Lawrence Berkeley National Laboratory Recent Work

Title
REFLECTION OP POLARIZED LIGHT FROM FILM-COVERED SURFACES

Permalink
https://escholarship.org/uc/item/59q2550d

Authors

Mowat, J.Richard Muller, Rolf H.

Publication Date

1967-02-01

University of California

Ernest O. Lawrence Radiation Laboratory

REFLECTION OF POLARIZED LIGHT FROM FILM.COVERED SURFACES

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 AEC Contract No. W-7405-eng-48

REFLECTION OF POLARIZED LIGHT FROM FILM-COVERED SURFACES
J. Richard Mowat and Rolf H. Muller

February 1967
ABSTRACT v
INTRODUCTION 1
I REFLECTION AT THE INTERFACEBEIWEEN TWO ABSORBING MEDIA12
A. Specification of Electric and Magnetic Field Vectors 12
B. Evaluation of Boundary Conditions 19
C. Derivation of Reflection Coefficients 23
D. Summary - Fresnel Equations for Two Absorbing Media 25
II REFLECTION FROM A FILM-COVERED SURFACE 27
III COMPUTER SOLUTIONS OF FIIM EQUATIONS 35
A. Method of Bockris et al 36
B. Method of McCracken et al. 41
APPENDIX I 45
A. FORTRAN II Version of "FILM" Program 48
B. FORTRAN IV Version of "FIIM" Program 54
APPENDIX II 60
REFERENCES 69

REFLECTION OF POLARIZED LIGHT FROM FILM-COVERED SURFACES

J. Richard Mowat anả Rolf H. Muller
Inorganic Materials Research Division, Lawrence Radiation Laboratory, University of California, Berkeley, California

December 1966

ABSTRACT

Exact equations are derived which relate the (complex) index of refraction and the thickness of a single, absorbing or transparent film on an absorbing or transparent substrate to the changes sustained by polarized light reflected by the film-covered surface. Both film and substrate are assumed to be linear, homogeneous, and isotropic media.

A practical method for determining the optical properties of materials is based on changes in the state of polarization which occur when light is reflected from surfaces or transmittea through layers (films). This report gives a theoretical analysis of the optical properties of an absorbing film on a metal base, with the emphasis on a self-contained treatment with uniform definitions and conventions throughout. Some of the theoretical results on bare metal surfaces, needed here, will be summarized briefly below. Reference may be made to a companion report ${ }^{3}$ for detailed derivations of relationships between the complex index of refraction of a bare metal surface and the changes in polarization upon reflection from it.

When polarized light is reflected from a film-covered metal surface, the change in the state of polarization depends upon the refractive indices of metal surface and film and on the thickness of the film. The polarization state is characterized by the ratio of electric field amplitudes parallel and normal to the plane of inciaence and by the phase difference between these two components.

Let the subscripts p and s be chosen to denote components parallel and normal to the plane of incidence respectively. Then the electric field components are E_{p} and E_{s} before reflection and $E_{p}^{\prime \prime}$ and $E_{S}^{\prime \prime}$ after reflection. The ratios of s and p amplitudes of incident and reflected waves are defined as

$$
\begin{equation*}
\tan \psi_{i} \equiv \frac{\left|E_{s}\right|}{\left|E_{p}\right|} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\tan \psi_{r} \equiv \left\lvert\, \frac{\left|E_{S}^{\prime \prime \prime}\right|}{\left|E_{p}^{\prime \prime}\right|}\right. \tag{2}
\end{equation*}
$$

so that, on reflection, the amplitude ratio is changed by the factor

$$
\begin{equation*}
\tan \psi \equiv \frac{\tan \psi_{r}}{\tan \psi_{i}} \tag{3}
\end{equation*}
$$

Figure 1 illustrates the coordinate system to be used. Figure 2 shows both electric \vec{E} and magnetic \vec{H} field vectors for the cases of electric field parallel to plane of incidence (a) and normal to the plane of incidence (b). The vector \vec{S} is the Poynting vector which gives the direction of energy propagation. The $x-z$ plane is the plane of incidence. The $x-y$ plane defines the surface at which reflection and refraction occur. The reflection coefficients, in general complex, are defined by

$$
\begin{align*}
& r_{p} \equiv \frac{E_{p}^{\prime \prime}}{E_{p}}=\frac{\left|E_{p}^{\prime \prime}\right| e^{-i \varepsilon_{p}^{\prime \prime}}}{\left|E_{p}\right| e^{-i \varepsilon_{p}}}=\frac{\left|E_{p}^{\prime \prime}\right|}{\left|E_{p}\right|} e^{-i\left(\varepsilon_{p}^{\prime \prime}-\varepsilon_{p}\right)} \tag{4}\\
& r_{s} \equiv \frac{E_{S}^{\prime \prime}}{E_{s}}=\frac{\left|E_{s}^{\prime \prime}\right| e^{-i \varepsilon_{s}^{\prime \prime}}}{\left|E_{s}\right| e^{-i \varepsilon_{s}}}=\left|E_{s}^{\prime \prime}\right| \tag{5}\\
& \left|E_{s}\right| e^{-i\left(\varepsilon_{s}^{\prime \prime}-\varepsilon_{s}\right)}
\end{align*}
$$

where the epsilons are the phases of the various components with respect to an arbitrary time origin. If we define the absolute phase changes by

$$
\begin{equation*}
\delta_{p} \equiv \varepsilon_{p}^{\prime \prime}-\varepsilon_{p}, \quad \delta_{s} \equiv \varepsilon_{s}^{\prime \prime}-\varepsilon_{s} \tag{6}
\end{equation*}
$$

the ratio of the reflection coefficients is

$$
\begin{align*}
\rho & \equiv \frac{r_{s}}{r_{p}}=\left(\frac{\left|E_{s}^{\prime \prime}\right|}{\left|E_{s}\right|} / / \frac{\left|E_{p}^{\prime \prime}\right|}{\left|E_{p}\right|}\right)_{e^{-i \delta_{p}}}^{e^{-i \delta_{s}}} \tag{7}\\
& =\left(\begin{array}{l}
\left|E_{s}^{\prime \prime}\right| \\
\left|\frac{E_{p}^{\prime \prime}}{\mid}\right|
\end{array} /\left|\frac{E_{S}}{E_{p} \mid}\right|\right) e^{i\left(\delta_{p}-\delta_{s}\right)}
\end{align*}
$$

