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The reflection coefficient of acoustic waves incident on a liquid-solid interface from the liquid 

side is numerically calculated for a general anisotropic solid oriented in any arbitrary direction. 
The reflection coefficient depends, in general, on polar and azimuthal angles of incidence. 
Results are presented for various crystalline materials of different symmetry classes. A null in 
the reflection coefficient amplitude is detected at a particular incidence angle for every 
anisotropic material that supports pseudosurface waves. The null in the reflection corresponds 

to the excitation of the pseudosurface wave on the interface surface, a•nd it has typically a very 
narrow angular aperture. The angular position of the null is very critical and highly dependent 
on the elastic parameters of the anisotropic solid. 

PACS numbers: 43.20. Fn, 43.35.Cg 

INTRODUCTION 

Although the reflection-refraction problem at a liquid- 

isotopic-solid interface has been intensively studied, •-3 the 
reflection-refraction problem at a liquid-anisotropic-solid 
interface remains relatively untouched because of the in- 

creasing complexity of analytic expressions and numerical 
difficulties. The theoretical aspects of the reflection-refrac- 

tion problem between two anisotropic solids were reviewed 
by Henneke 4 with a discussion on critical-angle phenome- 
na. 5 Some numerical calculations for special cases were giv- 
en by Auld. 6 Jones and Henneke 7 gave a numerical solution 
for reflection of elastic waves from a stress-free boundary in 

an anisotropic half-space. Atalar 8 presented the numerical 
solution of the reflection coefficient at a liquid-cubic-solid 
interface. Somekh et al. 9 have studied the reflection coeffi- 

cient of anisotropic materials at a liquid interface for the 

purpose of understanding acoustic images obtained by 

acoustic microscopes. They have numerically calculated the 
reflection coefficients for some materials and applied the re- 

sults for the interpretation of contrast in acoustic images. 

Crean and Waintal•ø have calculated the Rayleigh wave ve- 
locity on anisotropic substrates for the same purpose. Ve- 

lasco and Garcia-Moliner TM have given a Green's function 
analysis to calculate surface waves in anisotropic cubic crys- 
tals. Rokhlin eta/. •2'•3 have calculated the reflection and 

refraction of elastic waves at the planar interface of two gen- 

erally anisotropic solids. 

In this article, the results of a study on the reflection of 

plane acoustical waves at a planar liquid-anisotropic solid 

interface are presented. The solution is for the most general 

case, that is, the anisotropic solid can be of any symmetry 

class and the interface surface could be selected as any de- 

sired plane of the crystal. 

I. CALCULATION OF THE REFLECTION COEFFICIENT 

In this section, the acoustical wave equation and the 

plane-wave solutions in anisotropic media will be consid- 
ered, the boundary conditions will be examined, and a solu- 
tion method for the reflection-refraction problem at a liq- 

uid-anisotropic-solid interface will be derived. For 
simplicity, acoustical attenuation and piezoelectricity of 
both media are neglected. Both media are assumed to be of 
infinite extent and the interface is assumed to be an infinite 

plane. Due to the complexity of the expressions, an analyti- 
cal solution is not possible, hence, a numerical approach is 

attempted. The analytic expressions will be abandoned only 
at the point where no more analytical manipulations are pos- 
sible. The remaining part of the problem will be solved by 
numerical means. Although this derivation may be found 
elsewhere, 4 we will give it for the sake of completeness and to 
bring clarity to notation. 

Following the notation of Auld, 6 consider the acoustic 
field equations and the constitutive relations in a nonpiezo- 
electric material: 

r32u 

S=Vsu, T=e:S, V.T=p o9t2 --F' (1) 
where S, T, and e are the strain, stress, and stiffness constant 

matrices, respectively, in the abbreviated subscript notation. 
With this notation, S and T become 6 by 1 matrices and e 

becomes a 6 by 6 matrix with, in general, 21 independent 

constants, u and F vectors represent the particle displace- 

ment and the body force field in the material, p is the density 
of the material, Vs is the symmetric gradient operator, and V. 

