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. \0 '2)4(0(0% REFLIECTION OF PLANE WAVES FROM THE

FIAT BOUNDARY OF A MICROPOLAR EIASTIC RALFUPACE

Abstract

This paper is concermed with the investigation of the effect
of picrostructure in the solution of sevetal problems of wave propa-
gaticn. The propagation of plane waves in a micropolar elastic half-

space and their reflections from a stress free flat surface are

-studiec. It has been found that in a micropolar elastic solid six

waves can exist iraveling at four distinct speeds, three of which
disappear below a critical frequency depencent upon'the character
of the medium. FReflection laws and amplitude ratios are presented

Q.

for three specific problems.
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INTRODUCTION

The classical elasticity theory is believed to be inadequate for
the treatment of deformations and motions of a material possessing gran-
ular structure. 1In particular, the affect of granular, or microstructure,
becomes important in transmitting waves of small wavelength and/or high
frequency. When the wavelength is comparable with the aversge grain size
the motion of the grains must be taken into account. This introduces
new types of waves not encountered in the classical theory.

The present paper is an attempt to study the effect of microstructure
in the solution of ;everal problems concerning wave propegations. To
this end we use the theory of micropolar elasticity developed in a series
of papers by Eringen and his coworkers [1] to [3].

The basic difference between the theory of micropolar elasticity

and that of classical elasticity is the introduction of an independent
microrotation vector. In classical elasticity all other quantities can
be obtained from a knowledge of the three camponents of the displacement
vector. In micropolar elasticity, in addition, we must have knowledge
of the three components of the microrotation vector. The development
of the general theory shows that such s80lids can support couple stresses
and may be affected by the spin inertia.

In Chapter 1 we present a resume of the basic equations of micro-
polar elasticity necessary for the analysis of wave motion. A complete
derivation and discussion of these equations were given in 196L4 by
Eringen and Suhubi (1], [2]. Recently Eringen [3] has recapitulated the
micropolar elasticity and studied various questions on stability and
uniqueness of the solutions of static and dynamic boundary value problems.
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Using this theory we determine the types and speeds of plane waves in an
infinite micropolar elastic solid. New dispersive microrotational waves
are found in addition to those similar to the classical ones. The dis-
persion relations are discussed in detail resulting in several inequalities
among the constitutive coefficients. We also find a cutoff frequency
for several of these new waves below which they degenerate to a vibratory
motion of the medium.

Chapter 2 is devoted to a discussion of reflection of plane, longi-
tudinal displacement waves from a flat free surface. Reflection angles
and amplitude ratios are obtained. Certain special cases are studied
in detail and a few typicel curves are sketched. In Chapter 3 the same
program is carried out for the reflection of coupled transverse shear
and microrotational waves and in Chapter 4 for those of longitudinal
microrotational waves. Chapters 2 and 4 also contain am analysis of the
limiting case when the incident waves are grazing parallel to the boundary.
. The first limiting analysis in Chapter 2 is similar to that presented by
Goodier and Bishop [4] for classical elastic waves (see also Ewing, Jar-
detsky and Press [5]). An experimental verification of the findings of
Goodier and Bishop has not been made though Kolsky [6] states that the
generation of a transverse wave when a longitudinal wave runs parsllel
to a free surface has been observed experimentally. In Chapters 2 and 4
we also use a limiting analysis due to F. C. Roesler [7] the results of
vwhich in the classical case have been verified experimentally by D. G.
Christie [8]. The content of Chapters 2, 3 and 4 is believed to be new.
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CHAPTER I
PIANE WAVES IN AN INFINITE MICROPOIAR EIASTIC SOLID

This chapter is concerned with the discussion of the propagation
of plane waves in a microelastic solid. The analysis is based on Eringen's
theory of micropolar elasticity [2], [3]. Brief accounts on the subject
are also to be found in an independent paper by Pal'mov [9] and one by
Mindlin [10]. While the present work has certain similarities to the
first of these papers, it differs from the second and, in fact, some of

the results are in direct contradiction.

Basic Equations

Eringen's theory of micropolar elasticity is based upon the follow-
ing equations:

Balance of momentum:

t +o(t, -1) = 0 : ) 1.1

L,k e(f, u,) = (1.1)
Belance of manenf of momentunm:

+€ .t +po(L -50) = 0 1.2
mrk,r kér 2r o k J qk) ( )

Conservation of energy:

pE = tu(vz K~ Ser vr) +o, Vz,k (1.3)

Constitutive equations:

tkl = A ur,r + p(uk" ) + K(u‘ € Ser % ) (1.4)

Teg = P Oy v PR TR, (1.5)
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vhere A, u, K, , B and 7y are the material modull and

tkl ® gtress tensor, Z couple stress tensor
o) & density, body force
uk ® displacement vector, £ nmicrorotation vector

2 E body couple, microinertia

=N o f e

S
e 8 E;a
"

€ 2 internal eunergy density,

. € &8 tati symbol (€ = € -€ =
kgm = PETTUtAtion symbol (€)), = €py) =€y, = g, = €5y
= = d all = 0
—6215 1 an other € i )
8k£ & Kronecker delta ( = 1 when k = £ and zero otherwise)

Here we employ rectangular coordinates X (x = 1,2,3) or ('.x,l ®x,

2
Also indices following a comma indicate partial differentiation and a

x By, x3 2 z) and the usual sumation convention on repeated indices.

superposed dot indicates the time rate, e.g.,

" "

e ® &0 % Twm - a8

Eringen [3] has shown that the following inequalities among'the material

moduli are necessary and sufficient for the internal energy to be non-

negative
0 < 3N+ 2u + K 0 < 0 < «
(1.7)
0 < 3x+2y -7 <B <7 0 <7

Upon substituting (1.4) and (1.5) into (1.1) and (1.2), respectively,
we obtain the field equations of the theory

-pu .8
Btwdu, ot ety e By Py =0 (1.8)
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K - - (2] = .
(a +8) Pyt 7 Ot K i Vg TG - PI = O (1.9)
vhere we have also set f = £ = 0 ,
The boundary conditions on tractions and couples at & point of the
surface J of the body )+ P are expressed as
e ™ T Y%
onf
Mt Bk Ty
where t‘ and mz are respectively the surface tractions and surface
couples prescribed on f ana n, 18 the exterior normal to S .
With the use of (1.4) and (1.5) these read
A + K - =t 1.10
Up B bl pruy Oy b k(e s %)y y) (1.10)
- 1.11
R Wi A RV (1.11)
It is convenient to express the field equations (1.8) and (1.9) in
vector form
2 .
(Cac) AV ) ~-(cCarcd)Va(Va +covxe =3  (1.12)
1 3 2 p) 3 ~
2 2 2 2 2 -
D) - v - = l.
(ch+c5)v(v ?) cl;Vx(Vx!)+uo xQ-2u) @ 13)
where
2 g A2y 2 g b 2 g K
1 P 2 P 3 02
L PJ 5 pJ 0 J PJ
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We now decompose the vectors X and @ into scalar and vector
potentinls as follows
L & Vu+Vxy V-U = 0 (1.15)
P 8 VO+VXxQ Vg = 0 (1.16)

Introduction of these potentials into equations (1.12) and (1.13) yields

V[(ci+c§)v2§-§]-Vx[(c§+c Y Vx(vx])

- C

W Wi

Vxg+Ul= 0 (1.17)

V{(ci-l-ci)vaé-miﬁ)-;’]‘-Vx[ciVx(sz)

2 .
-u(e) VxU+ 2w $+2l= 0 (1.18)
- These equations may be expressed as
Va+VxA=B=0 , VA = 0 (1.19)

vhere the scalar potential a and the vector potential A are defined
as the appropriate quantities in the brackets. In particular, we can
write, [11, p. 52},

8 = V-g and A = Vxg

vhere ( 1is defined by
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H |

dv

¢ -/
Vv

In the present case B ® O , hence { = 0O so that

Thus the necessary and sufficient conditions that equations (1.17) and

(1.18) be satisfied are that each quantity enclosed in brackets be iden-

tically zero. Hence

(ci + ci) “a = a (1.20)
(ci + éi) e o - 2“?) = o (1.21)
(c§+c§)\7’2n+c§\7x2 = U . (1.22)
ci veg-auig-r.wiv::u = ¢ - (1.23)

It may be observed that equations (1.20) and (1.21) are uncoupled for the
scalar potentials u and @ while equations (1.22) and (1.23) consti-
tute a coupled system for the determination of the vector potentials
and ¢ . »

Plane waves _i_q_ Infinite Medium

Plene waves advancing in the positive direction of the unit vector

Y may be expressed as

{E,i)n:QJ" {&,b,A,B}eXP[ik(.Y.'Z-Vt)] (1.24)

vhere a , b are complex constants, A , B may be complex constant
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vectors, v 1is the phase velocity, k is the wave number and r is the

position vector. ‘thus

2T
k = 2

» ko= xLI+yd+zk
in which £ 1is the wavelength and J , J , K are the unit cartesian

base vectors.