Substituting into this equation the ratios

$$
\left|E_{s}\right| /\left|E_{p}\right| \text { and }\left|E_{s}^{\prime \prime}\right| /\left|E_{p}^{\prime \prime}\right|
$$

from Eqs. (1) and (2) leads to the result

$$
\begin{equation*}
\rho=\frac{\tan \psi_{r}}{\tan \psi_{i}} e^{i\left(\delta_{p}-\delta_{s}\right)} \tag{8}
\end{equation*}
$$

Since $\delta_{p}-\delta_{s}$ is the relative phase difference Δ imposed between the p and s components on reflection,

$$
\begin{equation*}
\Delta \equiv \delta_{p}-\delta_{s} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& n\left(1-k^{2}\right)=n^{\prime}\left(1-k^{\prime 2}\right) \tag{13a}\\
& n^{2} k=n^{\prime 2} k^{\prime} \cos \phi_{r} \tag{130}
\end{align*}
$$

where ϕ_{r} is the real angle of refraction (Fig. 3).
In contrast to n and k, the parameters n^{\prime} and k^{\prime} have more easily recognizable physical significance, as n^{\prime} is the ratio

$$
\begin{equation*}
n^{\prime} \equiv c / v \tag{14}
\end{equation*}
$$

of the phase velocity c of light in vacuum to the (real) phase velocity v in the medium. The significance of κ^{\prime} is seen from the relation

$$
\begin{equation*}
\kappa^{\prime} \equiv \frac{\alpha c}{\omega n_{1}}, \tag{15}
\end{equation*}
$$

where α is the absorption coefficient. The amplitude of the electric field diminishes by a factor $1 / \mathrm{e}$ after traveling a aistance

$$
a=\frac{l}{\alpha}=\frac{c}{\omega k^{\prime} n^{\prime}}=\frac{\lambda_{0}}{2 \pi k^{\prime} n^{\prime}}
$$

where λ_{0} is the vacuum wavelength. The quantity d is known as the field penetration depth.*
$\overline{\text { \% }}$
I'his result follows from the fact that the fields decay as $e^{-\alpha z}$ where $\frac{\vec{z}}{z}$ is the normal unit vector to the surface. Often, half of this value, $\dot{\alpha}=\lambda_{0} / 4 \pi x^{\prime} n$ ', is given for the penetration depth. The distance \dot{a} is then cerined as the depth at which the intensity is reduced to $1 / e$ of its original value. Since the intensity is proportional to the modulus squared of the field, I $\alpha e^{-2 \alpha z}$, the intensity diminishes by a factor $1 / e$ after the wave has penetrated to a depth $z=1 / 2 \alpha$, or one half the field penetration aepth.

If light is incident on the plane surface of an absoroing medium from a transparent medium $(\sigma=0)$ of refractive index n_{0} at an angle ϕ from the normal to the boundary, then the angle between planes of equal phase and equal amplitude in the absorbing meaium is $\phi_{r}(F i g .3$) and is found from Sneil's Law

$$
\begin{equation*}
n_{0} \sin \phi=n^{\prime} \sin \phi_{r} \tag{16}
\end{equation*}
$$

The (real) angle ϕ_{r} is known as the angle of refraction.
The ultimate equations describing the reflection are put in their simplest form when written in terms of the complex angle of refraction ϕ^{\prime} definea by

$$
\begin{equation*}
\sin \phi^{\prime} \equiv \frac{n_{0} \sin \phi}{n_{c}}=\frac{n^{\prime} \sin \phi_{r}}{n_{c}} \tag{17}
\end{equation*}
$$

Another relation equivalent to Eq . (17) is

$$
\begin{equation*}
n_{c} \cos \phi^{\prime}=n^{\prime}\left(\cos \phi_{r}+i k^{\prime}\right) \tag{28}
\end{equation*}
$$

In the chapters to follow, all electric and magnetic fields will be assume: to be of the form

$$
\begin{equation*}
\vec{A}=\vec{A}_{0} e^{i\left(\vec{k}_{c} \cdot \vec{r}-\omega t\right)} \tag{19}
\end{equation*}
$$

were \vec{A} stands for the electric fiel $\overrightarrow{\mathbb{E}}$ or the magnetic field \vec{H}. The phasc is contained in the complex amplitude \vec{A}_{0}. The complex wave vector \vec{i}_{c} is, in general, written as

$$
\begin{equation*}
\vec{k}_{c}=\vec{k}+i \alpha z=\frac{\omega n^{\prime}}{c}\left[\pm \hat{x} \sin \phi_{r} \pm z\left(\cos \phi_{r}+i k^{\prime}\right)\right] \tag{20}
\end{equation*}
$$

or, with Eq. (17) and (18), and the definition

$$
\begin{align*}
& \mathrm{k}_{0} \equiv \frac{\omega}{c}=\frac{2 \pi}{\lambda_{0}} \\
& \vec{k}_{c}=k_{0} n_{c}\left(\pm \hat{x} \sin \phi^{\prime} \pm \hat{z} \cos \phi^{\prime}\right) \tag{.20a}
\end{align*}
$$

In Eqs. (20) and (20a), the \pm signs are chosen depending on whether the real wave vector $\vec{k},|\vec{k}| \equiv \omega / v=\frac{\omega n^{\prime}}{c}$, has positive or negative x anca/or z components, respectively. Eqs. (1) through (20a) are developed in Chapter I of the companion report ${ }^{3}$.

Figure 4 a shows how a ray of light incident on a film-covered surface is partially transmitted and partially reflected at the first film surface (taken to be the plane $z=-L$), then at the film-substrate surface (tine plane $z=0$, and finally again at the film-air surface. In the discussion that follows the $x-z$ plane is the plane of incidence and all surfaces are parallel to the y^{z} plane. This convention is illustrated by Figs. i anc 2.

