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The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by

means of numerical simulations based on the invariant embedding equations. In particular, we analyze the

influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection

and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects

stemming from the combination of mode dispersion and rough-surface scattering: For a given waveguide

length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects

manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering en-

hancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in

the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface

scattering in quasi-one-dimensional structures ~waveguides! gives rise to the coexistence of the ballistic,

diffusive, and localized regimes within the same sample. @S0163-1829~99!09103-1#

I. INTRODUCTION

The statistical properties of disordered systems is a rich
and long-standing problem that attracts many efforts both
theoretical and experimental. In quantum solid-state physics
much attention is paid to statistics of eigenfunctions and ei-
genvalues of closed disordered systems. Disorder in solid-
state problems is usually represented by impurities that are
randomly distributed over the whole sample. For this sort of
mesoscopic samples with ‘‘bulk disorder’’ the number of
well-established statistical characteristics is enormous ~see,
for example, Ref. 1, and references therein!. The success of
mesoscopics may be ascribed to the existence of the nonlin-
ear s model put forward by Efetov.2 Although it is a remark-
able tool for studying mesoscopic effects, the s model has,
however, restricted validity. For example, the system size
must be much greater than the mean free path. Generaliza-
tion to chaotic ballistic systems ~i.e., quantum billiards! has
recently become a topic of great interest. Progress in this
direction has become possible due to the recently proposed
field theory for quantum ballistics.3 By exploiting the tool,
the authors of Refs. 4 and 5 managed to treat different corr-
elators in a clean system within an extremely chaotic limit,
when the typical relaxation time is of the order of the flight
time ~diffusive boundary scattering!. They found that naive
substitution of the mean free path for the system size into
correlators obtained for bulk disorder would give wrong re-
sults for the ballistic case, and that, in fact, systems with bulk
and surface disorder are not equivalent.

In this paper we address the problem of a ballistic system
that is disordered in the sense that there are no bulk scatter-
ers, and the only place where scattering occurs is at a rough
boundary. We choose to explore not the statistics of the ei-
genvalues of completely closed systems ~like resonators or
quantum dots!, but the statistical properties of scattering and
reflecting amplitudes in bounded, but open in one direction,
systems ~waveguiding structures!. The key entities for this
problem are the transmission and reflection amplitudes.
More specifically, we consider a N-mode waveguide with the
boundary corrugated within a finite interval (L), and study
the statistical properties of the transmission through, and re-
flection from, the disordered segment of the waveguide. This
problem arises naturally in the characterization of transport
properties related to, for instance, optical waveguides and
fibers, remote sensing, radio wave propagation, sonar, shal-
low water waves, and geophysical probing.6,7 On the other
hand, it describes as well the electronic transport in meso-
scopic systems,8,9 being especially relevant to conductance in
nanowires.10–13

The analogous problem with bulk scatterers was ad-
dressed by many authors ~see, for example, Refs. 6, 8, 14,
and references therein!. For a waveguide with bulk disorder
all transmission coefficients Tmn ~subindexes n and m stand
for the number of the incident and transmitted mode, respec-
tively! behave in a similar way. Due to the strong intermode
mixing all information about the n dependence is washed out
after a few scattering events, which means that for L of the
order of the scattering length l ~and larger! all modes cross
over from the ballistic regime to diffusion, and all channels
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become identical. As a result, there exists only one charac-
teristic length scale for all transmittances, the so-called lo-
calization length, that is believed to be equal to Nl . In the
case L!Nl , each Tmn obeys Rayleigh statistics; as the
length L increases, all channels ~modes! undergo the same
changes, and at L@Nl the crossover to the log-normal dis-
tribution ~typical for the localized regime! takes place.15–21 It
might seem that the only distinction of the problem with a
rough surface from that with bulk disorder is that the scat-
tering process takes place in a reduced effective volume,
which should lead just to a decrease of the mode mixing rate.
Naive considerations would suggest that if we introduced a
new localization length ~which obviously must be much
longer than that for the bulk scattering!, all results well
known for the ‘‘bulk’’ problem should be valid for the ‘‘sur-
face’’ case after proper rescaling. However, the situation is
different and much more complicated.

The goal of the present paper is to study the statistical
properties of waves transmitted through and reflected from a
waveguide with rough boundaries. The length dependences
of the reflection and transmission amplitudes for each real-
ization of the surface profile are numerically obtained by
solving a system of linear differential equations based on the
invariant embedding equations.22 Then we calculate the en-
semble average and fluctuations of the reflection and trans-
mission coefficients, reflectance, transmittance, and conduc-
tance. It is shown in this paper that the interplay between
mode dispersion and surface scattering gives rise to many
unusual ~at least from the point of view of the intuition
gained from studies of the volume scattering! effects; one of
such effects, the coexistence of different transport regimes at
a certain length scale, has been previously reported.23

This paper is organized as follows. In Sec. II the theoret-
ical formulation leading to the invariant embedding equa-
tions for the matrices of the reflection and transmission am-
plitudes is developed. The description of the numerical
implementation of those equations for the particular wave-
guide geometry chosen here is detailed in Sec. III. The re-
sults thus obtained for the average and fluctuations of the
reflection and transmission coefficients are presented and
discussed in Sec. IV, whereas those for the total reflection
and transmission, and conductance, appear in Sec. V. The
relevant conclusions derived from this paper are summarized
in Sec. VI.