Substitution of (1.24) into (1.20) yields

2 2 2 -1
V] = e *cs = (AN+ 2u + K)p (1.25)

Hence, if vl is to be real we must have

A+2u+ Kk > 0 _ (1.26)
From equation (1.15) we obtein for the displacement vector

= ik Te -v,t

') tkoay exp(ik (™ £ - v t)]
which is in the direction of propagation. Hence these waves represent
the counterpart of the classical dilatational waves. For « = 2 , (1.25)
gives the classical wave speed. Since the displacement is in the direc-

tion of propagation for the waves tra.veling at speed vl we shali desig-
nate them longitudinal displacement waves.

Turning our attention now to equation (1.21), for the speed of

propagation v2 , we obtain

2

2w

2 2 2 )
v, = (cb, + cs) + -:2- (1.27)

Introducing the angular frequency w by
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v 2w
wz.?"’f=2rr;-zv=kv (1.28)
equation (1.27) may be written as
24 c2
2 b a+f +
. S N - 1 . A (1.29)
2 2
2uy pJ(1 - -—5)
(1 - —ug) pJw,
2

Equation (1.29) shows that the speed of propagation vy depends on
the frequency w2 . Bence these waves are dispersive. In particular

if > W a
i w2 2 wo an
a+p+7y > 0 (1.30)

then v 5 is real and the microrotation waves exist. The microrotation

vector ? is given by
® = W =ik byemlik(y - v,t)] ' (1.31)

This expression also shows that the microrotation vector points in the
direction of propagation. This is a new wave not enc.ountered in clessi-
cal elasticity theory and to distinguish it from other microrotational
waves we shall call it & longitudinal microrotational wave.

It w, =2 Wy =W, the wave has infinite velocity v, ‘as given
by equation (1.29) and the wave does not exist.
When @, <2 0, equation (1.29) shows that the speed vi is

negative and v2 is pure imaginary, that is,

= T
v, ¥ 1l72' (1.32)
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Hence, it appears as if ~Jé wo acts as a cutoff frequency, below which
the wave vanishes. Carrying the investigation a little further, since
w >0 equation (1.28) shows that

koo 2.l
2 v oy l (1.33)
2 2
where the upper and lower signs of (1.33) correspond to the upper and

lower signs of (1.32) respectively. Considering first the upper signs,
from (1.24) we may write

w

)
P = b exp("‘""V ! X ° r) exp{-i “’2”
2

This represents a harmonic vibration of the medium the magnitude of
which grows exponentially with distance and therefore it is upsatisfac-
tory. For the lower signs in equations (1.32) and (1.33) we obtain

w

$ = b expl- FiT 2 2) emliut) (1.34)

vwhich decays exponentially with distance. This is a physically accept-

able motion. For w2 < 1

2
“o

W
|v2| - JCE + cg

and equation (1.34) approaches a finite limit as “é -+ 0 . In particular,

5 and hence ? becomes independent of time and reduces to a static

microrotation.
For the investigation of vector waves we substitute (1.24) into (1.22)
and (1.23). Hence

@ 4+ia yxB = 0 (1.35)
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1
1, ¥x&+B B = O | (1.36)
where
a, = lsg(v2 -c2 -ci) , o:B = kc2
2 0, 2 2 2“% (4-37)
By = K9 BB=k(v'°u';é—)

Forming the scalar products of equations (1.35) and (1.36) with y

it becomes apparent that
Y A = x"B =0 (1.386)

proviced «a, £0, ay kO, B, #0 and By # 0 . Hence both vectors
A and B 1lie in a common plane vwhose unit normal is y . Solving for
B from equation (1.36) we get

B = -ifxx& (1.39)
B

from which we conclude that the three vectors y , A and B are mutually
perpendicular.

Equation (1.35) shows that if A § O then B & O making both [
and § vanish. Thus there would be no coupled waves propagated. A
similar analysis from equation (1.35) holds for B = O . These two
waves cannot vanish unless they do so simultaneously, hence they are
truly coupled waves.

If U , and hence ¢ , are non-zero, the second terms of (1.15)1.
and (1.16)l will show that u and @ are normal to each other and to
the direction of propagation y . Hence they are transverse waves. We

call the wave associated with ] & transverse displacement wave and the

one associlated with ¢ a transverse microrotational wave. The transverse
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displacement wave is similar to the classical shear wave and will reduce to
it in the limit of classical elasticity. The appearance of a transverse
microrotational wave coupled with it is npew.

The velocities of propagation of these waves are determined by carrying
(1.39) into (1.35) with the use of (1.38) for A # Q gives

a(v2)2 + bv2 +4c = 0 (1.40)
where
2w§
a = (1--—)
w2
2 2
2w w
2 2 0 2 0
P = -[ch + c2(l - 2) + c}(l - 2)] (1.41)
w W
2, 2 2
c = cb’(c2 + c3)

Equation (1.40) is a quadratic equation in v2 which yields two distinct
speeds of propagation. These waves are dispersive. In ‘the classical
case the roots of (1.40) are v=*% 0, v = *4i/p of which the last one
is the speed of shear waves given in the classical theory. In order to
have two real velocities both roots of eguation (1.40) for v must be
positive. |

The positive roots of equation (1.%0) are

v, = [51;- (b + Vo2 - hae)]2 (1.k2)
v, = [2—::.- (v -2 - hac)]l/z (1.43)

By use of (1.41) we can eventually obtain
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2 2 2 ci 20,2
*Jbz - YJac = H(ch - c2 - c_j) + (c2 -é—) &;2]
2w
2 2 70,1/2
4+ 2¢C ¢ — 1.44)
3%y 2 (

vhich shows that the discriminant is greater than or equal to zero since
K>0 and 7 >0 by (1.7) end w> O* . From equation (l.kl)1 ve see

that if w>w a>0, 1f w=w then a = 0, and finally if w<wc,
c c

a < 0. Since the mmerator of ’»'5 is always positive we conclude that

\r3 is real for w >w , infinite for w = w , and imaginary w<wc.
(a4 (84

The detailed analysis in the next section shows that v, remains real

4
and finite for all w . Hence, this critical frequency w, -2 wo is
again a cutoff frequency for one of the wave speeds.
In sumary of this section, we find that there are six waves travel-

ing at four distinct speeds in an inffnibe micropolar elastic solid:

(2) A longitudinal displacement wave at speed vy similar to the dila-
tational wave of the classical theory; (b) a longitudinal microrotation

wave iraveling with a speed v2 with its microrotation vector in the
direction of propagation. This motion exists as a progressive wave only

if the frequency w 1s larger than the critical circular frequency

wc =~f2 wo « Below ihis frequency the wave degenerates into sinusoidal
vibrations decaying nthdistance from the source. {c) The remaining
four are two sets of waves camposed of two waves each. One set propagates

at speed v5 and the other at speed v Each set consists of s trans-

N
verse displacement wave coupled with a transverse microrotational wave.

An analysis similar to that for the longitudinsl microrotation wave shows

il’An investigation was made allowing W < 0 and w imaginary. No physi-
cally acceptable progressive wave solutions were obtained. This is not
surpriging, however, since the basic theory does not contain a mechanism
for internal friction.
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that the set of coupled waves traveling at speed v3 exist only if
w > w degeueratlng into & distance decaying siouscidal vibration
¢
otherwise. A more detailed mnalysis of the dispersion relations (1.23),

(1.42) end (1.43) is carried out in the next sectionm.

Analysis of Dispersion Relations

In this section we study the dependence of wave speeds on freguency.
The wave speed vl is constant, thus we only need to study the characters
of and th and .
v2 s en v} vh
According to equation (1.29) we have

2

2w

2 et 2 -1 0
v, = (ch+ c5)(l - Xx) s x E -:5 (1.45)

A sketch of (1.45) is shown in Fig. 1.1. The sketch of vz versus w
is simply a reflection of the figure about the line x = 1 (w = w =42 wo)
a8 shown in Figure 1.2 since x and w are mutually reciprocal.

For the wave velocities v3 and v we have

Y
- c2
v:;,h - 2(;-x) (ci + c:; + ci - (ci + —2—3-))(
, / ca
t [(ci-ci-ci) + (ci-k-zz)x]%- 2c§cix) (1.46)

. - 2
where the upper sign refers to v§ and the lower one to vh in the above
and in what follows. Letting x - 0 (w —» =) (1.46) yields the short

wavelength values

v - ch s v2 = C +(!2 (l.ll»'])

&
N
W

For x -+ » (w - 0) the long wavelength limits are obtained
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i
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!x:l X 9 ©
0 T
: |
l 2
v
l 2
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2
Figure 1.1. -Bketch of v2 versus Xx .
2
v
2 '
I
|
|
!
|
|
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- 0 Twew W —w
| c
V'2 <0 l
2- |
|
|
|

Figure 1.2. Sketch of vi versus w .
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2 2 1 2
vi = O ’ v, = ¢, +c, (1.48)
J - <
If we allovw ®w = wc then X = 1 and the denominator of equation
(1.46) vanishes. This leads to v3 = for w> W r Vg ® - for
w<w and
c
c2
2 2, 2 2,, 2 -1
1lim v, - ch(c2 + cj)(ch + 3 ) (1.49)

xX—-1

2 2 2
We see that if c:3 = O then v}4 = c2 -5 , the classical speed, in all
2
three cagses, If ch = 0 also, then vg = 0 and we have the complete

classical situation.