It will be assumed that the system of reflected and refractea waves shown in Fig. $4 a$ can be replaced by the system shown in Fig. 4b, where $\overrightarrow{w^{\prime \prime}}$ is a wave equivalent to all the reflected waves leaving the film, \vec{E}, and $\overrightarrow{E^{\prime \prime}}$ are the equivalent of all waves in the film, and \vec{E}_{m} is the equivalent of ail waves in the metal which is taken to be of infinite extent in the +2 direction. 7,8
verifiea if the resulting \vec{E}_{0} and \vec{H}_{0} satisfy Eqs. (21-24) above. For the wave reflected at the film-metal surface $\vec{k}_{c}^{\prime \prime}$. can be written

$$
\begin{equation*}
\vec{k}_{c}^{\prime \prime \prime}=\frac{\omega n^{\prime}}{c}\left[\hat{x} \sin \phi_{r}-\hat{z}\left(\cos \phi_{r}+i k^{\prime}\right)\right] \tag{26}
\end{equation*}
$$

Substituting Eqs. (25) and (26) into the transversality equation

$$
\begin{equation*}
\overrightarrow{\mathrm{k}}_{\mathrm{c}}^{\prime \prime \prime} \cdot \overrightarrow{\mathrm{E}}_{\mathrm{o}}^{\prime \prime \prime}=0 \tag{2i}
\end{equation*}
$$

one has

$$
\begin{aligned}
& \varepsilon_{I}^{\prime \prime \prime} E_{p}^{\prime \prime \prime} \sin \phi_{r}-\varepsilon_{3}^{\prime \prime \prime} E_{p}^{\prime \prime \prime}\left(\cos \phi_{r}+i k_{r}^{\prime}\right)=0 \\
& \varepsilon_{1}^{\prime \prime \prime} \sin \phi_{r}=\varepsilon_{3}^{\prime \prime \prime}\left(\cos \phi_{r}+i k^{\prime}\right)
\end{aligned}
$$

A solution which satisfies this equation and which leads to expressions for $\vec{E}_{0}^{\prime \prime}$ and $\vec{H}_{0}^{\prime \prime}$ that satisfy Maxwell's equations is

$$
\begin{aligned}
& \varepsilon_{1}^{\prime \prime \prime}=\left(\cos \phi_{r}+i k^{\prime}\right) \\
& \varepsilon_{3}^{\prime \prime \prime}=\sin \phi_{r}
\end{aligned}
$$

Therefore, a possible solution for $\vec{E}_{0}^{\prime \prime}$ is

A vector field is uniquely specified when its curl and civergence are krown. Since Maxwell's equations give the curl and divergence of \vec{E} and it there can be only one solution satisfying Eqs. (21-24).

$$
\begin{aligned}
& \frac{c}{\omega} \vec{k}_{c}^{\prime \prime \prime} \times \vec{H}_{0}^{\prime \prime \prime}=n^{\prime 2}\left[\hat{x} \sin \phi_{r}-2\left(\cos \phi_{r}+i k^{\prime}\right)\right] \times \\
& {\left[\hat{x} E_{S}^{\prime \prime \prime}\left(\cos \phi_{r}+i k^{\prime}\right)-\hat{y} E_{p}^{\prime \prime \prime}\left(1-\kappa^{\prime 2}+2 i k^{\prime} \cos \phi_{r}\right)\right.} \\
& \left.+2 \mathrm{E}_{\mathrm{S}}^{\prime \prime \prime} \sin . \phi_{\mathrm{r}}\right] \\
& =-n^{\prime}\left[2 \sin \phi_{r} E_{p}^{\prime \prime \prime}\left(1-k^{\prime 2}+2 i k^{\prime} \cos \phi_{r}\right)+\hat{y} \sin ^{2} \phi_{r} E_{s}^{\prime \prime \prime}+\hat{y} E_{s}^{\prime \prime \prime}\left(\cos \phi_{r}+i k^{\prime}\right)^{2}\right. \\
& \left.+\hat{x} E_{p}^{\prime \prime \prime}\left(1-k^{\prime}{ }^{2}+2 i k^{\prime} \cos \phi_{r}\right)\left(\cos \phi_{r}+i k^{\prime}\right)\right] \\
& =-\left[2 \sin \phi_{r} E_{p}^{\prime \prime \prime}+\hat{y} E_{S}^{\prime \prime \prime}+\hat{x} E_{p}^{\prime \prime \prime}\left(\cos \varphi_{r}+i k^{\prime}\right)\right] n^{\prime 2}\left(1-k^{\prime 2}+2 i k^{\prime} \cos \varphi_{r}\right) \\
& =-\vec{E}_{0}^{\prime \prime \prime} n_{c}^{2}
\end{aligned}
$$

where the last step follows from Eqs. (11), (12), (13a) and (13b). Therefore Eggs. (27) and (28) are the required solutions.

Now that $\vec{E}_{0}^{\prime \prime}$ and $\vec{H}_{0}^{\prime \prime}$ have been found and have been shown to satisfy Maxwell's Equations, the ten electric and magnetic vectors can be summarized.