is the divergence operator. The latter are given by 
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Since for a freely vibrating medium the body force F is 

zero, the three equations of Eq. ( 1 ) may be combined to give 

c• 2u 
(V'c:Vs)u = • (2) 

c•t 2 ' 

which is a wave equation. The wave equation can be solved 
analytically only for a limited number of cases. The simplest 
case involves the plane-wave solution. If we introduce the 
phasor notation for plane waves, we can write the solution 
for the particle displacement field as 

u=Re{Aa exp L/(wt- k.r)]), 

where ,4 is the amplitude of the plane wave, a is the unit 

polarization vector of the plane wave, w is the angular fre- 
quency, k is the wave vector pointing in the propagation 
direction, and r is the position vector. With exp(jot) time 

dependence, we may replace the operator c•/c•x• with -jk• 
and d/dt by jw. Then, the symmetric gradient operator is 
reduced to 

k• o o 

0 0 

o o kz 

o kz 

kz 0 

k•, k•, 0 

= -jk 

m l 

L o o 

o o 

o o l• 

o b 

lz o L 

co_ 

where lx, ly, and lz are the direction cosines of k. With the 
definition 

V• = (v.)T= --jkL, 

Eq. (2) becomes 

-- k :LTcLa = -- pw:a 

or 

[ k :LTcL -- pto:I ] a = 0, (3) 

where I is the third-order identity matrix. The matrix LTcL 

is called the Christoffel matrix and is denoted by U (1•,, 1•,, lz ). 
Note that the Christoffel matrix depends only on the stiff- 

ness constants and the propagation direction. Equation (3) 
is called the Christoffel equation. 6 To obtain nontrivial solu- 
tions for a in Eq. (3), the determinant must be zero: 

I k 2r -- Pco2II = O. 

FIG. 1. Scattering geometry suitable for the liquid-anisotropic-solid reflec- 
tion problem. Wave vectors along with slowness surfaces are shown. Inter- 
face is the x-y plane. 

Hence, we see thatpco2/k • are the eigenvalues ofr and a is an 
eigenvector of r. We observe that, since r is a 3 by 3 matrix, 
in general, there exist three different solutions for k and a, 
corresponding to the same direction of propagation, which 
implies the existence of three different wave modes propa- 
gating in the same direction with different polarization vec- 
tors and velocities. Moreover, since r is symmetric, the po- 

larization vectors corresponding to distinct k values are 

orthogonal. Also, Eq. (3) can be described entirely by the 
variable k/w, which is called slowness. The slowness surfaces 

are defined to be the loci of the end points of the vector k/w, 

and they prove to be useful in the solution of the reflection- 
refraction problem. 6 

We now consider the reflection-refraction problem de- 

picted in Fig. 1. The boundary between the liquid medium 
and the anisotropic solid is the x-y plane. We assume a unit 

amplitude plane wave striking the interface with an angle 0 

and with a wave vector k I. The angle between the plane of 
incidence and the x axis is •. We write the particle displace- 

ment field of the incident wave in phasor form with 

exp(jot) time dependence suppressed as 

U I = (kI/ko)exp( --j kI.r), 

where ko is the wavenumber in the liquid. Since the incident 

medium is liquid, the only reflected mode is a longitudinal 

wave. On the other hand, in the anisotropic solid there can be 

three refracted modes: One quasilongitudinal (QL) and two 

quasishear (QS) waves. The corresponding particle dis- 

placement fields can be written as 

u • = R (k•/ko)exp( --j k•.r), 

u L = La L exp ( -- j kL.r), 

uS'= S•a s' exp( --j kS'.r), 

u s-' = S2 as'- exp ( -- j kS:.r), 

where k •, k L, k s', k s-' and R, L, S•, S: are the wave vectors 
and the complex amplitudes of the reflected wave in the liq- 

uid and of the QL and two QS waves in the solid, respective- 

ly. Here, a L, a s', and a s-' stand for the unit polarization vec- 
tors of the refracted waves. 