2 2
Camparing our knowledge of v5 and vh at this point we see that

st w=w vi 18 infinite and vi is finite and.they both approach
finite values in the limit as w tends to infinity. Hence, the question
arises as to whether or not they intersect. If vi (=) > v§ (o) then
the curves intersect, otherwise they do not. Assuming the curves inter-
sect then there exists an .w such that v§ = vi . Using equations (1.42)
and (1.43) we find that we must have v° - bac = 0 . In an sarlier dis-
cussion of equation (1.44) we concluded that

2
b” - khac > 0 all w

the equal 'aig;n being in the limit a8 w -+« ., Hence we reach & contra-
diction and the curves do not intersect for any finite @ . They may,
however, approach the same limit 88 W.— e« . This means vi(-) - vi(-)

2 2
or c, = cz + ci . In general then vi(w) > vu(u) , except possibly at

infinity vhere the equal sign holds, hence v§ > vi for w > uc wvhich
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2 2
Ch z 02 + CB (1.50)

Using equations (1.1k) we obtain an additional inequality among the con-
stitutive coefficients

> H+tK (1.51)

[ ]

2
which must be satisfied to have a consistent solution for v_ and v2

3 y -
We can continue this analysis by taking the limits of the deriva-

2 2
tives of v3 and s ? etc. The results of all these computations are

incorporated in Figure 1.3.
2
Next we investigate the relative magnitudes of vh at w= 0,
we=ow o, and w = o . Equations (]..lﬂ)2 and (l.k\8)2 shov immediately

that if c§ $ 0

vi(O) < vi {w) - (1.52)
Likewise, comparison of equations (1.47) - and (1.49) shows that

vi(uc) < vi(-o) ' (1.53)

To compare vi(o) and vi(wc) . we must compare equations (l.ltB)2 and

2 1 2
(1.49). From the inequality (1.50) we see that c, +3 c§ < ¢, » OF

vi(o) < vi(uc) . Consegquently we conclude that -
2 2 2
v (0) £ v(w) < v (=) (1.54)
and show theqe results in Figure 1.3.

Comparison of equations (1.25) and (l.l&"[)2 with the aid of (1.14)
shows that
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2 2
1 TN (1.55)

A similar comparison of (1.25) and (l.h?)l for vi and v§ is inconclu-

sive. If

§‘27\+2p+K (1.56)
then

v§ > vi W > (1.57)

: 2 2 2
However, if the opposite is true then v3(~) < v, and since v}(w)

2
increases for decreasing w and vl is constant there exists a fre-

2 2
quency w , say " , where w < w* < o such that Vi =V e That is,
*

w* is found by equating equation (1.25) to equation (1.46) with the upper
sign and solving for w . Then we conclude that

va > v2 w < w < w*
3 - 1 c -—
(1.58)
2 2 »
v > Vv w > w
l - 5 -

Since the reflection problems comsidered in the later chapters do
not simultanecusly involve longitudinsl displacement waves and longitu-
dinal microrotation wvaves a comperison of speeds vi and v2 is not
necessary.

2 2 2
We now examine the relative magnitudes of v2 » Vv, and vh . Com-

3
parison of Figures 1.2 and 1.3 show at infinity

v‘:(.) > vi(.) > vi(..) (1.59)
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2 2 2 2
and hence v2 will be greater than \r5 for w>uc if v2>v3 at
w=w . To this end we determine the limit of vi/’vz &b w-,wc
(o4
(x»1) . At x =1 this ratio simplifies to
2
Vs 2 1 2,2 2.-1
- = + - .
2 (c}4 > 03)(c1+ + cs) (1.60)
v
2
2 2 2_1 2
Now if we are to have v, > \r5 then c:5 > > c5 from which (1.14) shows
that the inequality
1
a+p > = Jk (1.61)
2

among the constitutive coefficiénts must be satisfied. If the opposite

of (1.61) is satisfied then there exists a frequency w** guch that

2 2 2 2
v2(w**) = vi(w**) vhen w < w*™® < w , In this case Vs > v, when
w <w<w* andvaavhen Wt <w.

c 3 2
Briefly, if inequality (1.61) 1s satisfied then

v2>v2>v2 w < w
2 3 4 c

holds. If the opposite inequality is satisfied there exists w*™ such

that either

vi > vg > vi w < w < w | (1.62)
or

2 2

v, > vi > v, w** < w (1.63)

We have covered all pogsible cases without definite knowledge of the
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‘ relative values of the constitutive coefficients. These relations are
. vital to the analyses in the remaining chapters.
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CHAPTER 2
REFLECTION OF A LONGITUDINAL DISPIACEMENT WAVE

Formulation

This chapter is devoted to the study of reflection of a longitudinal
displacement plane wave at & stress free plane surface of infinite length.
The free surface is teken to be the x,y-plane with positive =z pointing
into the mwedium, Figure 2.1. An incident plane wave advancing in the
direction of a unit vector _\41_ is reflected at the z = O plane. To
satisfy the boundary conditions on tractions and couples at the boundary
it is necessary to postulate the existence of reflected waves in three
distinct directions, X, ya and XY, - These are (1) a longitudinal
displacement wave having speed vl in the direction ,yz at an angle
6 , (2) at speed v

2 4
transverse microrotational wave in the direction of Y, and (3) a simi-

a transverse displacement wave coupled with a

lar set of coupled waves in the x,} direction at speed v3 if w> wc .
If w< uc this last set of wvaves degenerates to a vibration of the
medium as discussed in Chapter 1, thus we assume w > w in the remainder
of the chapter.

If the x = 0 plane is so selected as to make the incident dis-
placement vector remain in the y, z plane then the reflected waves at
the free surface z = 0 will also have their displacement fields in
the same plane. Thus the study of the problem in two-dimensions is
sufficient for the understanding of the three-dimensional problem. The

nonvanishing components of the potentials are given by



General Technology Corporation

25

Figure 2.1. Reflection of a longitudinal displacement wave.

- oo e ofs an e

Figure 2.2. Boundary conditions on surface z = 0 .,
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ﬁa =2 exp{i(kl X, " k- wlt)]
L = Ia, exp[i(kB X, " E- wﬁt)] (2.1)

g = (B, Z+ B K explilk, ¥ - & - @)

vhere w=kv, (0 =1,2) ,8 =3, 4) and the repeated indices are not
sumed. The coefficients A and B are related to each other by e-
quation (1.39) so that

2
iw A
0 3x
= - - 202
B.j 2 (v5z M Vay K) (2.2)
X ( 2 0 2)
3\Vz ” 2 =Sy
3

wvith a similar equation for %‘ .
With the boundary surface 2z = O being free from tractions and

couples we must have t‘e =m, = 0 . Thus through (1.10), (1.11) and the

fact that u1-q>2==q>3-0 ve get

t = A(u +u
24

- L)t (a»wc)(fz’ZZ -U. ) = o0 (2.3)

X,Yz

’

t = u - u U +xk(o -9 - 2.4
o = ME U )+ )@ U k(e e ) =0 (2.4)

m = 0 - ¢ = O 20
51 7( 2,yz y,zz) (2.5)
which must be satisfied at z = 0 forall y and t . The positive
directions of surface tractions, couple and the exterior normal are

shown in Figure 2.2.
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Basic Solutiorn

The solution of a reflection problem consists of determining the
amplitudes and directions of the reflected waves when a known wvave is
incident on the boundary. The potentials (2.1) are used in the boundary
conditions (2.3), (2.4) and (2.5) together with equation (2.2) and a
similar equation for Eh to determine the three amplitudes a2 s A

3x

and Ahx in terms of al .