Writing each electric field vector in the form

$$
\vec{E}=\vec{E}_{0} e^{-i\left(\omega t-\vec{k}_{c} \cdot \vec{r}\right)}
$$

there results

$$
\begin{equation*}
\vec{E}=\left(E_{p} \cos \phi \hat{x}+E_{s} \hat{y}-E_{p} \sin \phi z\right) e^{\frac{-2 \pi i}{\lambda_{0}}\left[c t-n_{0}(x \sin \phi+z \cos \phi)\right]} \tag{29}
\end{equation*}
$$

It will be convenient to rewrite these equations in a simpler form by using the complex angle of refraction. lhe relations needed to make the simplification are the following:

$$
\begin{align*}
& n_{c} \sin \phi^{\prime}=n_{o} \sin \phi=n^{\prime} \sin \phi_{r} \tag{17}\\
& n_{c} \cos \phi^{\prime}=n^{\prime}\left(\cos \phi_{r}+i k^{\prime}\right) \tag{18}\\
& n_{c m} \sin \phi_{m}^{\prime}=n_{o} \sin \phi=n_{c m}^{\prime} \sin \phi_{r m} \tag{17}\\
& n_{c m} \cos \phi_{m}^{\prime}=n_{c m}^{\prime}\left(\cos \phi_{r m}+i k_{m}^{\prime}\right) \tag{18}
\end{align*}
$$

First Eq. (17) is used to replace $n^{\prime} \sin \phi_{r}$ in the expressions for $\vec{E}^{\prime}, \vec{E}^{\prime \prime}, \vec{H}^{\prime}$, and $\vec{H}^{\prime \prime}$, and $n_{m}^{\prime} \sin \phi_{r m}$ in the expressions for \vec{E}_{m} and \vec{H}_{m} by $n_{o} \sin \phi$. Then all ten fields will contain the same term ct-noxsin ϕ in the brackets of the exponent. This common term would cancel in the calculations that follow, so it will be ignored in the interest of simplicity. With these changes, and with the definition

$$
k_{0} \equiv 2 \pi / \lambda_{0}
$$

the ten field vectors can be written as follows (see Fig. 4b)

$$
\begin{align*}
& \vec{E}=\left(E_{p}^{\prime} \cos \phi \hat{x}+E_{S} \hat{y}-E_{p} \sin \phi z\right) e^{i k_{o} z n_{o} \cos \phi} \tag{29a}\\
& \vec{E}^{\prime \prime}=\left(E_{p}^{\prime \prime} \cos \phi \hat{x}+E_{s}^{\prime \prime} \hat{y}+E_{p}^{\prime \prime} \sin \phi \hat{2}\right) e^{-i k_{o} z n_{o} \cos \phi} \tag{30a}\\
& \vec{E}^{\prime}=\left(\frac{n_{c}}{n^{\prime}} E_{p}^{\prime} \cos \phi^{\prime} \hat{x}+E_{S}^{\prime} \hat{y}-E_{p}^{\prime} \frac{n_{c}}{n^{\prime}} \sin \phi^{\prime} z\right) e^{i k_{o} z n} c^{\cos \phi^{\prime}} \tag{31a}
\end{align*}
$$

B. Evaluation of Boundary Conditions

When there are no surface charges or surface currents the boundary conditions require that the tangential components of \vec{H} and \vec{E} and the normal components of $n_{c}^{2}{ }_{c}$ and $\mu \vec{H}$ be continuous across each interface. Thus, at the air-film interface $\mathrm{z}=-\mathrm{L}$, and with $\mu=1$ everywhere,

$$
\begin{align*}
& n_{0}^{2}\left(\vec{E}+\overrightarrow{E^{\prime}}\right) \cdot \hat{z}=n_{c}^{2}\left(\overrightarrow{E^{\prime}}+\overrightarrow{E^{\prime \prime}}\right) \cdot \hat{z} \tag{39}\\
& \left(\vec{H}+\overrightarrow{H^{\prime \prime}}\right) \cdot \hat{Z}=\left(\overrightarrow{H^{\ominus}}+\overrightarrow{H^{\prime \prime}}\right) \cdot \hat{Z} \tag{40}\\
& \left(\vec{E}+\overrightarrow{E^{\prime \prime}}\right) \times \hat{z}=\left(\overrightarrow{E^{\prime}}+\overrightarrow{E^{\prime \prime}}\right) \times \hat{Z} \tag{41}\\
& \left(\vec{H}+\overrightarrow{\mathrm{H}}^{\prime \prime}\right) \times \hat{\mathrm{z}}=\left(\overrightarrow{\mathrm{H}}^{\mathrm{t}}+\overrightarrow{\mathrm{H}}^{\prime}{ }^{\prime}\right) \times \hat{\mathrm{Z}} \tag{42}
\end{align*}
$$

When Eqs. (29a) through (32a) are evaluated at $z=-I$ and substituted into Eq. (39), there results

$$
n_{o}\left(-E_{p} e^{-i \tau}+E_{p}^{\prime \prime} e^{i \tau_{0}}\right) n_{o} \sin \phi=\frac{n_{c}^{2}}{n^{i}}\left(-E_{p}^{\prime} e^{-i \tau}+E_{p}^{\prime \prime \prime} e^{i \tau}\right)_{c} \sin \phi^{\prime}
$$

where

$$
\begin{align*}
& \tau_{0} \equiv k_{0} \operatorname{In}_{0} \cos \phi=\frac{2 \pi}{\lambda_{0}} \operatorname{Ln}_{0} \cos \phi \tag{43}\\
& \tau \equiv k_{0} \operatorname{Ln}_{c} \cos \phi^{8}=\frac{2 \pi}{\lambda_{0}} \operatorname{Ln}_{c} \cos \phi^{\prime} \tag{44}
\end{align*}
$$

This result can be rewritten since

$$
\begin{equation*}
n_{0} \sin \phi=n_{c} \sin \phi^{\prime} \tag{17}
\end{equation*}
$$

Thus

$$
\begin{equation*}
n_{o}\left(E_{p}^{\prime \prime} e^{i \tau_{o}}-E_{p} e^{-i \tau}\right)=\frac{n_{c}^{2}}{n^{i}}\left(E_{p}^{\prime \prime \prime} e^{i \tau}-E_{p}^{\prime} e^{-i \tau}\right) \tag{45}
\end{equation*}
$$

$$
\begin{align*}
n_{c}^{2}\left(\overrightarrow{E^{7}}+\overrightarrow{\mathrm{E}}^{\prime \prime}\right) \cdot \hat{z} & =n_{c m}^{2} \vec{E}_{m} \cdot \hat{z} \tag{49}\\
\left.\overrightarrow{H^{\prime}}+\overrightarrow{\mathrm{H}^{\prime \prime}}\right) \cdot \hat{Z} & =\vec{H}_{m} \cdot \hat{z} \tag{50}\\
\left(\overrightarrow{E^{\prime}}+\overrightarrow{\mathrm{E}^{\prime \prime}}\right) \times \hat{z} & =\vec{E}_{m} \times \hat{z} \tag{51}\\
\left(\overrightarrow{H^{\prime}}+\overrightarrow{\mathrm{H}^{\prime \prime}}\right) \times \hat{z} & =\vec{H}_{m} \times \hat{z} \tag{52}
\end{align*}
$$