2 J. Acoust. Soc. Am., Vol. 85, No. 1, January 1989 Ankan ot aL: Reflection coefficient null 2 



The boundary conditions at the interface can be stated 

as follows. Since the liquid moves parallel to the interface 

plane freely, the condition for particle displacement continu- 
ity holds only for the normal component of u: 

u'fi = u"fi, 

where u and u' are the particle displacements in the liquid 

and in the solid, respectively, and fi is the unit normal vector 
of the interface. This boundary condition gives 

I R L S• S 
(Uz + uz )lz:o = (Uz + Uz + Uz:)lz=O, (4) 

where Uz is the z component of the particle displacement and 

the superscripts denote the type of the wave as before. The 
second set of boundary conditions arise from dynamical con- 
straints: 

T.fi = T'.fi, 

where T and T' are the respective stress tensors of the two 
media. From this boundary condition, we find 

(T3+T3 •) z:o=(T•+T•S'+T•S2)lz_- o, ar=3,4,5, 
(5) 

where the stress components are shown in abbreviated sub- 

script notation. 

An implication of Eq. (4) is the conservation of the 

phase velocity parallel to the boundary: 

kXfi = k'Xfi, 

or 

k z --kR=kL=kS,=kS2=lx k x x x x x O, 

I R L= kS,= kS2 lyko ' ky =ky =ky y y = 

which is also known as Snell's law. Although Snell's law 
determines readily the x and y components for the wave vec- 

tors of reflected (k R) and refracted longitudinal (k •'), and 
shear (k s', k s•} modes, the z components of wave vectors 
and, hence, the propagation directions are more difficult to 
ascertain. 

For this purpose, the Christoffel equation should be 

modified for the solution of kz. The Christoffel equation may 
be rewritten as: 

o o o az a, 

o o [ci;l o o 

kx 0 0 

0 ky 0 

o o kz 

0 kz ky 

k z 0 kx 

ky k,, 0 

-- pco2I =o, (6) 

which leads in general to a sixth-order equation in kz. Equa- 
tion (6) can be written explicitly as follows: 

--p3c06 +p2co4(h• + h2 + h3) 

-- pco 2 ( h ,h2 + h2h3 + h3h , - h • - h 2• _ h • ) 

+ h,h2h3 + 2h4hsh6 - h,h 24 - h2h • - h3h } = 0, (7) 

where 

h i = ai k2 + bik z + Ci, i = 1,..,6, Z ø 

and 

a 1 = C55, 

a 2 = C44 , 

a 3 = C33 , 

a 4 = C34 , 

a 5 • c35 , 

a 6 = C45 , 

b• = 2(c•5k• + c56ky ), 

b 2 = 2 (c46kx D I- c24ky ), 

b 3 = 2 (c35k• + c34ky ), 

b 4 = (c36 -3- c45)k x q- (c23 -3- c44)ky , 

b5 = (css + C13)kx -•- (C45 -3- c36)ky , 

b 6 = (c•4 + c56)kx + (c46 + c25)ky, 

Cl Cllk2 2 = x + C66 k y + 2c16kx my, 
2 

C2 __ c66k 2 q_ c22k y q- 2c26kx my x , 

2 

C 3: c55k 2 + c44k y _•_ 2c45k•,ky x , 

2 

C4 __ c56k 2 q- c24k y q- (c25 _3_ c46)kxky x , 

2 

C5 = Clsk 2 q- c46k y q- (c14 q- c56)kxky ' x 

2 

C6 •. c16k 2 + c26k Y q- (C66 q- ci2)k•,ky x ø 

The above-mentioned boundary conditions are not suf- 

ficient for the correct solution of the problem. Another set of 
conditions is necessary to make sure that the nonevanescent 

refracted modes carry energy into the solid medium and the 

evanescent modes decay into the solid medium as a function 

of depth. The k vector direction is not a correct measure of 

the energy propagation direction, instead the direction of 

Poynting vector P should be considered. 4 For a refracted 
mode solution to be a valid one, its Poynting vector must be 

directed into the solid. This vector does not generally coin- 

cide with the normal to the wave front in anisotropic media, 

but it is in the direction of the gradient of the slowness sur- 

face. In our case, with anisotropic media at the positive z 

region, the z component of the Poynting vector is the only 

component that is important. In phasor notation, this com- 

ponent is given by 

= - ( rs + T4 + r3 ) , (8) 

where v•"s are the conjugates of the respective particle veloc- 

ities. For nonevanescent modes, Pz must have a positive real 

part in order to have a power flow with a positive component 
in the z direction. For evanescent modes, it has to have a 

negative imaginary part to get a wave that cannot carry any 

energy and that vanishes as z approaches infinity. With these 

constraints, the six solutions found for kz from the previous 

part are reduced to three. Note that there are exactly three 

kz's satisfying the Pz conditions. 