The potentials (2.1) satisfy the boundary condition (2.3) at z = O

if
w = w3 = W, | (2.6)
klvly = klvzy = k}v}y = khvky (2.7)
klle = klv2x = k}v}x = kkvhx (2.8)
and -

2 22 2 22
Mlkl + (2p+x) alklvlz + Mzk 1 + (2p#k) aeklv22
(2 )k2 A (2 )k2 A = 0 (2.9)

Since the incident wave is in the y,z-plane Vig = 0 and (2.8) yields

showing that all the waves lie in a y,z-plane as assumed earlier. Equa-
tion (2.6) states that all the frequencies are equal and equation (2.7)
will allow us to determine the angles of reflection of the various waves
for a given incident angle contained in VJJ . Using the relation w = kv
we can write (2.7) as
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- v v Y v
Iy 1
. 1 1 3 L
‘ where ¢ has & simple physical meaning, nemely the speed of the wave-
front along the free surface. In terms of the angles, (2.10) may be
written
|
v vy,
cos6_ = cosf , COB8_ = 2 cos6. , cosb, = — cosb (2.11)
2 1 v, L v, 1

showin 6 =6_ .
& %% =%

Equation (2.9) is one of the three needed to determine the ampli-
tude rati a A_/a_. and A /a_ . The other two bounda
o8 a/a, , A/, b %y - The i
conditions (2.4) and (2.5) give the two additional equations needed. The

three equations B0 obtained are

A+ (2-':3+K)viz] 8, + A+ (2p+l<)v§z]a

2
. Vv v
: 2 3z 2 4z
- (2k)v. ==A_ - (2mK)yv, —A =0 (2.12)
ly v3y 3x ly ka hx
(2pr4x) V]Jvlzal + (2p+l<)v2yv21a2
v2 w2 v2 2w2
2 2 0 3 2. o 2-1
* vy (k) 2 B+ K 2 2 [v3(1 E}_) ch] }Aix
3y 3 3y
2
v 2 2 2
2w
2 bz “oyn 2 o, 2.-1
* vy, ((uec) —= -+« e [V,}(l - —2') -y =0 (2.13)
Vhy wh Vhy Uh
2 2
| 2w 2w v v
. 2 0, 2,2 0, 2.-1 3y ‘bz
- ABx = -[v3(1 -3 ) - ch]{vh(l -= ) - ch] > ” Ah (2.14)

x
w3 w, 3z by
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In the special caese of Vly = 0 equation (2.12) reduces to a, = -a, and

the other two reduce to a sysiem Of LomdOgencous cguations for the deter-

mination of A and A The determinant of the coefficients is

3x hx °

nonzero, hence A}x = Ahx = O . This is similar to the classical case

in that an incident wave normal to tne surface results in a reflected
. . o
wave of the same type normal to the surface with a phase change of 130 .

ly
(2.14) to eliminate A}x . The solution for az/atl and Alu./al is

2
For vly # O we divide equations (2.12) and (2.13) by v and use

found to be
&2 2 2 2 2
a—l' = ([N + (M2p+x) tan 61][(;.:“() tan eu T (;H-K)Ql ‘c,a.ne5 taneh-Qz
tan@
2 2 L 2 2
+ (qu+Q5) tan65} + (2u+k) tan6, tans, (Q,-1))
) (-In + (2 )ta29][( )tan26 -( K)2tae tan@ 2
x (-2 + K nl K h-u-p-& Ql n5 A-Qz
. tang
- 2 2 N 2,2 -1
| + (uQ1+Q3) tane}] + (21+x) (Ql-l) tend, tans, ] (2.15)
and
) By 2
=X . ~2(2p+x) [N + (M2u+x) tan 8. 1tand
al 1 1
{~[A + (2 K)t,az 1 ( K)ta29 ( )2tane tan@
X {- e nel e nh-u- K Ql 3 1)+
tané
2 2 2 L 2, 2 -1
-+ (leq-QB) 93] + (2p#x) (Q}-1) tane, tang, ) (2.16)

where we have written w for the common value of ul = w} w and

)




General Technology Corporation

28
2 2
2w 2w
2 2 0 2 2 0] 2,-1
o f - ——) . - —) -
W w
u2 v2 2w2
2 0 4 2 O 2,-1
i — — 1l - ~—} - .
Q2 " K > 2 [Vu( 2) Ch] (2.17)
w Vv w
hy
u2 v2 2w?
2 0 3 2 0 2,-1
E - —_— - Y
% « 55 vQa 2) - o)
w v w

The general solution for tne amplitude rutios as given sbove can be trans-
formed into different forms by using (2.11) to eliminate 6_ and/or 6,

however, since there is nothing to be gained by this we turn our atten-

tion to scme special cases,

Special Cabses

i. Akx/al -0 . Considering the numerator of equation (2.16) to
be zero, at first glance there appear to be tiree valués of 6l which
meke this amplitude ratio vanish. However, since the .onstitutive con-
stant A is positive two values of el are complex, thus the only real
value of 9l is zero which is the case of & grazing incident wave.

Consider now an incident wave with 06_ = 0, i.e., vly = 1 and

1
Vig ™ 0 . From (2.11) we conclude that 92 = 0 but 95 and 6h are
nonzero. Then (2.16) and (2.14%), respectively, show that Akx = 0 and

ij = 0 . Equation (2.13) is identically satisfied and (2.12) yields

32 = -al . However, since the exponentials are the same when Ol = 62 = 0,

u2 - -ﬁl and the motions cancel each other as in the classical case;

hence we must resort to some form of limiting process as el tends to
zero to obtain nonzero displacements. For this analysis see Special

Cases v. and vi.

ii. 9k =0 . This is the case of reflected waves at speed vh

parallel to the surface. If eh = O then Vg = sinGh = 0 and

Vihy = €086), = 1 which in turn yields
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2

v

Vv = COs@ -
1
4

from (2.10). Then equation (1.55) shows v, > vy,

and el is imaginary. Since our incident wave angle 61 is between

giving cosel > 1

o e]
O and 90 and real this means we cannot have a reflected grazing wave

with speed v

L
iii. 63 =0 . In this case 61 will be real if v5 > vl since
"1
) eos@l - ;—
3

Two possibilities in this case are respectively wiven by (1.57) and (1.58)

corresponding to the inequalities

N

> (A+2p+ «) and % < (A4 2p+ k)

Hence Vg2 V) and 6 1is real if (1.57) or (1.58)l is satisfied.

Using (2.1%) and (2.17)l we can write

5 ta.neh
A}x = -Ql X Aux (2.18)

Multiplying the numerator and denaminator of (2.15) by tane3/tanek and

letting 93 = 0 we get az/al z -1 . If we carry (2.16) into (2.18) and
let 6, = O we get

3
e
A
2 = -2 tanf_(2p + «)(p + ?.-2)-l
a 1 2
1 Ql

Also through (2.18) in this limit Ahx/al = 0 when eh # 0 . For 95 = 0

these results take the forms
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a
2 .
®1
2 2 2 2
A v w v 2w
3x 32, 0 3 2. T 2-1-1
s = Ram(S - D e S (e )T (209)
1 w \/5y
Ahx * vl vh’
~— =0 B cosf, = — R cos@, = —
8 1l v L v
1 3 3

where the angle 6; is given by (2.11)2. This completes the solution
for a set of refleclied grazing waves at speed v3 .
The angle of incidence 91 and the amplitude ratios given by (2.19)
are plotted against w for various values of parameters. Ti.e micro-
inertia j is estimated on the basis of a polycrystalline metal whose

* grain size is approximately 0.0025 inches. Based on this grain size the

6 . 2
lower limit for j is about 10 in. for one grain. For a microvolume

3

of 1000

We also
-3

10 7 1b.

It
7\-'-“.
A and

a.ﬁ.-

grains we get an averege value of J approximately 10 ° in.
assume o to be the mass density of steel, approximately
2 -k
-sec. -in. .
is assumed tnat Kk is small compared to A and u and that
We further assume that & , f# and 7y are small compared to
4 , and in particular, to simplify the calculations we let

y 8uch that the inequality (1.51) is satisfied.

With these assumptions we use (2.19) along with several different
values of the parameter 7/jA . The results are sketched in Figures 2.3,
2.4 and 2.5. The curves in general show that the amplitude ratio
ABx/al increases for increasing y/j\ . If « ¢ O Figure 2.5 shows
that the amplitude ratio for a fixed 7/3% is finite for large w and
becomes more negative for decreasing w until we reach the neighborhood

2
of uc in which case it quickly turns to zero. The curve remains




General Technology Corporation

Incident Angle 8

- \
2 _ 1011 101_1.5 12\ 2

Circular Frequency w2 > w2
. - C

Figure 2.3. Incident angle el vs. frequency with x/A = 0.05 .
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Figure 2.4. Amplitude ratio AB:/al ve. w with Kk = 0 .
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bounded for all finite values of the perameter 7/jA ; however, as this
parameter goes to infinity the entire amplitude ratio curve moves outb
towards infinity. Physically, however, this ratio is bounded since
/A<<1 and J cannot equal zero since it is a function of grain size.
For j = 0 the character of our differential equation changes so that
no wave solution exists.
iv. 6_ is complex. In the previous case we have seen that as

3

61 is decreased from 90o towards 0o the angle 63 of the reflected

o (o)
waves at speed v_ decreases fram 90 1o O faster than 6. . In parti-

3 1
cular 93 goes to zero at 91 = 6; >0 . As 91 is decreased below
the critical angle 9; equation (2.11)2 shows that (vj/vl) cosel >1
and hence cosG5 >1 and 95 is complex. Substitution of

2

Vs 2 1/2 |

sing_ = i(-—2 cos 6. - 1) = inq ‘ (2.20)
3 2 1
"1

and cose3 into the poterntial (2.1)2 with B =3 ylelds

v

2 _ .
Q3 = I'A3x exp(-qu?) exp[ikB(vl coael y v}t)] (2.21)

from which we see that the transverse waves at speed v3 becone a dis-

turbance propagating along the boundary at the speed

v v
3 - 1
cosé cosé

3 1

<1

= C ‘ . (2.22)

whose amplitude decays exponentially with distance z into the medium.
This is similar to the classical case for an incident shear wave, but
differs in the fact that a2/al is no lqnger equal to one and Ahx/al
is no longer zero. Thus as 61 is decreased beyond 9; we have a
disturbance along the surface, a reflected longitudinal wave at speed

vl and angle Ol , and a set of coupled transverse waves at speed vu
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and angle 6, . With e5 complex the amplitude ratios a2/al and

Ahx/al are also complex indicating phase shifts in the reflected waves.
At a first glance one is tempted to call the exponentially decaying

surface wave a Rayleigh wave. On closer examination, however, we see

i
whereas a Rayleigh wave has &

that the wave speed varies continuously from v = v3 when al =0* and

v = \ vhen el = 0 as we decreesse Bl

fixed speed. The incident wave forces the surface disturbance to travel
at a specified speed.