When Eqs. (3la) through (33a) are evaluated at $z=0$ and substituted into Eq. (49), there results

$$
\frac{n_{c}^{2}}{n^{2}}\left(E_{p}^{\prime \prime \prime}-E_{p}^{2}\right) n_{c} \sin \phi^{x}=-\frac{n_{c m}^{2}}{n_{m}^{2}} n_{c m} \sin \phi_{m}^{:} E_{p m}
$$

or, since

$$
\begin{align*}
& n_{c} \sin \phi^{2}=n_{c m} \sin \phi_{m}^{\prime} \tag{17}\\
& \frac{n_{c}^{2}}{n^{2}}\left(E_{p}^{\prime}-E_{p}^{\prime \prime}\right)=\frac{n_{c m}^{2}}{n_{m}^{i}} E_{p m} \tag{53}
\end{align*}
$$

When Eqs. (3la) through (33a) are evaluated at $z=0$ and substituted into Eq. (5I), there results

$$
\begin{aligned}
& -\frac{n_{c}}{n^{2}} E_{p}^{q} \cos \phi^{z} \hat{y}+E_{s}^{t} \hat{x}-\frac{n_{c}}{n^{2}} E_{p}^{\prime \prime \prime} \cos \phi^{z} \hat{y}+E_{s}^{\prime \prime \prime} \hat{x}= \\
& -\frac{n^{c m}}{n_{m}^{z}} E_{p m} \cos \phi_{m}^{z} \hat{y}+E_{s m} \hat{x}
\end{aligned}
$$

This equation implies two others, namely,

$$
\begin{gather*}
\frac{n^{c}}{n^{\prime}}\left(E_{p}^{\prime}+E_{p}^{\prime \prime}\right) \cos \phi^{\prime}=\frac{n^{n}}{n_{m}^{t}} E_{p m} \cos \phi_{m}^{:} \tag{54}\\
E_{S}^{q}+E_{S}^{\prime \prime}=E_{S m} \tag{55}
\end{gather*}
$$

$$
\begin{align*}
\tau_{0} & \equiv k_{0} L n_{0} \cos \phi=\frac{2 \pi L}{\lambda_{0}} n_{0} \cos \phi \tag{43}\\
\tau & \equiv k_{0} L \dot{n}_{c} \cos \phi^{\prime}=\frac{2 \pi L}{\lambda_{0}} n_{c} \cos \phi^{\prime} \tag{44}
\end{align*}
$$

At $z=0$ (film-metal interface)

$$
\begin{gathered}
\frac{n_{c}^{2}}{n^{\prime}}\left(E_{p}^{\prime \prime \prime}-E_{p}^{\prime}\right)=-\frac{n_{c m}^{2}}{n_{m}^{\prime}} E_{p m} \\
\frac{n_{c}}{n^{\prime}}\left(E_{p}^{\prime \prime \prime}+E_{p}^{\prime}\right) \cos \phi^{\prime}=\frac{n_{c m}}{n_{m}^{\prime}} E_{p m} \cos \phi_{m}^{\prime} \\
E_{s}^{\prime}+E_{s}^{\prime \prime \prime}=E_{s m} \\
n_{c}\left(E_{s}^{\prime}-E_{s}^{\prime \prime \prime}\right) \cos \phi^{\prime}=n_{c m} E_{s m} \cos \phi_{m}^{\prime} \\
\text { C. Derivation of Reflection Coefficients }
\end{gathered}
$$

For the calculations of the next chapter it will be necessary to know the reflection coefficients for the film-substrate interface. These are defined by

$$
\begin{equation*}
r_{2 s} \equiv \frac{E^{\prime \prime \prime} s}{E_{s}^{t}} \quad r_{2 p} \equiv \frac{E^{\prime \prime \prime}}{E_{p}^{\prime}} \tag{57a,b}
\end{equation*}
$$

where the electric field amplitudes E are to be evaluated at $z=0$. The pertinent equations are Eqs. (53) through (56) derived in the previous section and summarized on the preceding page.

Divide Eq. (53) by Eq. (54) and multiply by $\frac{\cos \phi^{\prime}}{n_{\mathrm{cm}}}$ to get
or

$$
\begin{gather*}
\left(I-r_{2 s}\right) n_{c} \cos \phi^{\prime}=\left(I+r_{2 s}\right) n_{c m} \cos \phi_{m}^{\prime} \tag{60}\\
n_{c} \cos \phi^{\prime}-r_{2 s} n_{c} \cos \phi^{\prime}=n_{c m} \cos \phi_{m}^{\prime}+n_{c m} r_{2 s} \cos \phi_{m}^{\prime}
\end{gather*}
$$

Thus

$$
\begin{equation*}
r_{2 s}=\frac{n_{c} \cos \phi^{\prime}-n_{c m} \cos \phi_{m}^{\prime}}{n_{c} \cos \phi^{2}+n_{c m} \cos \phi_{m}^{\prime}} \tag{61}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{I+r_{2 s}}{1-r_{2 s}}=\frac{n_{c} \cos \phi^{\prime}}{n_{c m} \cos \phi_{m}^{\prime}} \tag{60a}
\end{equation*}
$$

Equations (59) and (61) are the Fresnel coefficients for reflection at the plane boundary between two linear, homogeneous, isotropic, absorbing media.
D. Summary - Fresnel Equations for Two Absorbing Media