II. THEORY

We start from the wave equation

~D1k2!C~R!50, ~1!

with the boundary conditions

C~R5Rs!5H 0 for x,0 and x.L

2j~R!•
]C~R!

]R
for 0<x<L ,

~2a!

~2b!

given on the unperturbed waveguide surface R5Rs , which
is translationally invariant along the x axis @R5(x ,r)# . The
boundary condition ~2! corresponds either to a waveguide

surface with a random admittance j, or to the Dirichlet
boundary condition on a slightly perturbed waveguide sur-
face, j denoting the random perturbation. In the latter case
the boundary condition ~2! is an approximate one, containing
the first two terms in the expansion of the exact ~Dirichlet!
boundary condition about the unperturbed surface.

Outside the region 0<x<L the solutions of the scattering
problem under consideration have the form

Cn~x ,r!5(
m

1

Akm

xm~r!e2ikmxtmn , x,0, ~3a!

Cn~x ,r!5

1

Akn

xn~r!e2iknx
1(

m

1

Akm

xm~r!e ikmxrmn ,

x.L . ~3b!

The indexes m ,n correspond to the outgoing and incoming
modes, respectively, and xn(r) are the eigenfunctions of the
transverse wave equation

S ]2

]r2
1kn

2D xn~r!50, ~4!

with kn5Ak2
2kn

2.

By assuming that j5jn , the boundary condition ~2! can
be also rewritten as

C~Rs!1j~Rs!F~Rs!50, ~5!

where the normal derivative

F~Rs![n~Rs!•F]C~R!

]R
G

R5Rs

[
]C

]n
~6!

is introduced, with n(Rs) being the normal to the unper-
turbed surface R5Rs .

Let us employ Green’s theorem in the form

C~R!5E d3R8
]

]R8
•FC~R8!

]G0~R8,R!

]R8

2

]C~R8!

]R8
G0~R8,R!G , ~7!

where the integral is taken over any region containing the
point R and located inside the waveguide. The most conve-
nient integration region is the unperturbed waveguide surface
cut by two planes normal to the axis of the waveguide ~they
are included too!. The left ~right! cross section must be
placed to the left ~right! of the point R5(x ,r). The integral
in Eq. ~7! can then be expressed as the sum of the integrals
over the cross sections and the unperturbed waveguide sur-
face with constraint 0<x8<L:

C~R!5E dS8•C~Rs8!F ]G0~R8,R!

]R8
G

R85Rs8

1Icross . ~8!

The integral Icross over the cross sections may be easily cal-
culated from Eqs. ~3! and the Green’s function
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G0~R,R8!5 (
m51

N
xm~r!xm~r8!

2ikm

e ikmux2x8u. ~9!

Then Eq. ~8! takes the form

Cn~R!5

1

Akn

xn~r!e2iknx
1E dS8•Cn~Rs8!

3F ]G0~R8,R!

]R8
G

R85Rs8

. ~10!

The ~oriented! surface element dS can be written as dS

5n dS , dS5dx ds . The explicit form of the differential ds

depends on the geometry under consideration (ds5r df for
circular cross sections, dydz for rectangular cross sections,
etc.!. Then we can rewrite Eq. ~10! as

Cn~R!5

1

Akn

xn~r!e2iknx
1E

0

L

dx8 R ds8Cn~x8,rs8!

3

]G0~x8,x;rs8 ,r!

]n8
. ~11!

Two conclusions can be derived from Eq. ~11!. First, the
matrix of the reflection coefficients can be written @after sub-
stituting the explicit expression for G0 from Eq. ~9!# in the
form

rmn5

1

2i
E

0

L

dx R ds
1

Akm

fm~r!e2ikmxCn~x ,rs!, ~12!

or @by the use of Eq. ~5!# as

rmn52

1

2i
E

0

L

dx R ds fm~x ,s !j~x ,s !Fn~x ,s !, ~13!

where

fn~x ,s !5

1

Akn

n~rs!•F]xn~r!

]r
G

r5rs

e2iknx.

The second result we derive from Eq. ~11! @by differentiat-
ing, setting R on the surface, and substituting the boundary
condition ~5!# is a closed equation for Fn(x ,s):

Fn~x ,s !5fn~x ,s !2E
0

L

dx8 R ds8j~x8,s8!

3Fn~x8,s8!G09~x8,x;s8,s !. ~14!

Here G09 is the mixed normal derivative

G09~x8,x;s8,s !5

]2G0

]n]n8
5

1

2i(
1

kn

]xn

]n

]xn

]n8
e iknux2x8u.

Differentiation of Eq. ~14! yields

]Fn~x ,s !