The solution algorithm may be given as follows: Given 

the stiffness constants of the solid and the angle of incidence, 

the sixth-order equation in terms of kz is constructed using 

Eq. (7). This equation can be solved by numerical means for 

kz, resulting in the six kz values that are not necessarily dis- 

tinct. Then Eq. (3) is contructed and the normalized polar- 

ization vectors (a •', a s', as'-), are found. For each of these 
kz's and the corresponding polarization vectors, the z com- 

ponents of the Poynting vector, is calculated by-Eq. (8). The 

roots that have P vectors pointing to the liquid media or 

those leading to exponentially growing waves should be 
omitted. 
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Knowing the wave vectors and unit polarizations of all 
reflected and refracted modes, the four boundary conditions 

may be written in terms of the unknown amplitudes, R, L, 

S•, and S2. From these four linear equations [Eqs. (4) and 
(5) ], the unknown amplitudes of the reflected and refracted 
modes can be solved. 

There may be numerical difficulties for angles near the 
normal incidence and near the critical angles where the 

problem becomes ill-conditioned. Special precautions must 
be taken for such cases to obtain the correct numerical re- 

sults. These include the ordering of roots, and reducing the 

degree of the equations to be solved if roots are very close to 
each other. 

II. RESULTS 

A FORTRAN program was developed to carry out the 
numerical calculations necessary for the evaluation of the 

reflection coefficient R. The program can handle materials 

with arbitrary stiffness matrices of 21 constants, so materials 

with arbitrary orientation can be handled with proper trans- 

0.8 '" 

0.6 

0.4 

0.;) I 
0 0.1 0.2 0.:5 0.4 s•nO 

11 

-11'12 

FIG. 2. Reflection coefficient amplitude and phase at a H20-Si (011 ) inter- 
face as a function of incidence angle for azimuthal angles of 0 ø (dotted), 
44.81 ø (solid), and 90 ø (dashed). The constants for H20 are c• = 2.277E9 

and p = 1000. 
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FIG. 3. Reflection coefficient amplitude and phase at a H•O-quartz (001) 
interface as a function of incidence angle for azimuthal angles of 0* (dot- 
ted), 17.91 ø (solid), and 30 ø (dashed). 

formation of the stiffness matrix by multiplication with the 

Bond matrices. 6 The program was tested against the materi- 
als whose reflection coefficients were previously calculat- 
ed. 8'9 The results were consistent with those previous calcu- 

lations within the expected precision which was about 0.1%. 
Obviously, these tests do not prove that the program works 
correctly for all cases, nevertheless running a number of dif- 
ferent cases assured us that the program is reliable. 

In Fig. 2, the reflection coefficient R, amplitude, and 
phase at the H20-Si interface for the (011 ) plane of Si are 
shown as a function of sin 0 for •b = 0 ø, 44.81 ø, and 90 ø. Here, 
0 and •b are the sperical coordinates (polar and azimuthal 
angles, respectively) where •b is the angle between the inci- 
dence plane and the [100] axis. Concentrating on the 
•b = 44.81 ø curve in the figure, we can identify the following 
regions: for sin 0 < 0.1622 all three wave modes, namely one 
QL and two QS waves, propagate into the solid, and the 
reflection coefficient is approximately constant. Above 
sin 0 = 0.1622 the QL wave can no longer be excited, and 
until sin 0 = 0.2857 only two QS waves are present. While 
sin 0 is between 0.2857 and 0.3059, only one QS wave is 
excited. At sin 0 = 0.3016 there is a minimum in the reflec- 
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tion coefficient. Note that, for such an incidence angle, more 

than 94% of the incident energy is transmitted into the solid. 
We also observe that, for sin 0 = 0.3159, there is a transition 

in the phase of the reflection coefficient corresponding to a 
Rayleigh wave excitation. 