The Fresnel Equations for an interface between two absorbing media are as follows:

$$
\begin{align*}
& r_{p} \equiv \frac{E_{p \text { ref }}}{E_{p \text { inc }}}=\frac{n_{c} \cos \phi_{m}^{\prime}-n_{c m} \cos \phi^{\prime}}{n_{c} \cos \phi_{m}^{\prime}+n_{c m} \cos \phi^{\prime}} \tag{59}\\
& r_{s} \equiv \frac{E_{s \text { ref }}}{E_{s \text { inc }}}=\frac{n_{c} \cos \phi^{\prime}-n_{c m} \cos \phi_{m}^{\prime}}{n_{c} \cos \phi^{\prime}+n_{c m} \cos \phi_{m}^{\prime}} \tag{6I}
\end{align*}
$$

In Eqs. (59) and (61), n_{c} and $n_{c m}$ are the complex indices of refraction of the incident and base medium respectively. They are the complex square roots of the quantities

CHAPTER II. REFIECTION FROM A FILM-COVERED SURFACE

In this chapter an exact, general equation is derived which describes the reflection of polarized light from an absorbing surface covered by a single, absorbing film. As in the previous two chapters it will be assumed that the media are linear, isotropic, and homogeneous.

For the derivation of the equation it will be necessary to know the reflection coefficients for the incident medium-film interface. These are found from Eqs. (59) and (61) of the last chapter by replacing the complex refractive index n_{c} and the complex angle of refraction ϕ^{\prime} by n_{0} and ϕ respectively (where n_{0} is the real refractive index of the incident medium and ϕ is the real angle of incidence) and by replacing $n_{c m}$ and ϕ_{m}^{\prime} by n_{c} and $\phi^{\prime}:$ Thus the reflection coefficients at the incident medium-film interface can be written as

$$
\begin{align*}
& r_{I S}=\frac{n_{0} \cos \phi-n_{c} \cos \phi^{\prime}}{n_{0} \cos \phi+n_{c} \cos \phi^{\prime}} \tag{62}\\
& r_{I p}=\frac{n_{0} \cos \phi^{\prime}-n_{c} \cos \phi}{n_{0} \cos \phi^{\prime}+n_{c} \cos \phi} \tag{63}
\end{align*}
$$

The analogs of Eqs. (58a) and (60a) are

$$
\begin{align*}
& \frac{I+r_{I p}}{I-r_{I p}}=\frac{n_{0} \cos \phi^{\prime}}{n_{c} \cos \phi} \tag{64}\\
& \frac{I+r_{I s}}{I-r_{I s}}=\frac{n_{0} \cos \phi}{n_{c} \cos \phi^{\prime}} \tag{65}
\end{align*}
$$

The equations summarized at the end of Chapter I, Section B will yield the ultimate result. To begin with, the eight equations (45) - (48) and (53) (56) are condensed into two equations (68) and (71) in the following way.
where the last step is made by the use of Eq. (58a). Division of Eq. (55) by Eq. (56) gives

$$
\begin{equation*}
\frac{E_{s}^{\prime}+E_{s}^{1: ~}}{E_{s}^{1}-E_{S}^{11}}=\frac{n_{c} \cos \phi^{1}}{n_{c m} \cos \phi_{m}^{1}}=\frac{1+r_{2 s}}{1-r_{2 s}} \tag{70}
\end{equation*}
$$

where the last step is made by the use of Eq. (60a). Equations (69) and (70) can be summarized as

$$
\begin{equation*}
\frac{E_{V}^{t}+E_{V}^{i t}}{E_{V}^{t}-E_{V}^{i t i}}=\frac{I+r_{2 v}}{I-r_{2 v}} \tag{71}
\end{equation*}
$$

where v stands for p or s.
Next, Eqs. (68) and (71) are solved for the ratio $E_{v}^{\prime \prime} / E_{V}$ which is the desired reflection coefficient of the film-covered surface. Divide numerator and denominator of the right-hand side by E_{V}^{\prime} to get

$$
\begin{equation*}
\frac{e^{-2 i \tau_{0}}+E_{v}^{1 t} / E_{v}}{e^{-2 i \tau_{0}}-E_{v}^{\prime \prime} / E_{v}}=\frac{I+r_{I v}}{1-r_{I v}} \frac{1+r_{2 v} e^{2 i \tau}}{I-r_{2 v} e^{2 i \tau}} \tag{73}
\end{equation*}
$$

Define the complex reflection coefficient of the film covered surface by

$$
\begin{equation*}
r_{v} \equiv \frac{E_{v}^{\prime \prime}}{E_{v}} \tag{74}
\end{equation*}
$$

and set the right hand side of $E q$. (73) equal to the variable ξ for convenience. Then

$$
\begin{gathered}
\frac{e^{-2 i \tau} 0+r_{v}}{e^{-2 i \tau_{0}}-r_{v}}=\xi \\
e^{-2 i \tau_{0}}+r_{v}=\xi\left(e^{-2 i \tau_{0}}-r_{v}\right)
\end{gathered}
$$

complex optical distance, and $2 \tau_{0}$ is an overall phase angle resulting from the particular origin chosen for the calculation.

This result (Eq. (75)) was originally obtained by Drude, ${ }^{6}$ but in his equation the exponents are negative while here they are positive. This difference is due to a different representation of the electromagnetic wave in the complex notation which was here

$$
\left.\vec{E}=\vec{E}_{0} e^{-i(\omega t-\vec{k}} \cdot \vec{r}\right)
$$

The spatial dependence is in this case

$$
\vec{E}_{s}=\vec{E}_{o} e^{i \vec{k}} \cdot \vec{r}
$$

Drude, on the other hand, chose to represent the wave by

$$
\vec{E}=\vec{E}_{0} e^{i(\omega t-\vec{k} \cdot \vec{r})}
$$

for which the spatial dependence is

$$
\vec{E}_{S}=\vec{E}_{0} e^{-i \vec{k} \cdot \vec{r}}
$$

Therefore, the two derivations yield opposite signs in the exponents of Eqs. (29a) through (38a).