]L
5(

m
fm~x ,s !amn2E

0

L

dx8 R ds8j~x8,s8!

3

]Fn~x8,s8!

]L
G09~x8,x;s8,s !, ~15!

amn52

1

2i
R ds8fm

*~L ,s !j~L ,s !Fn~L ,s !. ~16!

By comparing Eq. ~15! with Eq. ~14! we obtain the relation
between the derivative ]Fn(x ,s)/]L and the functions

$Fm(x ,s)%:

]Fn~x ,s !

]L
5(

m
Fm~x ,s !amn . ~17!

With the aid of the latter equation, we now differentiate the
matrix of reflection coefficients Eq. ~13!:

drmn

dL
52

1

2i
R ds fm~L ,s !j~L ,s !Fn~L ,s !

2

1

2i
E

0

L

dx R ds fm~x ,s !j~x ,s !(
m

Fm~x ,s !amn .

~18!

By substituting the explicit expressions for Fm(x ,s) from
Eqs. ~3b! and ~6!, and collecting all terms, we arrive at

dr̂

dL
5

i

2
~e2i k̂L

1 r̂e i k̂L!v̂~e2i k̂L
1e i k̂Lr̂ !. ~19a!

Here k̂5diag(kn) and

vmn5 R ds fm~s !j~L ,s !fn~s !,

fn~s !5

1

Akn

F]xn~r!

]r
G

r5rs

.

Analogous algebra leads to the equation for the matrix of
transmission coefficients:

d t̂

dL
5

i

2
t̂ e i k̂L

v̂~e2i k̂L
1e i k̂Lr̂ !. ~19b!

From the reflection and transmission amplitudes, we de-
fine the reflection and transmission intensities, respectively,

Rmn5urmnu2, Tmn5utmnu2, ~20!

which yield the intensity coupled into the mth outgoing
channel in reflection and transmission, respectively, for a
given nth incoming channel. The reflectance and transmit-
tance for the nth incident mode are

Rn5(
m

Rnm , Tn5(
m

Tnm . ~21!

Finally, the total transmitted intensity in the case that all
incoming channels are incoherently populated, which is
equivalent to the dimensionless conductance for electrons, is
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g5(
n

Tn . ~22!

III. NUMERICAL CALCULATIONS

For the numerical simulations we choose the simplest ge-
ometry ~see Fig. 1!: two parallel planes z50 and z5d with
one-dimensional ~1D! deviations j5j(x) on one plane (z

50) only, where j is a 1D stochastic process. Thus, the
transverse eigenfunctions acquire the form

xn~z !5A2

d
sin~knz !, kn5

pn

d
, kn5AS v

c
D 2

2kn
2,

~23!

and the impurity matrix becomes

vmn~L !5

2

d

knkm

~knkm!1/2
j~L !. ~24!

The 2N32N system of linear differential equations ~19!
is solved numerically by means of the sixth-order Runge-
Kutta method. For each realization j(x) ~of length Lmax) of
an ensemble of randomly rough surface profiles, the matrices
of reflection and transmission amplitudes are calculated as
functions of the length L. These realizations obey Gaussian
statistics ~with d the rms height! with zero mean and a
Gaussian correlation function

W~ ux2x8u!5d22^j~x !j~x8!&5exp@2a22~x2x8!2# ,
~25!

where a is the transverse correlation length. The correspond-
ing surface-power spectrum is thus given by

g~Q !5p1/2a exp@2~Qa !2/4# . ~26!

The ensemble of surface realizations are numerically gener-
ated as described in Ref. 24. By averaging over Np such
realizations, the mean values ^A& and fluctuations dA

5(^A2&2^A&2)1/2 of the relevant physical quantities are ob-
tained. Hereafter we consider, unless otherwise stated, a
waveguide of thickness d52.25l supporting N54 guided
modes.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS

In Fig. 2 the ^Tmn& are shown ~in a semilogarithmic scale!
for L<Lmax51500l . Averaging was carried out over the
results obtained for Np54000 realizations of the surface pro-
file, whose roughness parameters are a50.2l and d
50.03l . The asymmetry in the behavior of the different
outgoing channels m is evident from this plot. The intensity

of the incoming mode ^Tnn& decreases with length for all n,

this decrease being steeper the larger the transverse momen-
tum kn , namely, the larger n. The transmission into other
nondiagonal channels mÞn also depends strongly on the
mode m. In the beginning of the waveguide, this nondiagonal
transmission slightly increases from zero, being stronger into
higher modes m (^Tm11,n&.^Tmn&, with m11,mÞn). In
this situation only single scattering is important, and we refer
to this regime as quasiballistic ~QB!. In accordance with the
results of the perturbation theory ~PT! the intensity of mode
m is proportional to the cross section for roughness-induced
scattering from mode n into mode m, and to the length L, as
follows:

^Tmn&5

2d2knkm

d2~knkm!1/2
g~ ukn2kmu!L[

L

lmn
QB

. ~27!

For the diagonal transmission, PT predicts

^Tnn&512L
2d2

d2 (
m51

N
knkm

~knkm!1/2
@g~ ukn2kmu!1g~ ukn1kmu!#

[12

L

lnn
QB

. ~28!