An independent empproach cen also be made by setting al =0 in

(2.12) to (2.14). The three homogeneous equations may possess nonzero

solutions for 32 N A3x and Ahx if the determinant of the coefficients

is zero. This leads to & polynomial equation for the determination of

the Rayleigh wave speeds. The problem was studied by Suhubi and Eringen
{2].

v. First limiting case for a zero angle of incidence. We now
study the problem of reflection when the angle of incidence 6l tends

to zero. From the previous case we know that 6 is complex unless

3

and (1.58)2 is satisfied in which case a3 is real and is given

is likewise given by

w > w*

by cose3 = v}/vl . The limiting angle 6

cos8, = v, /v

L W

91 and tends to zero also. Thus the general solution reduces to zero

motion as el goes to zero.

L
from (2.11)5 with cosel = 1 . The angle 92 is equal to

To obtain a nonzero solution we present briefly an analysis similar
to the one given by Goodier and Bishop {4] for the classical case. The
basic procedure is to expand the angle relations (2.11) in powers of
9l (Taylor's series about el = 0) and similarly for the general solution
given by (2.15) and (2.16). Afterwards the product alel is assumed
to remain finite as 91 tends to zero. The resulting solution is a
nonzero motion. Carrying out this process we find for the scalar po-

tential
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- = - & 2 :
i=u +u, = -alela(i-y-; + ik z) explik, (y-v.t)] + 0(6)) (2.23)
where
2
2,2 .1 _1/2
o ® (2m«)” (Q[-1) (5 - 1)
V.
4
2 2 2
v v v (2.24)
1 2 2,1 _.1/2, 1
R () (2o 1) - u - @ (@ (YR M
i A v3
2 2
1 -1
+ ) & YAy
Vh V5

If we allow 91 to go to zero and al

that -23191 = ao = constant then equation (2.23) will yield a nonzero

to tend to infinity such

motion of the medium. The first term in (2.23) is constant and could
represent the incident wave; however, the second term which represents
the -reflected longitudinal wave is proportional to the distance 1z .
This is physically unacceptable because it becomes unbounded for in-
creasing z . Also, as el tends to zero the incident wave and the
reflected wave of the same type become indistinguishable from each other
physically. Even though this theory has its flaw it does predict a
reflected shear wave coupled with & microrotational wave at speed vh .
vi., Second limiting process for a zero angle of incidence.
In the case where el tends to zero it may be possible to obtain a
physicelly meaningful solution following a method similar to the one
used by Roesler [7] for the classical case.

The basic equations (2.12) and (2.13) are solved for the ratios
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Apx 2 2 -1
- = -[A 4+ (M2u4x) tan 6 J[(21#«)(Q_-1) tans, ] (2.25)
a2+a1 i 1 L
Aux 2 2 2
=y = —(2u+K) tanel {(p+x) tan Gh -n - Q2 - (u+K)Q1 tanejtaneh
tané
2 2 4 -1
+ (qu + Q3) tanes} (2.26)

where (2.14) has again been used to eliminate ij . As 9l tends to

zero the first ratio has a finite limit different from zero while the
second one tends to zero. Experimentally the measurable quantity for

the longitudinal displacement waves is a2 + al but neither a2 nor al
alone since at el = 0 the waves are indistinguishable. We then conclude
that Ahx is finite and given by equation (2.25) since we assume the

physically measurable quantity a, + a, to be finite. For finite A

1 Lx

(2.26) shows that e, -8 must be infinite. Hence if e, + &, is
finite and 82 - al is infinite they must be of opposite signs and both
infinite in magnitude. The potentials (2.1) for the displacements then

have the values

i = ﬁl + 52 = (al + 32) exp[ikl(y - vlt)] (2.27)

and

I'Ahx exp[ikh(y coseh + 2z sineh - vut)] (2.28)

&

where A is given by (2.25) and the angle 6

I is given by (2.11)388

4

&£

(2.29)

cosf
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This solution satisfies the wave equations and appropriate boundary
condd tions and has bSeen verified experimentally for nlassiéal elasticity
[9]. 1In the present case it predicts a set of coupled waves at speed

vh and angle 9h in addition to the longitudinal wave at speed vl

along the surface. As pointed out previously, under certain conditions

we may have reflected a set of coupled waves at speed v_ and angle

3

2] also.
3

Surmary
In summarizing the analysis of this chapter, we have seen that an

incident longitudinal displacement wave at & plane stress free boundary,
in general, reflects as a wave of the same type and two sets of coupled

transferse waves. One set of coupled waves travels at speed v_ in the

3

direction 13 and the other set travels at speed vh in the direction

o
Y, - For normal incidence (6l = 90 ) it was shown that the waves at

speed v3 and Vh vanish and the only wave reflected normal to the

surface is a wave of the same type as the incident one. As the angle of

o
incidence is decreased from 90 +the general solution is given by equations

(2.11), (2.14), (2.15) and (2.16).
+*
The general solution prevails until Gl = el is reached at which

time 63 =0, el 40, and B, 0 - At this angle of incidence (2.19)

. shows that we have a surface motion traveling at speed v_ and & re-

3

flected longitudinal wave at speed v, and angle 6, = el = 9; . As

6, 1s decreased from 6 to 0° the angle 6, becomes complex. The

interpretation here is that we have reflected into the medium a longitu-
dinal wave at angle 91 and a set of coupled transverse waves at speed

vh and angle 6h as well as a set of coupled surface waves decaying

with depth into the medium and traveling at a speed ¢ where v5 >c>v. .

1
Finally as 6. tends to zero we have the limiting solution of case vi.

1
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CHAPTER 3
REFLECTION OF COUPLED TRANSVERSE SHEAR AND

MICROROTATIONAL WAVES

Formulation
In this chapter we study the reflection of a set of coupled trans-

verse shear and microrotational waves at speed v The presentation

h L)
parallels that of Chapter 2 for the longitudinal wave.

Assuming the set of coupled wvaves at speed vh to be in the direc-

tion 11 the boundary conditions will be satisfied if we have reflected

a longitudinal displacement wave at speed vl and direction 12 and the
two sets of coupled waves at speeds v_. and v, as shown in Figure 3.1.

3 L
For the incident waves we have the potentials

U= 14, expL*x(kwx1 I - “’ut)]

(3.1)
21 = (I‘Ily J+ Blz K) exp[i(khxl i “'kt)]
and for the reflected waves we have
52 -8 exp[i(klx2 c L - wlt)]
IIB = I Aﬁx exp(i(kaB *X- wat)l (3.2)

de

(B, Z+3B K expliliy © - o]

. LR 'Y
vhere £ = 3,4 ‘and not summed. The coefficients of 21 &y and 2&
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are related to the respective 1)_1 coefficient through equationgsimilar

L)
F2¥

to (2.2). Assuming Alx known we determine the amplitudes &, s 3

and A .