In our calculations the different sign has carried all the way through to Eq. (75) where we have a positive exponent and Drude has a negative one.*

[^0]Fig. 5 Illustration of Meaning of Reflection Coefficients $r_{1 s}, r_{1 p}, r_{2 s}$, $r_{2 p}, r_{s}$, and r_{p}. The electric field vectors \vec{E}_{o}, \vec{E}^{1}, $\overrightarrow{\vec{E}^{\prime}}$, and $\vec{E} \mid \prime$ are defined in Fig. 4 b and by Eqs. (29a), (30a), (31a), and (32a) (the $\overrightarrow{\mathrm{E}}_{0}$ of this figure is the $\overrightarrow{\mathrm{E}}$ of Eq. (29a)). The electric field vector \vec{E}_{1} results from reflection at the first interface only and corresponds to reflection from an infinitely thick film. $\overrightarrow{\mathrm{E}}$ " is the resultant of all reflections at both interfaces as indicated in Fig. 4b. The various waves can be written as sums of component waves parallel (p) and normal (s) to the plane of incidence.

MUB-14177

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}_{0}=\left(\overrightarrow{\mathrm{E}}_{0} \cdot \hat{p}\right) \hat{p}+\left(\overrightarrow{\mathrm{H}}_{0} \cdot \hat{s}\right) \hat{s} \\
& \overrightarrow{\mathrm{E}}_{1}=r_{1 p}\left(\overrightarrow{\mathrm{E}}_{0} \cdot \hat{p}\right) \hat{p}+r_{1 s}\left(\overrightarrow{\mathrm{E}}_{0} \cdot \hat{s}\right) \hat{s} \\
& \overrightarrow{\mathrm{E}}^{\prime}=\left(\overrightarrow{\mathrm{E}}^{\prime} \cdot \hat{p}\right) \hat{p}+\left(\vec{I}^{\prime} \cdot \hat{s}\right) \hat{\mathrm{s}} \\
& \overrightarrow{\mathrm{E}}^{\prime \prime}=r_{2 p}\left(\overrightarrow{\mathrm{E}}^{\prime} \cdot \hat{p}\right) \hat{p}+r_{2 s}\left(\overrightarrow{\mathrm{E}}_{\mathrm{s}}^{\prime} \cdot \hat{s}\right) \hat{s} \\
& \overrightarrow{\mathrm{E}}^{\prime \prime}=r_{p}\left(\overrightarrow{\mathrm{E}}_{0} \cdot \hat{p}\right) \hat{p}+r_{s^{\prime}}\left(\overrightarrow{\mathrm{E}}_{0} \cdot \hat{s}\right) \hat{s}
\end{aligned}
$$

The unit vectors \hat{p} and \hat{s} are parallel and normal to the plane of incidence, respectively.

CHAPTER III. COMPUTER SOLUTIONS OF FILM EQUATIONS

The basic equation describing the reflection of polarized light from a film covered metal surface, as derived in the previous section, is

$$
\begin{equation*}
r_{v} \equiv \frac{E_{v \text { reflected }}}{E_{v \text { incident }}}=\frac{r_{1 v}+r_{2 v} e^{i D}}{I+r_{1 v} r_{2 v} e^{i D}} e^{i D_{0}} \tag{75}
\end{equation*}
$$

where r_{1}, r_{2}, D and D_{0} are given in the preceding summary. The complex quantity r_{v} is the reflection coefficient of the film-metal combination, giving both the phase and amplitude changes of the reflected light.

By analogy with Eqs. (7) and (10) we write

$$
\begin{equation*}
\rho \equiv r_{s} / r_{p}=\tan \psi e^{i \Delta} \tag{77}
\end{equation*}
$$

where $\tan \psi$ is the amplitude diminution and Δ the relative phase change caused by the reflection. *

In practice one is primarily interested in finding the thickness I and refractive index $n_{c}=n+i n k$ of a film on a substrate of known properties fnom measured values of ψ and Δ. Although L and n_{c} are related to ψ and \triangle through Eq. (77), and although Eq. (77) can be solved explicitly for I as a function of n_{c}, ϕ and Δ (as in Section B below), it is not possible to solve Eq. (77) explicitly for n_{c}. Two methods will now be presented for obtaining n_{c} and I with the use of a high speed computer.

[^1]

Fig. 6 Transparent film on Transparent Substrate (Ca F_{2} on glass). Values of ψ and \triangle calculated for increasing fiIm thickness for wavelength $5461 \AA$, angle of incidence 60°, base constants $n_{s}=1.5190, k_{s}=0$ and film constants $n=1.4339, k=0$. The curve is labeled for various thicknesses and closes on itself at a thickness of $2373.6 \AA$ (optical thickness).

Fig. 8 Absorbing Film on Transparent Base (Chromium on Glass). Values of ψ and Δ calculated for increasing film thickness for wavelength $5461 \AA$, angle of incidence 60°, base constants $n_{S}=1.519, k_{S}=0.0$, and film constants $n=2.96, n k=3.45$. The curve does not close on itself but spirals from ψ and \triangle corresponding to the bare glass to the values corresponding to bare chromium.

B. . Method of MeCracken et a1. ${ }^{\text {15,16 }}$

A method similar to the one described above, but more efficient has been devised by McCracken et al. By this method the film thickness is calculated directly from measurements of ψ and Δ and from assumed values of n and $n k$. With this method one need not assume values of film thickness, but only of n and $n k$. Thus, in the example of Section A there would be 16 times fewer combinations to try.