In Fig. 3 the corresponding QB lengths lmn
QB from the preced-

ing PT expressions have been plotted along with those ob-
tained by fitting the numerical results shown in Fig. 2 to the
expected linear functions, showing good agreement.

FIG. 1. Illustration of the waveguide geometry.

FIG. 2. Mean-transmission intensities ^Tmn& as functions of

length L in semilogarithmic scale for a waveguide of width d/l

52.25, supporting four modes, with disorder parameters a/l50.2

and d/l50.03: ~a! incident mode n51; ~b! n52; ~c! n53; ~d!

n54. Averaged over Np54000 realizations.
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The origin of such asymmetries lies in the surface-type
disorder that randomizes the wave propagation through the
waveguide. If we look at the impurity matrix ~24!, which
determines the scattering strength in Eqs. ~19!, it is obvious
that there are large quantitative differences in vmn for distinct
values of m and n. As a matter of fact, this matrix can be
rewritten as

vmn5

8d2

L2

j~L !

d
~knkm!1/2M mM n , ~29!

where M n is

M n5

Lkn

2dkn

. ~30!

Through a simple geometrical argument, as long as d!d ,
M m can be considered the number of times that mode m hits
~interacts with! the rough wall on its way along the
waveguide.23 In the case that d/l52.25, it turns out that, for
instance, M 4'8.5M 1 . This factor affects the impurity ma-
trix not only for the outgoing mode through M m , but also for
the incoming mode through M n . This gives a physically
intuitive explanation of the results shown in Fig. 2, and of all
other processes that will be shown below.

For larger L multiple scattering becomes relevant. This
actually means that not only the scattering that brings energy
to mode m from n should be taken into account, but also the
leakage from m into other modes, as well as all interchanges
between i and j for all i , j . As a result, the energy spreads
over all modes: diffusion ~D! in the space of mode numbers
takes place.25 In fact, it is seen in Fig. 2 that all outgoing
channels tend to yield comparable transmission intensities
within the length of the plot, except for n51.

Furthermore, after a long propagation distance through
the waveguide so that mode conversion has sufficiently
populated all outgoing channels, we observe that T1n.T2n

.T3n.T4n . This waveguide length is not reached within
the length scale covered in Fig. 2. Alternatively, we have

increased the surface roughness to d50.1l , so that this re-
sult can be observed: the corresponding transmission coeffi-
cients, presented in Fig. 4, indeed confirm such behavior for
a waveguide length L>300l . Thus, the higher modes appear
to be more strongly scattered. This is also manifested in the
overall behavior of the four outgoing channels depending on
the incident channel. Figure 4 reveals that, beyond the wave-
guide length given above, the transmission curves appear to
be qualitatively similar for all incoming modes n, but shifted
downward as n is increased. The behavior of those transmis-
sion curves, following parallel exponential decays, is a sig-
nature of the onset of localization ~L! due to the coherent
interference of multiple-scattered waves. ~On the other hand,
it is interesting to note that, if we zoom in Fig. 4 for 0,L

,100l , the transmission curves are qualitatively similar to
those of Fig. 2.!

Thus, we have seen in Figs. 2 and 4 that the dependence
of the impurity matrix ~29! on mode dispersion has signifi-
cant quantitative consequences, and also strong qualitative
consequences for the properties of wave propagation through
surface-disordered waveguides. As has been demonstrated in
Ref. 23, it can give rise to an entangling of transport behav-
iors within the same waveguide length. In Fig. 5, the
diagonal-transmission coefficients Tnn from Fig. 4 are shown
in a log plot. The results have been fitted, where possible, to
the well-known behaviors: QB as in Eq. ~28!, inverse power
law expected for D,

^Tnn&'
lnn

D

L
, ~31!

and exponential decay associated with L. It is seen in Fig. 5
that, within the interval 10,L/l,70, QB transport of the
~11! channel coexists with D for the ~33! and ~44! channels;

FIG. 3. QB lengths lmn
QB ~in wavelength units! in transmission vs

outgoing channel m for the waveguide used in Fig. 2: Circles, n

51; squares, n52; diamonds, n53; triangles, n54. Filled ~open!

symbols denote the numerical simulation ~perturbation theory! re-

sults.

FIG. 4. Same as in Fig. 2 but for d/l50.1.

PRB 59 5919REFLECTION AND TRANSMISSION OF WAVES IN . . .



also, D of the ~11! mode coexists with L of the ~44! channel

for L/l'103. This confirms the coexistence of QB transport

D, and L predicted in Ref. 23 for eight-mode waveguides;
nonetheless, in this four-mode waveguide the coexistence of
all three regimes within the same length region is not ob-
served due to the limitation in mode-dispersion differences
associated with the lower number of available modes. @On
the other hand, it should be noted that our results, not shown

here, reveal such coexistence (QB-D or D-L) phenomena

associated with surface-type disorder in the case of narrower

waveguides supporting only three or even two guided

modes.# Interestingly, the impossibility of defining the D re-

gime consistently for all outgoing modes at the same length

scale makes irrelevant any comparison with theories such as

the macroscopic approach provided by the random-matrix

theory ~RMT!,14,26 which predicts ^Tmn&5^g&/N2 for all
m ,n .

