
135" may be governed by rather strong corner waves. It is well known that the corner 
waves will consist of expanding circular fronts which will be made up of pieces of 
arcs with oppositely oriented stress jumps* that will render the solution ultimately 
smooth for points removed into the medium from the corner. (The conical fronts 
connecting the circular fronts are not usually discontinuous anywhere, that is, along 
their length.) 

2 

I 

0 

- I  
Fro 4. The stress-jump factors in the equation (26). 

At their joints. 
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Reflection and transmission of Rayleigh waves in a wedge41 467 

The best method of tackling such situations in these auxiliary problems perhaps 
lies in making appropriate modifications in the choice of the boundary conditions 
beyond the S ,  or S2 parts, which also incidentally possess certain corner effects but 
considerably minimized. One such choice suggests that at least for wedges of angle 
8 w go", the region beyond S ,  or S ,  be considered as loaded by similar stresses as on 
the parts S, or S, concerned. In fact if S, or S ,  were uniformly loaded, this assumption 
will remove the corner waves altogether. However, the stresses in (7) are non-uniform 
and hence we do expect only a reasonable reduction in intensity. Then by symmetry, 
the additional contribution due to this modification over the already obtained 
approximation T(8,I) for AT(')(/) will be the integral 

where c~(t,', I) was already defined in (12) as the inward going wave when stress-free 
condition was imposed beyond S,. 

Thus a first approximation to ~ l - , . ( ~ ) ( l )  may be taken as 

4(3) (0  = Q(8, 0, (28) 

apparently good for 0 E (45", 135"). There is no such first-order approximation for 
AJ')(l) and hence we take A d 3 ) ( l )  = 0. 

Higher approximations are not attempted here. Although these can be formulated 
on the above lines, we do not emphasize that this is an adequate procedure for the 
corner effects. In fact the principal interest of the present work lies in the results of 
the preceding two sections. 

6. Solution of the integral equations 

Now we seek to solve the integral equations of Sections 3 and 4 in standard form. 
Before this, we observe that the kernels o(<,',l) and d'(t,',l) of the integral 

equations [defined in (12) and (17)] are such that each is written as a sum of two 
parts, viz. the compressional and shear parts. Each part is associated with a step 
function whose argument fixes an upper or lower limit to the variable of integration 
tl'. These limits are given by to, t#, to' and t+' which from (8) and (18) fall into five 
groups depending on 0 as follows: 

As each set of values is distinct, the corresponding solutions will be distinct in the 
five sub-intervals for 8. They will be piece-wise continuous at the points 8,, 8,, 
1 80" - 8, and 180" - 8,. 

Now we discuss the solution to these equations. A closed form solution to (6) 
and (24) becomes possible only when 8 > 180.-8,. Obviously, then, 

A p ( 1 )  = AT'Z)(l) = 0, 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/32/4/459/564424 by guest on 21 August 2022



468 K. Viswanathan and Arabida Roy 

while Ad"(I) and AJ1)( l )  become independent of I and are given by the algebraic 
equations 

where R ,  (O), T(8)  and Q (8) are the corresponding expressions for R ,  (0, I ) ,  T(8,l) 
and Q (8, I )  respectively. Solving the above equations we have 

(e > 1800-8,) (31) I = (R1+QT)/(l-QZ) 

A:') = ( T  + QRJ(1- Q Z )  

The solution given here is of interest because it is not very different from the approxi- 
mations used by Ma1 & Knopoff (1966), viz. 

A, = aR,+bT, 

AT = aT+bR,, 

with 

a = ( 1  + QZ)/(l - Q Z ) ,  

b = 2Q/(1- QZ) . 
The difference is due to the fact that they assume that the outgoing waves can interact 
with the wedge faces right up to 0 = 180". Although this is easily seen to be incorrect, 
the error is not too great to call it a good approximation for large enough angles of 