hx

The potentials (3.1) and (3.2) must satisfy the three conditions
(2.3) to (2.5) for 811 y aend t and z = O . These three equations
enabl. to solve for th 1pli tud ti '
nable us olv (o] e three amplitude ratios aE/Alx ’ A}x/Alx

and A A as well as the angles of reflection.
nd A Ay g

Basic Solution

Substitution of the potentials (3.1) and (3.2) into the boundary

conditions (2.3) to (2.5) shows that they are satisfied if

2 . 2
6h = Gl , cose2 =3 cosel s cose3 ” cosel (3.3)
L 4
and
a A
e , 2 2 2 3x
A+ (2px)v_ ]k — - (2pk)k_ v, v, ==
2z 1 Alx 3 3y 3z Alx -
2 Ahx 2
- (2p+K)kh vhy Vig K;; = (2p+K)kh Vly i, (3.4)
a- . 2w A
2 2 22 22 2 2 0 2,-1, 3x
(2uc)k v v — + [(px)k v, - pk v, + K w [v (l-—=—)-c }=
172y 22 Alx 332 3 3y 0" '3 w2 4 Alx
2
2w A
22 22 2.2 0 2.-1. "hx
G - g v+ K 0glv (1) ] ) =
; w 1x
22 22 2 2 2“% 2,-1
- -((M)khvh - “khvh + K wo[vh(l - wa ) - ch] } (3'5)

and
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1 2 2
. 2w A 2w A
2 0 2.,-1 3x 2 0 2.-1 bx
By, (v (l-—)-¢c]1 =4+kv [v(l-—)-c¢c] —
332 3 u2 y Alx i Zz 4 2 . Ay
2w
) 2 o, 2.1
1 B PAAC R AR (5-6)
| W
Excluding the special case of Vly = O which will be studied later,
| the three equations (3.4) to (3.6) yield for the amplitude ratios
|
|
%2 2 2 2 -2
A—; = Z[(},H-K) tan 61 - u+ QS] (ZWK)(QI ’1) mneltane3 (5'7)
| R 2 2 2 2 '
| —— s o= o) -
‘ Alx A[)\ + (M2pt+x)tan 62][(p+»<)tan el “+Q5]tan91 (3.8)
A 2 2 2
A— = [A+ (M2i4x)tan 0 ] {tand_[(p+«)tan @ -p.-l-Qh]
Alx 2 1 3
-2 2 2
+ Ql ta.n93[(p+K)tan 91 -u+ Q5]}
- (2 x)2 (Q"2 1) tan@_ tan@® tan® (3.9)
i 1 1 2 3 :
2
vhere Ql is given by (2.1'()l and
2 2 2
2 o K ?.9 :h_ [v2 (1 .z_mp.) - 02]‘1
% 223 - 2 4
ly
2 ve o2 (5.10)
2 . 2 Y R
qs 2 L2 y o7 e L
1y
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2 2 2
A & [} & (M2k)tan 92] {(tand_[(p+x)tan 6, -~ u+ Qh]
-2 2 2
- tane3 Q [ (1+4x) tan 6, - u+ Q5]}
2 . (3.10)
- (214«) (Q1 - 1) tanel tan92 tana3 cont.

Thege equations give the amplitudes of the various wave potentials
as functions of the incident wave amplitude and direction (el). Since
we lack definitive knowledge of the constitutive constants further dis-
cussion of the general solution is uninformative and we turﬁ our atten-

tion to same special cases.

Special Ceases

In this section we consider the special cases when an amplitude or
an angie of the reflected waves is zero. In particular, we consider the

case vy, = cosel 2 0 (6l = 900) and end this section with a discussion

1y
= 0).

of grazing incident waves (6l

. 2
i. a2/Alx =0, Since Ql }s never 1 , the numerator of (3.7)
vill equal zero if any one of the following three relations are satisfied

2 2
tan6. = 0 , tand_ = O »  (p+x)tan 91—p+Q5 = 0 (3.11)

The case @ = O is considered at the end of this section (the last case).

1

If equation (5.11)2 is satisfied then 93 = 0 and (3.3) gives for 91 ,

the angle the incident wave makes with'the surface,

(3.12)

o
]
D
]
u< I#ﬁ

Using this result along with equations (3.3) we can reduce the general
solution to
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a 4
o
1x 1x
(3.13)
2 2
A v w 2w
2 -
X o= - 1) - p ek ve 2 V-0 - B
A 2 3 2 4 2 4
1x vh w w
”g 2 2“§ 2.-1.-1
x(-p+m§ - 51 -5 -1

Thus,  if the incident waves are at an angle el given by equation
(3-12) then we have no wave motion associeted with the potential 52 ’
the reflected waves at speed v3 are along the surface, and the coupled
waves reflected into the media travel at the same speed and angle with
the surface as the incident waves.

Now, if neithe% 91 nor 93 is zero, the amplitude 82 can still
vanish for a value of 91 satisfying (3.11)3. Rearranging this eqnatio?

we can write

ua 2w2
2 _ -1 2 0.2 2 0,,-1
cos al = (2pk) (p+ k-« vy, wz [ch - 1‘(l f wz )1 7} (3.14)

which yields a nonzero value of el for which ié vanishes.

We note that (3.8) shows that A also vanishes when equation

3x
(3.11)5 is satisfied. Thus for the angle 91 given by (3.14) the solu-

tion reduces to
a = 0 » A = 0 s —_— = 1 (5.15)

Hence for this value of 91 we simply have reflected a set of coupled
wvaves of the same type making the same angle with the surface as the
incident waves. Aside from the two extreme values of Bl (Oo and 900)
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the only remaining special case is when 62 = 0.
ii. 92 = 0. When the angie 92 vanisnes, 61 has the value
v
N
cos 8, = — (3.16)
1 vl

as given by equation (3.3)2. This is a real angle since vh is less

than vl . However, the angle ©6_ is complex for values of the frequency

3

between w  and w* (see (1.58%) since v, is greater than v. and

3 1

cose3 = v3/vl as given by (3.3). The amplitude ratios, which do not

reduce greatly, are given by the general solution and are seen to be
complex since 93, is complex.

Thus for an incident set of waves at the angle 9l given by (3.16)
the reflected waves along the surface qonsist of two superposed sets.
One set travels at speed ¢ = vl and decays with depth into the medium.
This.set corresponds to the-potentials Q3 and 23 . The other surface
wave at speed vl ; corresponding to potential u.2 » has no decay factor,
although any further decrease of 91 would result in a decaying wave
at speed c¢ , less than v, - There will also be a set of reflected
" waves of the same type a8 the incident waves. These waves will undergo
e phase .shift since the amplitude ratio Ahx/Alx will be complex.

iii. 61 = 90o . Since we divided our equations by vly = cosel
earlier, we now consider separately the situation if v, = 0O (91 = 900).

ly

Then Vi, = -1 and (3.3) shows that v2y = v3y = vhy = 0 and hence
Vozr = Vag ™ Viz = 1 . Using these relations in (3.4), (3.5) and (3.6)

we obtain three equations which yield amplitude ratios

a
KE‘ - 0 (3.17)
1x
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2

A pd 2w
4 2 0 2.-1 Z
- e SR S e (s
. A 'S 2 k L
Ix w
2 2 2“?) 2.-1
+ K wo[vh(l - —2—) - Ch] )
W
and
2 2
A 2w 2w
b _ . .20 Yo, 2.-1 2 2.2, Yo 2
% Al A - kh[vh(l-wz )-ch] {(‘H’K)kB + Kwotv5(1-u2 )-ch]
2 2
2w 2w
2 0 2.-1 2 2. 2 0 2.~
+ k}[v}(l--m2 )-ch] [(u+K)kh + Kmo[vh(l-;-z—)-ch]
where
2 2
2w 2w
- 2 0 2.-1 2 2. 2 0 2
P Al s kh[vh(l wa )-ch] [(WK)KB + Kwo[Vj(l wz ) - Ch] }

. 2 0 2,-1 2 2. 2 0 2
- - kB[VB(ldw—E-)-ch] {(pﬂ()kh + KwO[vh(l- P ) -¢

R

-1}

1

-1

-1
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(3.17)
cont.

. (3.18)

Hence, when the waves are incident normal to the boundary there are

two sets of waves reflected normal to the boundary, one at speed

v, and

L

one at speed v_ . This is quite different from the classical case

3

where an incident shear wave normsl to the boundary results in a re-

flected shear wave (180° out of phase with the incident wave) normal

to the boundary. For our solution to reduce to the classical case we

set the constitutive coefficients K =g =B =y= 0. With these co-

efficients zero v5 vanishes and vk reduces to the classical shear

wave velocity. At this point 1t appears that (3.5) and (3.6) yield two

. different solutions for A, x/Alx . This difficulty can be resolved by

remembering that equation (3.6) comes from the couple stress boundary




General Technology Corporation

condition (2.5) which vanishes identically if G =f =7y = 0 . Thus
equation (3.6) is nonexistent and the solution does indeed reduce to the
classical one.

iv. 6. =0 . An analysis gimilar to case vi of Chapter 1 shows

1

that if A. 4+ A is finite and ve are to have a and A finite
1x hx 2 3x

then Ahx - Alx must be infinite., However, both angles 92 and 95

are complex and we would have the surface shear wave represented by Alx

+ Ahx and the two exponentially decaying surface motions represented

by a.2 and A}x . Since all of these waves travel at the same speed

c = vh it appears that separation of these effects experimentally would

be extremely difficult. Hence it'is postulated that we would indeed

see a transverse surface wave at speed v, represented by Al.x + A

4 hx °
Summary
Summarizing, we'see that in general an incident set of coupled waves
at speed vh results in the reflection of two sets of coupled waves,
one set a% speed vV

1;
displacement wave at speed vl , assuming w > wc . If w< wc the

and the other at speed vj , &nd a longitudinal

set of reflected waves at speed v5 degenerates to a vibration of the

medium and we have essentially the classical case.