In Fig. 3, the reflection coefficient versus sin 0 plots for 

the H20-quartz (001) interface for 0• = 0ø, 17-91ø, and 30 ø 

are shown. Focusing on the 0• = 17.91 ø curve, we observe a 
phase transition at sin 0 = 0.3848. The reflection coefficient 

amplitude has a minimum value of 0.2950 at sin 0 -- 0.3857. 

At sin 0 = 0..4408, there is another phase transition and 

above this angle no wave propagates into the solid. Note that 

two phase transitions occur and the amplitude minimum is 
nearly at the first transition. 

Figure 4 presents the reflection coefficient versus sin 0 

plots for the H20-quartz interface for 0• = 0ø, 45ø, and 90 ø at 
the (100) plane. At this plane of quartz, a minimum is ob- 

served for the 0• = 45ø curve. 

In Figs. 2-4, for particular values of 0•, we observe a dip 

in the amplitude of the reflection coefficient at a polar angle 
corresponding to a single QS wave excitation in the solid 

medium. At this angle there is an almost complete power 

1.0 

IRI 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 r•nO 

+11/2 

-11/2 

FIG. 4. Reflection coefficient magnitude at a H20-quartz (100) interface 
as a function of incidence angle for azimuthal angles of 0 ø (dotted), 45 ø 
(solid), and 90 ø (dashed). 
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FIG. 5. Reflection coefficient magnitude at a H20-GaAs interface as a 
function of direction cosines (horizontal and vertical axes 0 <sin 0 <0.6) 
plotted in two dimensions, (a) (100) plane, (b) (111) plane. 

transfer from the low-impedance liquid medium to the high- 
impedance solid medium. 

Complete presentation of results is rather difficult in the 

way shown in Figs. 2-4. A more compact presentation is 
possible if three-dimensional views are used. At the third 

InAs 

o I)oo] 

(Q) (001) 

[01011 

(b) (111) 

FIG. 6. Reflection coefficient magnitude at a H20-InAs interface as a func- 
tion of direction cosines (horizontal and vertical axes 0 < sin 0 <0 7) plot- 
ted in two dimensions, (a) (100) plane, (b) (111) plane. 
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(a) 

SAPPHIRE 

0.3. [oo] 

(100) 

TABLE II. Minimum reflection angles for some hexagonal crystals at the 

H20 interface. Piezoelectricity neglected. 

Hexagonal materials 

(001)plane, m=[001], n--[100] 

Material sin 0 

Ti 0.2812 12.83 0.846 

ZnO 0.5252 17.74 0.854 

BeO 0.2005 14.28 0.908 

CdS 0.8284 24.94 0.632 

1 
_.[001] 

(b) (OLO) 

(c) 

,. 

[100] I 

[oo] 

__. [oo] 

(001) 

FIG. 10. Reflection coefficient magnitude at a H20-sapphire interface as a 
function of direction cosines (horizontal and vertical axes 0 < sin 0 < 0.30) 
plotted in two dimensions, (a) (100) plane, (b) (010) plane, (c) (001) 
plane. 

dimension, it is possible to use gray shadings as obtained on a 

grey scale graphics monitor. Figure 5 is such a presentation 

for the reflection coefficient amplitude at the interface 

between H20 with (001 ) and ( 111 ) planes of GaAs crystal. 

Calculations are performed on a 128 by 128 grid. In the fig- 

ure the bright points correspond to a reflection coefficient 

that is close to unity whereas the dark points indicate a re- 

flection coefficient close to zero. The critical angles are clear- 

ly seen as boundaries of different regions. Figures 6-10 are 

similar figures, which require extensive computation time, 
for the H20-InAs, H20-silicon, H20-quartz, H20- 

LiNbO3, and H20-sapphire interfaces at different crystallo- 

graphic orientations of the solids. In all cases, the dark re- 

gions occur in a narrow path of direction cosines. 

To find the position of the nulls--if they exist--we de- 

veloped a minimization program using the steepest descent 

technique. Since the reflection coefficient has a highly com- 

plicated structure, it is possible to miss the real minimum 
and instead find a local minimum. We tried to find the null i n 

the reflection coefficient magnitude for a number of materi- 
als. The constants of all the materials were taken from 

Auld. 6 We summarize the results in Tables I-IV. They show 
the positions of nulls or minima for various materials at some 

crystallographic orientations. For cubic materials the ani- 

sotropy factor •1 = 2c44/(Cll -- C12 ) is also listed. In the ta- 
bles, 0 is the polar angle, which is between the incidence 
direction and the m direction, and • is the azimuth angle, 
which is between the incidence plane and the n direction, 
where m and n are as defined in the tables. 