0 30' 60" 90" 120" 160' I SO' 
8 4  

FIG. 5. Amplitude of Q(0). 
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the wedge. However, there is another aspect of their solution which may be more 
serious. This comes from the fact that they employ their solution also for all values 
of 8 from 0" to 180". Now the solution (31), for instance, of the coupled equations 
(30) has been obtained by the usual elimination process. However the equations (30) 
represent also a physical process, viz. a sequence of contributions from a number of 
waves. Hence in a real situation we would normally solve (30) by the method of 
successive substitution, and in fact, this will be done shortly for the region 8 < 180"-8, 
not covered by that equation. The necessary condition that this second mode of 
solving (30) will truly converge to the sums in (31) is that lQ(8)l < 1. The function 
Q(8) which is known to be purely imaginary, has been computed for a Poisson material 
(a = J3 /3) and we have shown its magnitude in Fig. 5. We note that IQ(8)l > 1 for 
6 < 45" approximately. Thus, the solution of Ma1 & Knopoff will suffer from the 
above dual interpretation for wedge angles less than 45". 

Next we turn to the solution of (6) for 8 < 180°-8,, and similarly of (24) and (25) 
for 8 < 8, in which range they exist. As remarked earlier, these equations will be 
solved only by the usual method of successive substitutions; (see Mikhlin 1964). The 
convergence of these solutions offers an interesting examination and we therefore deal 
with some of these aspects here. This is facilitated by considering their simplified 
models. First consider the equations in (6). Although these are easily decoupled for 
&(')(l) and ,4+')(1), it is simpler to define new variables F,(Z) = AJ')(Z)*A;')(l) 
which would satisfy integral equations like 

where G,(1) represents R1(8,1) k T(8,I). Making use of (12) these take the form, 
whenever 8 < 180" - 8, : 

and for the remaining range, viz. 180"-8, < 8 < 180"-8, the discussion below will 
apply identically. The above equations are obviously generalized forms of the Volterra- 
type integral equations since the variable 1 occurs in the upper limits of the integrals 
but with the added complexity that the parameters kl and k, also occur in these 
limits. I f k ,  and k, were equal to unity, we have precisely the Volterra equation of the 
second type. But kl and k, are functions of 8 and can take a continuous range of 
values including unity. However, it is possible to examine such general cases by 
means of the typical equation 

4(x) = g(x )+I*  j i k ( x ,  9 ) 4 ( 9 ) d 9  
0 

(34) 

where k(x,  9) = 0 for 9 > px, and p can take real positive values different from 
unity. For the Volterra case, i.e. for p = 1, the solution by the method of successive 
substitution is known to converge like an exponential series for all values of I* and 
with an infinite radius of convergence for x. This is achieved by the possibility of 

6 
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writing the iterated kernels in the form 

k, (x, 9) = 1 k ,  (x,  9') k,- , (9', 9) H ( x -  9) d 9 '  

K. Viswanathan and Arabinda Roy 

X 

Y 
[k, (x,  9) = k (x, 9 ) l ,  m > 1 (35) 

from which it is then shown that if Ik(x, 9)I < M for all x and 9, then 

This criterion ensures the above properties of convergence. However, for p # 1 (35) 
gives place to 

k,  (x,  9) = H ( x -  Y/p"') k ,  (x, 9') k,- 1 (9', 9) d 9 '  (37) r 
Y I P  - 

(m > 11, 
so that if Ik(x, 9)I < M, it could be shown that 

p- 1 p f m ( m -  1) 

< (38) (m - l)! 
This is a sufficient condition to show that equation (34) will continue to behave like 
the Volterra equation (of the second type) when p < 1. But when p > 1,  this approach 
would not be meaningful since it can be shown that if p = (1 + v ) ~  with q > 0 and 
A* > l/(Mq), then 

M'" (xq)"'-' em M" p- 1 p f N m -  1) 
> 

(m - l)! J(24 

(m % 11, 

so that the intended comparison series is divergent and no longer useful. For our 
problem the parameter p which stands for k ,  or k2 will exceed unity for values of 8 
exceeding 180"-28, and 180°-28, respectively. But we already know that for the 
closed-form solution (31) pertaining to 8 =- 180"-8, the equations (30) do admit a 
solution by successive substitution and that this solution converges like a geometric 
series characteristic of a Fredholm-type integral equation. 