In addition, Fig. 5 permits us to observe the crossover
between different regimes for each mode separately. For L

,l44
QB , all four modes propagate almost ballistically. The

transition from ballistic transport to D can be observed for all
modes at the distinct waveguide lengths defined by the cor-

responding lnn
D ~see Fig. 6 below!. Note that even though QB

and D regimes extend over different L regions, in both cases
the regions are well defined by the magnitude of the trans-
mission coefficient: ^Tnn&'1 for QB and ^Tnn&'1021 for
D. This seems to indicate that, from the value of the average
transmission coefficient, the qualitative transport behavior
can be roughly known, in agreement with Ref. 27, although
there exist remarkable differences concerning the length de-
pendence and the entangling of regimes. Finally, coherent
interference leads to L. In Fig. 5 all modes @mode ~11!
barely# reach the L regime within the maximum length of the
waveguide Lmax . It should be remarked that, whereas the
exponential decay rate is similar for all n, the real onset of
localization takes place at slightly different lengths: the
lower n is, the longer the waveguide must be to observe L.

The dependence of lnn
QB , lnn

D , and lnn
L on surface rough-

ness is shown in Fig. 6. In this respect, with the aim of

correctly defining lnn
L , the average of the logarithm of the

transmission has been used:7

^ln Tnn&'2

L

lnn
L

. ~32!

The predicted d22 behavior is seen in Fig. 6~a! for the QB
decay lengths, showing reasonable agreement with the PT
results @cf. Eq. ~28!#. Similar behavior is observed in Fig.

6~b! for lnn
D and lnn

L . It is interesting to note that lnn
D is dif-

ferent for each n, whereas lnn
L coincides for all n. Thus, the

well-known relationship lL
5NlD is meaningless in this con-

text. ~Although lL
5Nl11

D seems to hold instead; in fact, it has

been shown that if lD is defined through the resistance, lL

5NlD does hold.28!
The normalized fluctuations dTmn /^Tmn& are shown in

Fig. 7. It is evident that there are differences among the
fluctuations for every channel, in agreement with the behav-
ior of the mean values shown in Fig. 4; this corroborates the
qualitative argument given above in connection with the
asymmetry in the mode-scattering rates. Note that at the be-
ginning of the waveguide, mode conversion into mÞn leads
to a variance of unity for the corresponding off-diagonal
fluctuations, whereas the diagonal m5n ballistic transport is
revealed through the result that ^dTnn&'0. Furthermore,
these diagonal fluctuations undergo the crossovers between
QB, D, and L regimes as discussed above in light of the
mean values ~see Fig. 5!. The (nn) fluctuations exhibit an
increase from 0 towards 1 as the transport gradually changes
from QB to D. The well-known speckle-pattern fluctuations
dTnn /^Tnn&'1 for all (mn) channels build up in the D re-
gime, steadily increasing above 1 as the mode becomes lo-
calized. Therefore, the phenomenon of the QB-D and D-L
coexistence can be recognized by comparing the diagonal

FIG. 5. Mean-diagonal transmission intensities ^Tnn& as in Fig.

4 in a log-log plot. Fits to linear ~QB!, L21 ~D, with dots!, and

exponential ~L! decays are shown.

FIG. 6. Typical decay lengths ~in wavelength units! as functions

of the height standard deviation d2 ~in l2 units!, obtained from the

mean-transmission intensities ~see text! for d/l52.25 and a/l

50.2. Circles, n51; squares, n52; diamonds, n53; triangles, n

54. ~a! lnn
QB from numerical simulation data ~symbols, asterisks

denoting the conductance lQB) and from perturbation theory ~solid

lines!; ~b! lnn
D ~filled symbols! and lnn

L ~open symbols!, and lL from

the conductance ~asterisks!.
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fluctuations with each other, corroborating the argument
given above in light of the results for the mean values in Fig.
5. For a sufficiently long waveguide, it can be seen in Fig. 7
that the normalized fluctuations tend to be larger the higher
the outgoing mode m is. A linear increase for all channels is
observed.10 For a given incoming mode n, the rate of in-
crease is the same for all outgoing channels m; nonetheless,
the fluctuations appear to be larger the higher m is ~within
the noise accuracy!. Analogously, the rate of increase is
faster the higher n is. These considerations corroborate the
arguments discussed above on the mode selectivity of the
scattering strength in connection with the transmission inten-
sities in Fig. 4.

Let us now turn to the study of the reflection coefficients

^Rmn&. These are presented in Fig. 8 for the same waveguide
considered in Fig. 4. The peculiar scattering properties in-
duced by surface disorder manifest themselves in an intricate
manner in the reflection channels also. For sufficiently short
waveguide lengths, we expect that the reflection coefficients
should increase linearly as predicted by PT, through the ex-
pressions:

^Rmn&5

2d2knkm

d2~knkm!1/2
g~ ukn1kmu!L[

L

lmn
QB

. ~33!