'To show the angular extent of the nulls, we plotted the 
reflection coefficient at and around the nulls. Figures 11 and 

12 show the reflection coefficient magnitude and phase for 

two cubic materials at their ( 111 ) planes. Typically, as the 

anisotropy factor •1 increases, the angular extent of the null 

gets wider for (00 ! ) and ( 111 ) planes of cubic crystals. The 

TABLE I. Minimum reflection angles for some cubic materials at the H20 interface. Piezoelectricity neglected. 

(001 ) plane (011 ) plane 
Cubic m = [001 ], n = [ 100] m = [011 ], n = [01•] 

materials 
. 

Material •1 sin 0 ,/, I al sin 0 ,½ J RJ 

( 111 ) plane 
m= [111],n= [101] 

sin 0 ½ I RI 

Cu 3.18 0.6655 25.16 0.037 0.6800 40.84 0.704 

Ni 2.63 0.5123 25. 66 0.049 0.5317 40.72 0.765 

Fe 2.41 0.4802 25.30 0.023 0.5020 40.57 0.739 

InAs 2.08 0.6796 24.01 0.016 0.7111 42.45 0.402 

GaAs 1.82 0.5301 24.93 0.001 0.5465 46.96 0.470 

Si 1.56 0.2980 26.99 0.026 0.3019 44.88 0.179 

A1 1.22 0.5030 32.37 0.090 0.4838 7.95 0.744 

PbS 0.508 0.8100 0.00 0.710 0.7418 18.31 0.005 

0.5495 30.00 0.051 

0.4380 24.89 0.036 

0.4170 22.96 0.056 

0.6187 15:69 0.047 

0.4742 20.37 0.014 

0.2655 28.25 0.080 

0.4700 29.99 0.290 

0.7301 9.263 0.302 
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TABLE III. Minimum reflection angles for some tetragonal crystals at the 
H20 interface. 

Tetragonal materials 

(001)plane, m=[001], n=[100] 

Material /3 sin 0 4 IRI 

TeO2 29.29 0.7433 28.65 0.009 

TiO2 4.06 0.2982 33.42 0.053 

converse is true for (011 ) planes. Figure 13 depicts the re- 
flection coefficient for a cubic material at its (011 ) plane. 

Figure 14 is a similar presentation for a tetragonal material 
at its X- Y (001 ) plane. Notice that TeO2 is an unusually high 
anisotropic material, and the extent of the null is remarkably 
wide. Figures 15 and 16 show the reflection coefficient null 
for two common trigonal materials, quartz and sapphire. An 

important observation in all cases is that there is a phase 
transition of the reflection coefficient at the angle of mini- 

mum amplitude. This transition is different from the phase 
transition associated with the Rayleigh wave excitation that 

occurs at greater angles and at which all waves in the solid 
are evanescent. Both transitions are visible in Figs. 12 and 

16. The phase transition at the amplitude minimum corre- 
sponds to a surface wave excitation as discussed in the next 
section. 

III. DISCUSSION 

The presence of the reflection coefficient nulls was 
shown to exist for (001 ) planes of some cubic crystals ear- 

lier. 8 We now see that such angles exist for other planes of 
solids and are not limited to (001) faces of cubic crystals. 

The discussion given in Ref. 8 claimed that the null in the 
reflection coefficient would occur at an angle corresponding 

to an excitation of a pseudosurface wave. The pseudosurface 
waves were first encountered in surface-acoustic-wave 14-15 

and reflectivity experiments. 16-18 The most complete treat- 
ment of the pseudosurface wave was given by Lim 19 and 
Farnell. 2ø In contrast to the Rayleigh waves, which are sur- 
face waves, the pseudosurface waves are actually bulk waves 
that are traveling very close to the surface and, hence, acting 
like a surface wave radiating the energy of the wave into the 
bulk. They were also the subject of some recent investiga- 

tions in conjunction with phonon imaging. 2l 
The null angles in the reflection coefficient were first 

TABLE IV. Minimum reflection angles for some trigonal crystals at the 

H:O interface. Piezoelectricity neglected. 