It w> wc and 6_ = 900 we have two sets of coupled waves reflected

1
normal to the boundary. As el is decreased the reflected waves move

toward the surface and when 6 1 equals the critical value given by
(3.12) 93 = 0, the longitudinal wave vanishes, the set of waves at
gpeed v 3 becomes parallel to the swface, and reflected into the medium
is the set of coupled waves st speed v, similar to the incident waves

4
and in phase with them. As 6_ 1s decreased beyond this velue the

1
surface waves assoclated with ]'Lj and 23 decay with depth into the
medium, and reflected into the medium we have a longitudinal wave at
speed vl and a set of coupled waves similar to the incident waves at

speed vh . The amplitude ratios become complex since 93 is complex
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indicating that the reflected waves have a phase shift. With further
decrease of 91 we reach another value such that 62 = O . The oniy
waves reflected into the medium nov are the coupled waves of the same
type as the incident waves.

Further decrease of 91 makes 92 complex as well sas 65 » hence
the waves associated with 52 , Q3 and 23 all travel at speed ¢ and
decay with depth into the medium.  Equations (3.9) and (3.10)5 then show
that the numerator of Ahx/Alx is the complex conjugate of the denomin-
ator. This means lAhx/Alx;- 1 and the waves reflected into the medium
are of the same type and magnitude as the incident waves but with a
phase shift. This phenomenon is similar to total reflectlon in a re-
fraction problem.

When 81 = 0 we predict a set of coupled waves at speed v, along

4
with the exponentially decaying surface motion associated with the
potentials ﬁ2 ’ QS and 23 . Experimentally these superposed motions
appear to be inseparable.

At the value of the angle el given by (3.14) the amplitude 32
vanishes. The numerator of (3.9) set equal to zero may give possible

values of el such that A would equal zero. In order to make an

bx
analysis of this case meaningful we must wait for an experimental deter-

mination of the constitutive coefficients involved.
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CHAPTER &
REFLECTION OF A LONGITUDINAL
MICROROTATIONAL WAVE

Formulation

This chapter is devoted to the study of the reflection of a longi-
tudinal microrotational wave at speed v2 at a stress free surface of
a half space. We recall that this wave has its microrotation vector
parallel to the direction of propagation. Since this wave degenerates
into a distance decaying vibration for w < wc the incident wave and
its reflections disappear. Thus the analysis must be confined to the
range w > uc .

At first glance it appears that an incident longitudinaml microrota-
tional wave mgy reflect only ancther wave of the same ‘type at the same
angle. This would be similar to the reflection of horizontally polarized
waves in the classical case. Unfortunately, this one reflected wave
satisfies two boundary conditions only. '

An investigation shows that horizontally polarized transvofse dis-
placement waves with particle motions only in the x-direction will
provide a set of reflected waves gonsistaent with the bcmnda.ry conditions.
Coupled with each transverse displacement wave there is a transverse
microrotational wave vhose microrotation vector is perpendicular to the
direction of propagation and in this case the x axls also. This picture
of reflection is self-consistent without the necessity of having a re-
flected longitudinal displacement wave at speed vl . Hence when we
discuss longitudinal waves we mean the longitudinal microrotation wave

at speed v_ and vhen we mention coupled waves we mean the transverse

2
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microrotation wave coupled with the transverse displacement wave at speed
vs and a similar set at speed vy
In order that the transverse displacement waves have particle motion
in the x-direction only Ux must equal zero. Moreover we have y * A = 0
or vy Ay + vz Az = 0, It follows that the vector potential must have

the form

v
Bo= AW - TR enli(y - £ - ve)) (4.1)

Z

Thus we see that the potential | actually has only one coefficient
Ay . Also it was shown that the coefficient B of the potential §

is given in terms of A by

>4
A
B = -iyx4

Py

Since both y and A 1lie in the y,z plane we see that B will be
parallel to the x-sxis. Thus there are three unknown coefficients:

b2 for the reflected longitudinael microrotational wave, A}y for the

coupled waves at speed v5 by for the coupled waves at speed vh .

We are therefore led to assume that an incident longitudinal micro-

» and A

rotation wave at & plane stress-free boundary will result in reflected
waves as shown in Figure 4.1. The incident and reflected longitudinal
vaves are represented by x and X, reépectively. One set of coupled
transverse waves is traveling at speed v3 in the direction Lj and
the other set is traveling at speed vu in the direction x“ This
situation is confirmed with the satisfaction of boundary conditiocns.

The potentials representing the waves in this problem are now

explicitly stated. The potential for the incident longitudinal wave is

®. = b exp[ik2(v y+v

5 1 1y 1% " vat)] (k.2)
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e and for the reflected longitudinal wave is
i ¢ b + -v. t ]
P, * b, expiika(vzyy Vo2 = Y, )) (4.3)

The potentials for the transverse displacement and microrotation waves

at speed Vv_ are respectively given by

3
3y
H’i = (Ajy J - " Ajy K) exp[1k3v5yy + Vs 2 " v3t)] (4.4)
B8 A
A3y . .
= 112 explik_(v, y+ v_ z - v, t)] (.5)
23 ﬁB§ Vay 3 3y 3z 3
and those at speed vu by
. YL
. Hh = (Ahy - —Xth Ahy K) exp[ikh(vkyy +v - vut)] (4.6)
B, A :
. AL by
% = I 1 B—'—BL} th exp[ ikl&( Vhyy + vhzz - vkt)] (h"?)

With the potentials zs given above the three boundary conditions t_ =

t33 = m}l = 0 for the free surface z = 0 are satisfied identicalifr. ~
The remaining three conditions are:
tyy = (n + K)(Uz’yz - u&’zz) - x(é’y-+ @x,z) -0 (4.8)
‘ my, = Ble -0 e +e ) =0 (4.9)
. - (c+p + 7)(&),zz - ¢x,yz) + a(a’,yy + ox,yz) - 0 (k.10)
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since U =¢ =0 =-—=Q,.
X

Bagic Solution

As in the previous two problems we wish to determine the directions
and smplitudes of the reflected waves when a known wave is incident on
the boundary z = 0 at a known angle. Substituting the potentials into
the boundary conditions (4.8) to (4.10), we f£ind that they are all satis-

fied if
62 = 91
v v
coso_ = 2 cosf_. = 2 (4.11)
3 v ¢
2
v v
cosf = —E cos@ = —i
4 v c
2
and
v w2 2u2
Ny w, Do "o 24
K - b2 + 1{(p+x) Stk o [v3(1 5 ) ch] m}y
2 v w
3
2 2
'Y 2w Vv
-w— 0 2 _,—2 - 2 -l = ﬂ
+ 1{(pe)= + K—w-[vk(l > ) ch] }Ahy = < b (4.12)
vh w 2
v2 2u2
2 3y 2, 2 0, 2.-1
(6 + 7)k, vzzvlyb.? i(p z 7)k5"32"’o["3(1"—'w2 )¢, ] A3y
3z
2 . 2
Y 2w
- _hl _ 2. 2 _’__Q - 2,-1 - 2
i(p > 7)vhzkhw0[vh(l wz ) Cu] Al+y (B+7)k2vlzvlybl (4.13)

Vhe
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. 53
.- 2
‘ 2w
2 2 2 2, 2 0 2 =1
- ‘ X ——
) k2[(0n6+7)v2Z + avzy]b2 1(;3+7)v3y 3uo[vj(l we )-Ch} A}y
2. 2 2w§ 2.-1 2l 2 2
-i(g+y )khvhyuo[ Vh( 1-;2—) -ch] Al&y = -k2[ (ey )Vlzmvly}bl (4.14)

where we wrote kv = w . Again c¢ represents the speed of the wave front
along the surface z = 0 ,
Excluding the case vly = 0 , studied later, the solution of the
three equations (4.12), (4.13) and (4.1%) for the amplitude ratios is
5 .
2 %o
-K(5+7)v2 ;5(7 tanG5 - 7 tang, -8 cote5 +F coteh)

o
"

= o

{(f'+7)2tanel+[a +(or*f:‘+7)tan2911[7 tano, 6 coteull

2w2

- 0, 2
. [(mx)[wr}(l-:e—)-ch] + Kv

4+
uﬁn:hv4m

Oj
2
w

2
3

{(;%+7)2tan81+ (o +(omeer)tan0 1[7 tan - coté,])

)
2 '2“% 2 2
{("*")("u(l‘;e_)’cu] + kv,

«F"<[\>|f04l\)

o

[

(4.15)

Evlo

2u2

1 2 2 0 2. .
" k(B+7) vavlz[vs(l—w2 ) - ch] - iw(per)

‘}f

v
A2
8
w
0

PRI

2w2 2w2 m2
2 2 0, 2 2 0, 2 20
[a +(#p47) tan Ol][vj(l-:‘?—)-ch]{(MK){Vh(l-wa )'Ch]+ kv, >

"