Thus we conclude that the integral equations (6) will behave like Volterra equations 
of second type for lower ranges of wedge angles and like the Fredholm equations in 
the higher ranges. At intermediate values of 8 there will be a mixed behaviour since 
there are values of 8 when only one of k ,  or k2 may exceed unity. 

The situation with (24) and (25) is much simpler because in this case we come 
across equations of the type 

m 

4 0 )  =&)+A* 1 k ( x , n d W ) d y ,  (39) 
qx 
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Reflection and transmission of Rayleigh waves in a wedge-11 47 1 

where k(x ,  9') = 0 for 9 < qx and the parameter q which stands for k,' and k2' 
defined in (19) always remains greater than unity. Hence the integral equations will 
behave like Fredholm equations and their solutions converge like geometric series. 

All the solutions are summarized in the next section. 

7. Summary of the approximations 

The final results for the reflection and transmission coefficients (5) of the main 
problem are summarized below. The incident field being given by (3) along with (4), 
& ( I )  and A,(/)  are obtained as 

where 

and 

We recall that the corner wave effects represented by the first-order approximations 
of AJ3)(1) and A+3)(f)  are recommended only cautiously for the range 8 E (45", 135"). 
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e+ 
FIG. 6. (a) Amplitude, and (b) Phase of the Reflection coefficient for incidence from 
iniinity (l-+w). , present theory; - - - - - - - - , experimental; 
- . - . -. - . -, from Viswanathan et al. (1971); . . . . . . . . . . , from Ma1 

& Knopoff (1966). 
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FIQ. 8. Computation of the first-order reflection coefficient R1 (0, l )  for finite 1. 
ho is the wavelength of the incident field. 
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8. Numerical results and concluding remarks 
We have made our calculations for a Poisson material for which a = J3 /3 and the 

critical angles are given by 0, = 57.93" and 0, = 23.15". The parameter kl exceeds 
unity when 0 > 180"-20, and similarly k, exceeds unity when 0 > 18O"-2Ofl. 

First we consider the case 1+ 00, i.e. when the incident field is from infinity. The 
amplitude and phase of the reflection coefficient A, (l)lI+m are shown in Fig. 6. The 
experimental results of Pilant, Knopoff & Schwab (1964) as well as previous theoretical 
results are included for comparison. If we recall that the present theory is based on 
unifying the concept of the critical regions and multiple interactions recommended in 
the previous theories referred to, the results of the present theory are remarkably good 
in so far as the hitherto less-matched experimental features are concerned. Quantita- 
tive improvements are possible only by more painstaking computations. Some ideas 
are set forth later. 

The corresponding transmission coefficient AT (l)lI+m of the present theory is also 
numerically estimated. We note here that in this case there is also a contribution 
from the corner wave correction term AJ3)(l)lI+m and its limitations have already 
been mentioned. We have randomly employed this correction to the range* 
60" < 0 < 120" which lies within the range of possible importance of the corner effect 
discussed earlier in this paper. The final results are shown in Fig. 7 along with other 
theories and the experimental data. Again the qualitative features show some promise 
but not much can be achieved without invoking also a detailed calculation of the 
effect of the corner waves. 

It is worth noting that the convergence of the series for Ad'.  " ( I )  and AT(,* " ( 1 )  in 
(41) is very rapid and we found it sufficient to compute four or five terms in each case 

Next we consider the case when 1 is finite. A parameter of interest in this case is 
the ratio of I to the wavelength 1, = 2n(o/y)-' of the incident field. The first-order 
reflection and transmission coefficients Rl(O,I) and T(0, l )  given by (14) and (10) 
respectively, have been computed for several values of this ratio in the case of a 
Poisson material. The results are shown in Figs 8 and 9 from which we gather that 
a variation of E/Ao is likely to cause appreciable effects only when we consider the 
range 1/1, < 1.  Presumably this will hold good also in the higher-order approxima- 
tions for finite I. Such computations are not made here since at present it is only of 
analytical interest. 