Trigonal materials 

Material sin 0 • IRI 

Quartz (OOl), m = [OOl], n = [lO0] 

Quartz (lO0), m = [lO0], n = [010] 

Quartz (010), m = [010], n = [o01] 

Sapphire(001), m=[001], n=[100] 
Sapphire(100), m=[100], n=[010] 
Sapphire (010), m= [010], n= [001] 
LiNbO3 (010), m = [010], n = [001] 

0.3863 11.81 0.295 

0.3929 44.50 0.027 

0.3728 42.53 0.370 

0.2277 55.26 0.686 

0.2340 42.49 0.619 

0.2386 -- 0.50 0.066 

0.3988 166.86 0.044 

1.0 

IRI 

.0.8 

0.6 

0.4 

0.2 

0.0 

H20_Cu(111 ) !i ! 

0.51 0.53 0.55 0.57 Sin 0 0.59 

FIG. 11. Reflection coefficient magnitude at a HeO-Cu ( 111 ) interface 

near the null as a function of incidence angle for azimuthal angles of 30 ø 
(solid), 27 ø (dotted), 33 ø (dotted) and phase for 30 ø (dash-dot), 27 ø 
(dash-dot-dot), 33 ø (dash-dot-dot). 

observed experimentally by Rollins. •6 He noted that, for 
some orientations, the dip associated with the pseudosurface 
wave was much stronger than that related to the Rayleigh 
wave. The latter dip is strongly dependent on the absorption 

of Rayleigh waves and its physical interpretation is well un- 
derstood. 2 The first dip is due to the fact that incident longi- 
tudinal waves in the liquid medium is coupled almost com- 

pletely into the pseudosurface waves. He reported the 
observation of complete nulls for the Y-Z plane of quartz 
corresponding to the pseudosurface wave excitation. 

Farnell 2ø indicated that the pseudosurface waves will 
exist on the (001 ) and ( 111 ) planes of the cubic crystals as 

long as the condition (c• - c•2)/2 < c44 is satisfied. Similar- 

IRI 

0.8 

0.6 

0.4 

02 

FIG. 12. Reflection coefficient magnitude at a H:O-GaAs ( 111 ) interface 
near the null as a function of incidence angle for azimuthal angles of 17.37 ø 
(dotted), 20.37 ø (solid), 23.37 ø (dashed) and phase for 17.37 ø (dash-dot- 
dot), 20.37 ø (dash-dot), 23.37 ø (dash-long dash). 
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FIG. 13. Reflection coefficient magnitude at a H20-PbS (011 ) interface 
near the null as a function of incidence angle for azimuthal angles of 17.31' 
( dotted ), 18.31' (solid), 19.31' (dashed) and phase for 17.31' (dash-dot- 
dot), 18.31 ø (dash-dot), 19.31' (dash-long dash). 

ly, the (011 ) planes of cubic crystals will support the pseu- 

dosurface waves, if (c::- c:2)/2 •½44 is satisfied. Inspec- 
tion of Table I indicates that these conditions are indeed 

consistent with our findings. We find nulls in the (001 ) and 

( 111 ) planes of those cubic materials that have r/) 1, and in 

the (011 ) planes for which r/< 1. If the cubic materials is 

nearly isotropic (like A1) there is a deep minimum, but it is 

not a complete null. Specifically, the (001 ) and ( 111 ) planes 

of crystalline copper support the pseudosurface waves and 

they were experimentally observed. •7 The calculated posi- 
tion of nulls correspond to surface wave velocities of 2267 
m/s for the (001 ) plane and 2746 m/s for the ( 111 ) plane. 

1.0 

IRI 
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0.4 

0.2 

0.0 

-W 

FIG. 15. Reflection coefficient magnitude at a H20-quartz (100) interface 

near the null as a function of incidence angle for azimuthal angles of 43.5 ø 

(dotted), 44.5 ø (solid), 45.5 ø (dashed) and phase for 43.5 ø (dash-dot-dot), 

44.5* (dash-dot), 45.5 ø (dash-long dash). 