(4.16)
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5l
2
A 2w v v
by 1, 2 . 0, 2 2 ‘1z
— o - 3 PR ) - e Y — ——
- o KErr) v, vlzlvi( >/ Ch} 1{Bey) 2 o
1l w v w
3 0
2 2
2w 2w
2 2 0 2 2 0 2
x[a+(a+6+7)tan el][vh(l-w2 )'cu]{(MK)[VB(l-wa )-CL;]
2
w
2 0
+ kv_ —} (L4.17)
3 2
w
where
2 %
A E k(p+y) v2 ;5 (> tane5 -y taneh - B cote5 + 3 COtah)
2 2
v 2w
+ 2 ((47)°tan0_ - [a + (o#p+r)tan 0_][7 tans B cotd 1)((wk)[vo(1-—2)-c ]
2 1 1 4 4 32 Tk
3
2 2
w v }
2 0 2 2 . 2
+ kv —} - —{{(B+7) ten6_-[a + (a4p+y)tan 6 _}[y tane -8 coto_ ]}
3 2 2 1 1 3 3
w v
i
2w2 5 wi v
x {(|.:+K)[v (l- ) -c ] + KV '—2-} . (4.18)
u

It can be observed that in the general case when all thé angles are
real and the waves are reflected into the medium as in Figure 4.1 the
ratio 1:2/1)1 is real and the two ratios A3 y/bl end Aln/bl are pure
imaginary. Physically, this means that the reflected longitudinal wave
(b2) will be in phase with the incident wave (bl) or out of phase by
180° depending upon whether the ratio is positive or negative. Similarly,
the reflected transverse waves (A and A ) will lead or lag the inci-
dent wave (b ) by 90 depending upon the ratios being either positive

or negative.
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Special Cases

From (4.11) we can see that 9k is never zero since N < v, 1r

the inequality (1.61) is satisfied (this should be satisfied for the

majority of materials as J 1is small) then v5 < v2 and the angle 8

is never zero either. We consider the possibilities of the amplitude

3

ratios being zero and end the section by considering the case of 91

tending to zero.
. o
i. 61 = 90 . Then vly = cosel = 0 and vlz s -1, i.e., we
have an incident wave normal to the boundary. From (4.11) we see that
v, = = 0 , and hence =y, o= = 1 . "Substitution
oy ~ Vay T Yy T U’ Yoz T V32 T Vi
of these values into equations (4.12), (4.13) and (4.14%) will yield
b2 = -bl and two linear éimultaneous homogeneous equations for A3y
and Ah . If w is not infinite, then v3 ~ ), and the determinant
y
of the coefficients of these equations is nonzero. Thus we conclude that

A, = A = 0 b = -b " (4.19)
and an incident longitudinal microrotation wave normal to the surface
reflects a similar type wave with a phase shift of 180° also nommal to
the surface. .

1i. Amplitude ratio A /b =0 . Here we wish to determine the
angle el such that the amplitude ratio A y/b vanishes. As usual,
setting the numerator (of (4.16)) equal to zero we find that 6, must

satisfy
w2 2w2
2 -1 -12 0 2 2 2 0
tan el = - ala+y) - k(B ) (o) TV - {u{ch-V'+Vh wz ]
2 2 2 ”g -1
+ k[c v +v, —]} (4.20)
4 I hm‘?
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2 2 2
Now since (see Fig. 1.3) e, > v, Ve see that tan 81 is always nega-

tive and Gl is complex. Physically, this shows that there is no value
of 8 between 0° and 90° that will make the amplitude ratio Ay /o)
vanish.
iii. Amplitude ratio Auy/bl = 0. In a manner similar to that
above, we consider the numerator of equation (4.17) to obtain
2

-1
tan'g, = ~afx +8 + 7)

2 2w2

k(p+7) (atir) Ve 2 (urtk) [vE (1-——) -c ]+ KV

W2
2% 1
Y3 w3 WS 5

2} (4.21)
Thus we eagain conclude that there is no real value for the angle between
0° and 90 such that the amplitude ratio A y/b vanishes.

iv. 91 s 0. We now consider the case of a grezing incident
longitudinal microrotation wave. letting 91 = 0 in the general solution
ve see that the angles 62 , 93 and 9h are given by (4.11) as

6 =0 |, cose3 == cosg, = — (4.22)

>
In general v2 > v3 vh

(4.16) and (4.17) reduce to

and the angles are all real.. Equations (4.15),

b = -b AL = A =0 (4.23)

which again reduces to zero motion of the medium &s can be seen by sub-
stitution of (4.23) into the potentials (4.2) to (4.7). Thus we realize
the need of a limiting analysis once more as the incident angle 81 tends

to zero.
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In order to use a limiting procedure we go back to the three equations
(4.12), (4.13) and (4.14) toget the amplitude ratios Asy/(bl + b2) and

Ahy/(bl + b2)

_.‘L 2 2 2.-1
A-l— = i{K(t3+7)k L [vh( > -—) '°u]

bi+b2 >
2 2
2 w 2% 2 2 2.-1
+ dké(uﬁﬁ) -+ axk2 - [vh(l - —5-) - ch] } (4.24)
A'4 W
4
2
A 2w
by 5y 2.-1
A = if{k(p+7)k (1 - ——) -c ]
bl+b 3 v, o V3 2 N
2 2
2w
w 2 O 2 0 2.-1 _
- al(p+«)k - aKk2 - [v}(l - —5—) - cu] ] (4.25)
v W
3
where -
2 2 2
2w w 2w
- 2 2 0 2.-1 w _9 2 _ 0 _ 2.-1
A & (B+7)v ku“’o u(l'_z )-cb,] (k) — + « w[vj(l = ) c,] }
W \'2 W
3
2 2 ' 2
2w w 2w
2. 2 0 2,-1 w 0 2 0 2.-1
- (a+7)v3yk3wolv3(l- S, ) k)5 + k= v, (1=7)-¢, 1 7)
w V. W
L
(4.26)

vhere we have set Gl =20 .

Thus at 91 =0, bl + b2 finite but b2 - bl = e, we predict that
there exists two sets of coupled transverse waves along with the longitu-

dinal wvave. One set of coupled waves is at speed v3 and angle 85 and
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the other is at speed v& and angle 6h where the angles are given by

(4.22). The amplitude of the grazing longitudinal wave is bl + b2 and
the corresponding amplitudes of the two sets of coupled waves reflected
into the medium are given by (4.24) and (4.25). From these the potentials,

displacements, and finally the stresses can be obtained.

Sumary

In summarizing the reflection of a longitudinal microrotational wave
we first note that the problem exists only if w > wc . If w< wc the
incident wave degenerates into a vibratory motion of the medium and we
have no reflection problem.

When the incident wave strikes normal to the boundary there is re-
flected a wave of the same type also normal to the boundary but with a
180° phase shift from the incident wave. As the incident angle 91 is
decreased from 90O (normal incidence) to 0’ (grazing incidence) we see
that the general solution prevalls and there are reflected two sets of
coupled transverse waves at speeds v3 and vh s respectively, along iith
a wave of the incident type. The two sets of coupled waves suffer phase
shifts with respect to the incident wave. The reflected longitudiqal
wave may or may not have a 180o phase shift depending on whether the
amplitude ratio be/bl is negative or positive, respectively.

We concluded the analysis of this chapter by considering the reflec-
tion of a grazing longitudinal microrotation wave. By using & limit analy--
gis similar to that of Roesler we predicted two seté of coupled transverse

4
have a resultant longitudinal wave which is the sum of the incident and

wvaves at angles 93 and 6 given by (4.22). In addition to these we

reflected longitudinal waves.
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CONCLUDING REMARKS

Thig article has presented the basic theory of wave propagation
and three typical reflection problems for a micropolar elastic solid.
These results are all steady-state solutions of plane waves reflecting
at an infinite plane stress-free boundary. The extent of the solutions
is such that for a given incident wave we know which waves are reflected,
the laws of reflection, and the amplitude ratios of the potentials
representing them.

A knowledge of the magnitudes of the constitutive coefficients
would meke this analysis more meaningful. There is much experimental
work to be done by future workers to determine these material constants.
The experimental work will be difficult as these effects are small for
the classical problems and only become observable for waves with fre-
quencies around one megacycle and above. To date there has been no ex-
perimental work done with elastic waves of such frequency, except possibly
in crystals. An effort to correlate this theory with waves in crystals
appears to be worthwhile.

The determination of how these waves or vibrations are established
in the medium, the transient problem, has been completely neglected.
Again, there is much work yet to be done before full understanding of
these problems is achieved.

Other problems along these lines can now be completed. Of particular
interest is the case of reflection and refraction at an interface between
two different media. Another problem that is amensble to solution is
that of the reflection from a fixed (ue v = w = O , etc.) boundary.

Work in this area is expected to start in the near future.
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Clearly the present solutions in the micropolar wave theory only
scratch the surface and much remains to be done on other theoretical
problems, e.g., propegation of waves in finite bodies, initial value

problems, diffraction theory and vibration problems.
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