These PT QB decay lengths in reflection and those obtained
from the numerical results are shown in Fig. 9. The agree-
ment is even better than in transmission, and the strong mode
differences are indeed confirmed. Beyond the QB regime for
each incoming mode n, the diagonal ^Rnn& is enhanced as the
waveguide length increases, whereas the remaining off-
diagonal reflection coefficients exhibit differences with the
following tendency: the higher is the mode m, the larger is

the reflection coefficient. Enhanced backscattering appears in
the strong diffusive ~or weak localization! regime as a result
of the constructive interference of multiple-scattered paths;
nonetheless, the enhancement factor differs from 2 ~predicted
by simple arguments, provided that the single-scattering con-
tribution is absent or negligible!. This comes as no surprise
inasmuch as each channel may behave differently, as re-
vealed in the transmission coefficients ~see Fig. 4! through
the entangling of transport regimes. Interestingly enough,
this anomalous reflection can result in an anomalous en-
hancement factor,29 larger than 2 @see Fig. 8~a!: although the
background cannot be unambiguously defined, ^R11&
'2.3^Rm1& for any mÞ1#. Therefore, the reflection coeffi-
cients fail to satisfy14,26 ^Rmn&5(11dmn)N21(11N)21(N

FIG. 7. Normalized fluctuations of the transmission intensities

as functions of the length L, for the same parameters as in Fig. 4.
FIG. 8. Same as Fig. 4 but for the mean-reflection intensities

^Rmn&.

FIG. 9. Same as Fig. 3 but in reflection.
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2^g&). Figure 8 also seems to indicate that the onset of L
does not introduce significant changes in the reflection coef-
ficients, in agreement with Ref. 29.

It is interesting to analyze the normalized fluctuations of
the reflection coefficients ~see Fig. 10!. Leaving aside the
transient strong fluctuations for very short length scales ~as-
sociated with the fact that the corresponding reflection coef-
ficients are small!, the diagonal m5n normalized fluctua-
tions diminish with increasing length, this decrease being
steeper the higher n is. Then they stabilize about the value
dRnn /^Rnn&50.5 as the D regime is reached, and remain
constant when entering into the L regime. The off-diagonal
normalized fluctuations @only the ~42! channel is shown in
Fig. 10, since all the rest are similar#, on the other hand,
remain about the variance of unity linked to the speckle-
pattern fluctuations in reflection. Therefore, weak localiza-
tion halves speckle pattern fluctuations in backscattering.

V. REFLECTANCE, TRANSMITTANCE,

AND CONDUCTANCE

We have thus seen that wave propagation along a four-
mode surface-disordered waveguide, due to the surface-type
disorder, unlike for volume disorder, displays anomalous
properties in the transmission and reflection coefficients as a
consequence of the mixture of QB, D, and L regimes for
different waveguide channels. Bearing in mind these proper-
ties, we now proceed to calculate the total transmission Tn ,
reflection Rn , and dimensionless conductance g.

In Fig. 11, we plot the mean total reflection ^Rn& and
transmission ^Tn& coefficients, along with the transmission
fluctuations dTn , in our four-mode waveguide with d
50.03l . It is evident that these quantities differ substantially
from one incoming mode to another. The larger n is, the
larger the mean reflectance and the smaller the mean trans-
mittance ~recall that energy conservation requires that Rn

1Tn51). This could be qualitatively expected once again,
at least in the limit of small waveguide lengths, in light of the
n dependence of the impurity matrix ~29!, which is stronger
for incoming modes with larger transverse momentum kn

~higher n).
The overall transport properties of the waveguide for a

given incoming mode n can be understood through the be-
havior of the mean total transmission ^Tn& @see Fig. 11~b!#,
as the summation of ^Tmn& over all outgoing channels m.

Figure 12, which shows ^Tn& in a logarithmic plot for a
four-mode waveguide analogous to that of Fig. 11~b! but
with a rougher surface with d50.1l , illustrates this discus-
sion. To observe a definite transport regime in the total trans-
mission, either the transport regimes of the different outgo-
ing modes swap at certain length scales, or one of the

^Tmn&’s predominates over all others. Note that even though
the most transparent mode gives the predominant contribu-
tion from a quantitative standpoint, it is not at all evident that
the same is true for the qualitative behavior ~for instance, a
steeper, weak decay added to a larger, but smoother, back-
ground would yield as a result a quantity whose magnitude is
of the order of the latter, but whose qualitative behavior is
given by the former weak decay!. In principle, it can be
assessed that transport will obviously be QB for lengths

shorter than lnn
QB , namely, for L<lnn

QB , as Fig. 12 reveals

through the QB linear decays ~see also Fig. 5!; this can also

FIG. 10. Same as Fig. 7 but for the normalized fluctuations of

the reflection intensities, including only the backscattered channels

and the ~42! off-diagonal channel.