These numbers and the azimuthal angles indeed agree very 
well with the measured and theoretically calculated veloc- 

ities of the pseudosurface waves as shown in Figs. 1 and 2 of 
Ref. 17. The correspondence between the null angles and the 
pseudosurface waves can be more easily seen in Figs. 5-10. 
There the path followed by the dark regions maps the angu- 
lar position (sin 0 and •b) of the pseudosurface waves. Exis- 
tence of phase transitions at the amplitude minima as seen in 
Figs. 11-16 supports further the claimed association 
between the pseudosurface waves and the null angles. 

During our search for nulls in various anisotropic mate- 
rials, we were unable to find a null in the hexagonal materials 

under consideration. But, all the tetragonal materials we ex- 
amined, exhibited a null. As indicated by Farnell 2ø the ratio 
/• = 2C66/(Cll I C12 ) plays a similar role with the tetragonal 

I.O 0 

H20-Te02(001) 

0.8 

• x I / / ... ...... 

-xX' 0.6 • X• ? .." 

/ • " ...... ........ 
o., 

..,- 

02 "' .......... .• • • _ 0.0 

0.7 0.7• 0.74 0.76 0.• $1n ß 0.8 
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0.22 0.24 0.26 Sin o 0.28 

FIG. 14. Reflection coefficient magnitude at a H20-TeO2 (001) interface 
near the null as a function of incidence angle for azimuthal angles of 25.65* 
(dotted), 28.65* (solid), 31.65' (dashed) and phase for 25.65* (dash-dot- 
dot), 28.65* (dash-dot), 31.65' (dash-long dash ). 

FIG. 16. Reflection coefficient magnitude at a H20-sapphire (010) inter- 

face near the null as a function of incidence angle for azimuthal angles of 
3.19' (solid), 9.0* (dashed), and phase for 3.19 ø (dash-dot), 9.0 ø (dash- 

long dash). 
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crystals as did V for the cubic crystals. Out of the three planes 
of the quartz crystal, only the Y-Z (100) plane gave a null in 

the reflection coefficient. This is consistent with previous 

experimental results •4'•5 that showed that only the (100) 
plane of quartz has a pseudosurface wave. Moreover, the 

reported phase velocity and the azimuthal angle agree with 

our findings. As Table IV indicates only the X-Z (010) 

planes of sapphire and LiNbO3 exhibit nulls. Note that, in all 

computations piezoelectricity is neglected. So, our results 

apply only approximately for piezoelectric materials. 

IV. CONCLUSION 

In this article, the results of numerical calculations on 

the acoustical reflection problem at the liquid-anisotropic- 
solid interface are presented and reflection coefficient plots 
for various solids are obtained. The null found in the reflec- 

tion coefficient for some materials corresponds to an effi- 
cient excitation of a pseudosurface wave in the solid materi- 

al. Amo,ng the anisotropic materials we examined those sur- 
faces that support pseudosurface waves seem to have a null 

in the reflection coefficient. It is possible to some extent to 

classify the crystalline materials for the existence of the pseu- 

dosurface waves. In general, materials which are nearly iso- 

tropic do not support pseudosurface waves, and hence, they 

do not have nulls in the reflection coefficient. In particular, 

we have determined that the presence and angular extent of 
the null angle depend on the anisotropy factor in cubic mate- 

rials. For (001 ) and ( 111 ) planes a high anisotropy factor 

will correspond to a wide null in the reflection coefficient. 

On the contrary, the (011 ) plane of a cubic material requires 

an anisotropy factor smaller than unity for the presence of 

the null angle. We were unable to find nulls in a few materials 

we examined that belong to the hexagonal crystal class. All 

tetragonal materials under investigation showed nulls at 

their (001 ) planes. 

The presence of the null angle provides a wideband 

matching from a bulk wave in the liquid to a shear wave in 
the solid. By reciprocity the same should hold true when a 

QS wave is incident on the solid-liquid interface from the 

solid side at the proper angle. This fact can be used as a 

method for coupling acoustic power from one side to the 
other without any bandwidth limitation. One disadvantage 

of this method is that this coupling occurs only for a very 

narrow angular aperture, hence, one has to use wide beams 

with a narrow angular spectrum. 
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