Finally we mention some ways of improvement. The first is readily seen to be the 
inclusion of the contributions to A d Z )  (I) and AJz)(I) from the higher-order terms of 
Ad"(2) and AJ')(I) than only from R,(O,I) and T(0,I). The second factor is the 
accurate treatment of the corner wave effects. As noted already, this effect is rather 
important in the range 45" < 0 < 135" and apparently a first-order correction is 
inadequate especially for 0 R 90". This effect could be treated in many different ways 
either by solving the auxiliary problems more accurately or by modifying the boundary 
values of the stresses in these auxiliary problems and so on. Last we also find the 
possibility of a totally different mode of contribution which has been overlooked in 
most of the previous studies. This is described easily by noting that in the first-order 
approximation studies, we normally assume that a reflected Rayleigh wave of amount 
R 1  (0, I )  on S,, a transmitted Rayleigh wave of amount T(0,l)  on Sz and certain 
incoming Rayleigh waves of amount Q(0,Z) = 1 t ~ ( t ~ ' , l ) d t ~ '  on Sz (where the 

integrand gives the contribution from one virtual source only) are generated. However, 
by symmetry (which may not be so obvious at the first thought), there must also be a 
similar first-order incoming Rayleigh wave excited on S,. This fact becomes obvious 
when we look at equation (13) and the arguments used in deriving R, (0, I), the 
Rayleigh wave excited on Sl outwards. In that case the Green's function Gk (x, x') 

m 

0 

* The ' randomness ' refers to the sub-range selected. 
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FIG. 9. Same as Fig. 8 for the transmission coe5cient T(B,C) for iinite 1. 
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was taken to be appropriate to the half-space x3 2 0 and for obtaining R ,  (8, I> we 
chose the Rayleigh wave term of Gk as the one which represents the wave travelling 
towards x1 + - co from the source at x’. But the Green’s function is symmetric 
about the source and hence it will also contain the corresponding Rayleigh wave 
excited towards x ,  + + co, due to any given virtual source at x’. These incoming 
Rayleigh waves on S1 constitute an independent first-order phenomenon which have 
been mentioned before. It is felt that their contribution to the main problem may be 
important at least for small values of 8. 

Acknowledgments 

The authors are glad to thank Dr E. R. Lapwood for several useful discussions. 
They are also thankful to the Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge for facilities extended and to the Commonwealth 
Scholarships Commission (U.K.) for financial support. 

Department of Applied Mathematics and Theoretical Physics 
University of Cambridge 

References 

Mal, A. K. & Knopoff, L., 1966. Transmission of Rayleigh waves at a corner. 

Mikhlin, S. G., 1964. Integral equations, Pergamon Press Ltd, Oxford. 
Pilant, W., Knopoff, L. & Schwab, F., 1964. Transmission and reflection of surface 

waves at a corner, 3, Rayleigh waves (experimental), J. geophys. Res., 69,291-297. 
Viswanathan, K., Kuo, J. T., & Lapwood, E. R., 1971. Reflection and transmission 

of Rayleigh waves in a wedge-I, Geophys. J. R. astr. SOC., 24, 401-414. 

Bull. seism. SOC. Am., 56, 455-466. 

Appendix 

Here we define the various symbols that were employed in the text of the paper. 
(A, p) denote LamC’s constants; 

C, = (q.2 + l/yz) sin 28+ (2iqJy) cos 28 

D,  = (qs2 + l/y2) sin 28+ (2iqJy) cos 28 
C ,  = (q.2 + l/yz) cos 28 - (q.2 - qp2) - (2iqJy) sin 28 

D, = (qs2 + I/yZ) cos 28 - (2iqJy) sin 28 

a, = (I/y) cos 8 - iqa sin 8 
b, = (I/y)cos8-iqa sin8 

A = i [ m p / Y  c1- (qp2 + lh’) C,l 
B = - i  [2iqp/y D ,  - (qpz + l/y’) D,] 

c = - i  [2iqp/y C 1  + (qa2 + l/y2) C,]  

D = i Piqph’ Di + h p ’ +  I/?’) 0 3 1  

F(x)  = ( 2 2 -  1//12)2-4~2 (1/m2-x2)* (1//12-~’)* 

Re(l/m’-x’)* 2 0, Re(l//12-x2)* 2 0 

F‘ (x )  =d/dx F(x) 
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