FIG. 11. Mean total ~a! reflection and ~b! transmission intensi-

ties, and ~c! normalized fluctuations of the total transmission inten-

sities, as functions of the length L, for the same parameters as in

Fig. 2.

FIG. 12. Mean total-transmission intensities ^Tn& as functions of

the length L in a log-log plot for the same parameters as in Fig. 4,

including fits to the QB and L regimes.

5922 PRB 59J. A. SÁNCHEZ-GIL et al.



be verified in Fig. 11~b!. Conversely, the exponential decay
associated with L appears beyond waveguide lengths for

which the lowest (1n) mode is localized l1n
L , as seen in Fig.

12 ~see also Figs. 4 and 5!. Finally, unlike the QB and L
regimes, which must always be encountered for sufficiently
small and large lengths, respectively, it is not obvious that
the L21 dependence ~D regime! in the intermediate region
between QB and L transport is observed. This effect is an-
other manifestation of the entangling of different transport
regimes of the ^Tmn& due to the combination of surface-type
disorder and large mode dispersion. In Fig. 12, where the
length dependence of ^Tn& is shown in a log scale, D should
manifest itself through a linear decay @cf. Eq. ~31!#. It is seen
that this decay is practically absent for most incoming
modes. Only within a narrow waveguide length window for
which the D length scales of the transmission coefficients
swap, would the corresponding total transmission exhibit the
expected L21 behavior. In any case, it is obvious that the
average reflection and transmission coefficients fail to obey
the predicted dependences ^Tn&5N21^g& and ^Rn&
5N21(N2^g&) in the weak localization or D regime.14,26

All these transmission properties, stemming from the mix-
ing of QB, D, and L transports produced by surface disorder,
become even more pronounced in the dimensionless conduc-
tance g. Figure 13~a! shows a logarithmic plot of ^g& for
four-mode waveguides with different surface roughness pa-
rameters d/l50.02, 0.03, 0.04, 0.06, 0.08, and 0.1, whereas

^ln g& is plotted in Fig. 13~b! @and also ln^g&# for the two
larger d values. The corresponding conductance fluctuations
are given in Fig. 14. Following the argument mentioned
above for the total transmission, now the QB regime is re-

stricted to the shorter lnn
QB , in this case l44

QB @see Fig. 13~a!#.
This is explicitly shown in Fig. 6~a!. Likewise, the true L
behavior in the conductance is ensured for lengths beyond

which the ~11! channel appears localized; this is seen in Fig.

13~b! ~in those cases for which lL<Lmax) through the linear

decay of ^ln g&, and its departure from ln^g& ~owing to the

transition to log-normal statistics, for which the dominant

contributions arise from the low-probability realizations that

yield large conductances7,11!. Recall that, although the actual

onset of L thus appears at slightly different lengths, the lo-

calization length for given roughness parameters as defined

from Eq. ~32! is the same for all modes (mn), and coincides

with those for the transmittances and conductance @see Fig.

6~b!#. On the other hand, the absence of the D regime in the

conductance curves is explicitly displayed in Fig. 13~a!.
Thus an anomalous conductance crossover from QB to L

regimes is observed for the four-mode, surface-disordered

waveguides with several roughness parameters used in ob-

taining the results of Fig. 13, giving additional confirmation

of the predictions of Ref. 23. Moreover, the conductance

fluctuations within this anomalous transition regime stabilize

in all cases shown in Fig. 14 at a value (dg'0.29), which

lies below the expected value of the quasi-1D universal con-
ductance fluctuations ~UCF! for a well-defined D regime
(dg'0.364, cf. Refs. 10 and 12!. This lower value of the
UCF has been also numerically found in Ref. 11, but no
physical interpretation was given therein. When entering into
the L regime, our results for the waveguides with rougher
surfaces in Fig. 14 reveal that the conductance fluctuations
decrease below the UCF region, as expected.10,11

Two comments are in order concerning the anomalous
QB-L crossover in the total transmission and conductance
mentioned above. First, it should be emphasized that surface
disorder is not a sufficient condition. Actually, in the case of
surface-disordered waveguides with small mode dispersion
and/or strong intermode mixing, so that the D-like regimes
of different outgoing channels coexist, the L21 diffusive de-
pendence could also be observed. Nevertheless, even if such
a D regime appears, our results still reveal an anomalous
behavior, inasmuch as the mean total reflection and transmis-
sion fail to follow the predicted weak-localization length de-
pendences, as pointed out above. As a second remark, it is
worth mentioning that the D-like regime is enhanced in the
average resistance ~in which contributions from smaller
transmission coefficients predominate!, in contrast to the av-
erage conductance. The results presented in Ref. 28 corrobo-
rate these comments, which thus show no discrepancy with
our results.

FIG. 13. ~a! Mean dimensionless conductance as a function of

the length L in a log-log plot for a waveguide width d/l52.25,

supporting four modes, with disorder parameters a/l50.2 and

d/l50.02 ~upper solid curve!, 0.03 ~dashed curve!, 0.04 ~long

dashed curve!, 0.06 ~dot-dashed curve!, 0.08 ~dotted curve!, and 0.1

~lower solid curve!. Averages over Np54000 realizations. Fits to

the QB regimes are shown. ~b! ^ln g& ~without dots! and ln^g& ~with

dots! for d/l50.08 ~dotted curves! and 0.1 ~solid curves!, revealing

the L regimes.

FIG. 14. Conductance fluctuations for the waveguides used in

Fig. 13.
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VI. CONCLUSIONS

The statistical-transport properties of classical waves
propagating along surface-disordered waveguides have been
studied, with special emphasis on the distinctive imprint in-
troduced by the surface-type disorder. For this purpose, the
invariant embedding equations for the matrices of reflection
and transmission amplitudes of the guided modes have been
obtained. By means of Monte Carlo simulation calculations,
in such a manner that for every surface realization the cor-
responding system of coupled differential equations is nu-
merically solved, the statistical quantities of interest are cal-
culated. We have focused on the mean reflection and
transmission coefficients, reflectances, transmittances, and
conductance, along with their fluctuations. The interplay be-
tween mode conversion and the scattering processes pro-
duced by surface disorder results in new interesting effects in
the physical quantities mentioned.

For a sufficiently long waveguide, transmission into
modes with lower transverse momentum ~lower index m ac-
cording to our notation! is favored ~exhibiting smaller nor-
malized fluctuations!, no matter what the incoming mode n

is. The influence of the incoming mode n is revealed in the
decrease of all the transmission coefficients for higher n. For
smaller waveguide lengths, we have confirmed, through the
analysis of the length dependence of the mean-transmission
coefficients and fluctuations in the case of four-mode
waveguides, the entangling of ballistic, diffusive, and local-
ized transmission of modes within the same waveguide re-
gion that was recently reported in Ref. 23 in the case of
eight-mode waveguides.

With regard to the reflection coefficients, enhanced back-
scattering is observed when the rough waveguide is long
enough, and the enhancement factor, as defined by the ratio
min@^Rnn&/^Rmn&#, can be larger than 2. In fact, the nondiago-
nal reflection coefficients tend to be smaller for the reflected
modes with lower m for all incoming modes n. The reflected
speckle patterns exhibit reduced fluctuations in backscatter-
ing (dRnn)/^Rnn&'0.5, whereas the expected value of 1 is
approximately obtained for other reflected channels (m

Þn). Both averages and fluctuations behave similarly
throughout the D and L regimes.

The transmittance, namely, the normalized total energy
transmitted for a given incoming mode n, is larger for the
lower modes n. It should be noted that, in spite of the small
strength of the random component that is present on one of
the waveguide planes, very strong reflectances ~of the order
of or larger than 90%! can be observed for sufficiently long
waveguides. This could be relevant in multimode, optical
waveguides with spuriously rough boundaries over long
propagation distances, where it constitutes an unwanted
effect.30

We have also analyzed the effect of the entangling of QB,

D, and L transport on the qualitative behavior of the mean

transmittance and its fluctuations, showing an anomalous ef-

fective QB-L crossover. This has also been confirmed in the

conductance calculations ~average and UCF!, for which the

influence of the disorder strength has been shown.

Finally, we would like to mention the very recent papers

by Garcı́a-Martı́n et al. on the diffusion-localization

transition28 and on the intensity distributions,27,29 in nano-

wires with surface-disordered hard walls consisting of a

number of slices with fixed length and random width, with

similarities to the problem dealt with here. Their numerical

results, based on a generalized scattering-matrix formulation

exploiting mode matching at each slice, exhibit also the

nonisotropy of the scattering intensities, stressing, however,

the agreement of the statistics at each transport regime with

the RMT predictions.

Experimentally, all these effects can be revealed in the
transmission intensities through metal microwave guides, for
which our theoretical boundary conditions apply very accu-
rately. As pointed out in Ref. 23, the appropriate geometry
would be a planar waveguide with two metallic plates, one of
them at least randomly rough, with feasible dimensions and
roughness parameters ~as derived from the values used
throughout this paper upon scaling them by the wavelength
in the centimeter range!. Similar waveguides but with tube
geometry have been successfully employed in connection
with volume disorder.20 Also, in the electromagnetic domain,
optical waveguides or fibers ~in the micron range! could be
other experimental devices,30 accessible to such measure-
ments, where the predictions of our calculations can manifest
themselves, although in order to make rigorous quantitative
comparisons the boundary conditions might have to be re-
vised. Furthermore, the propagation of acoustic waves or
other classical waves through confined geometries with ap-
propriate randomness can be adequately accounted for by
our formulation, and thus similar phenomena might be ex-
pected therein. The conductance calculations can be also of
interest in the electronic transport through nanowires.
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Vesperinas, Phys. Rev. Lett. 81, 329 ~1998!.
30 F. Ladouceur and L. Poladian, Opt. Lett. 21, 1833 ~1996!.

PRB 59 5925REFLECTION AND TRANSMISSION OF WAVES IN . . .