The equations from which the film thickness can be deduced will now be devloped. The starting point is Eq. (77). Substituting from Eq. (75) into Eq. (77), one has

$$
\begin{equation*}
\rho=\frac{r_{s}}{r_{p}}=\frac{\frac{r_{1 s}+r_{2 s} e^{i D}}{I+r_{1 s} r_{2 s} \cdot e^{i D}}}{\frac{r_{1 p}+r_{2 p} e^{i D}}{I+r_{1 p} r_{2 p} e^{i D}}}=\tan \psi e^{i \Delta} \tag{78}
\end{equation*}
$$

The value of ρ can be found from the measured values of ψ and Δ, and is thus assumed to be known. Eq. (78) is reduced to the standard form for a quadratic equation in the variable $e^{i D}$ as follows. Write

$$
\begin{aligned}
& \rho=\frac{\left(r_{1 s}+r_{2 s} e^{i D}\right)\left(I+r_{1 p} r_{2 p} e^{1 D}\right)}{\left(1+r_{1 s} r_{2 s} e^{i D}\right)\left(r_{1 p}+r_{2 p} e^{1 D}\right)} \\
& \rho=\frac{r_{1 s}+\left(r_{1 s} r_{1 p} r_{2 p}+r_{2 s}\right) e^{i D}+r_{1 p} r_{2 p} r_{2 s} e^{i 2 D}}{r_{1 p}+\left(r_{1 p} r_{1 s} r_{2 s}+r_{2 p}\right) e^{i D}+r_{1 s} r_{2 p} r_{2 s} e^{12 D}}
\end{aligned}
$$

or, multiplying both sides by the denominator of the right side and collecting terms,

Taking the complex logarithm of both sides of Eqs. (82) and (83.* and letting E stand for either E_{1} or E_{2} and D for D_{1} or D_{2}

$$
\begin{equation*}
i D=\log |E|+i \tan ^{-1} \frac{\operatorname{Im} E}{\operatorname{Re} E} \tag{84}
\end{equation*}
$$

where

$$
|E|=\sqrt{E \cdot E^{*}}
$$

and $\operatorname{Im} E$ and $\operatorname{Re} \dot{E}$ are the imaginary and real parts of E, respectively. Thus, with the original definition of D

$$
\begin{equation*}
D=\frac{4 \pi}{\lambda_{0}} L n_{c} \cos \phi^{\prime} \tag{76}
\end{equation*}
$$

Equation (84) becomes

$$
\frac{4 \pi i L}{\lambda_{0}} n_{c} \cos \phi^{z}=\log |E|+i \tan ^{-1} \frac{\operatorname{Im} E}{\operatorname{Re} E}
$$

or

$$
\frac{4 \pi \Sigma n_{c} \cos \phi^{:}}{\lambda_{0}}=\tan ^{-1} \frac{\operatorname{Im} E}{\operatorname{Re} E}-1 \log |E|
$$

Solving for L gives

$$
\begin{equation*}
L=\frac{\lambda_{0}}{4 \pi n_{c} \cos \phi^{2}}\left[\tan ^{-1} \frac{\operatorname{Im} E}{\operatorname{ReE}}-1 \log |E|\right] \tag{85}
\end{equation*}
$$

Since there are two solutions for E, there will be two solutions for L. The film thickness I must be a real quantity, so the right-hand

[^2]
APPENDIX I

Single Film Computer Program "FILM"

The program "FIIM" finds the thickness and complex refractive index of a single, absorbing film on an absorbing substrate. It does so by systematically combining all prescribed values of film thickness L and refractive index $n(1+i k)$ and calculating the relative phase change Δ and amplitude diminution tan ψ for each combination. Whenever a particular combination of L, n, and nk yields agreement with the experimentally determined quantities Δ and ψ within a specified error ϵ_{Δ} and ϵ_{ψ} this combination appears in the output as a solution.

The equations evaluated by the program are the following:

$$
\begin{align*}
\cos \phi_{s}^{\prime} & =\sqrt{1-\frac{n_{0}^{2} \sin \phi^{2}}{n_{c s}^{2}}} \\
\cos \phi^{\prime} & =\sqrt{1-\frac{n_{0}^{2} \sin \phi^{2}}{n_{c}^{2}}} \\
& =\frac{n_{0} \cos \phi-n_{c} \cos \phi^{\prime}}{n_{0} \cos \phi+n_{c} \cos \phi^{\prime}} \\
r_{1 s} & \text { from Eq. (17) } \\
r_{I p} & =\frac{n_{0} \cos \phi^{\prime}-n_{c} \cos \phi}{n_{0} \cos \phi^{\prime}+n_{c} \cos \phi} \tag{62}\\
r_{2 s} & =\frac{n_{c} \cos \phi^{\prime}-n_{c s} \cos \phi^{\prime}}{n_{c} \cos \phi^{\prime}+n_{c s} \cos \phi^{\prime}} \tag{63}
\end{align*}
$$

These six cards constitute a set. Any number of sets may follow. Two blank cards must follow card 6 of the last set of data, and a card with 0.0 punched in the first field (columns I - 9) must follow these blank cards. Cards 1 and 2 of each set may contain any comments (or none at all) desired by the user. Their contents appear printed verbatim at the head of the output. The two cards serve to conveniently identify the output data. All numbers entered on cards $3-6$ must contain a decimal point, and may be located anywhere in the nine columns beginning with the one indicated.

Variables -- real

Name	Symbol	Description
DELM	Δ (measured)	relative phase change (degrees)
DELC	Δ (calculated)	relative phase change (degrees)
DTN2 (1)	\%n	iteration increment of film index
DTN2 (2)	סnk	iteration increment of film $n k$
DT	ठT	iteration increment of film thickness
EPSIM	$\epsilon \psi$	experimental error in ψ (degrees)
EDELM	$\epsilon \triangle$	experimental error in \triangle (degrees)
PHII	ϕ	angle of incidence (degrees)
PSIM	ψ (measured)	arctangent of amplitude diminution (degrees)
PSIC	ψ (calculated)	arctangent of amplitude diminution (degrees)
TNFI	no	refractive index of incident medium
TN3 (1)	n_{s}	n of substrate
TNB (2)	$n_{s} \kappa_{s}$	n K of substrate
TNI	n_{i}	lower limit of iteration span for n of film
TNKFI	$(\mathrm{nk})_{i}$	lower limit of iteration span for nk of film
TN2(1)	n	n of film (result)
tin2(2)	nK	nk of film (result)
TN2M(1)	n_{m}	upper limit of iteration span for n of film
$\operatorname{TN2M}(2)$	$(\mathrm{n} \kappa)_{\mathrm{m}}$	upper limit of iteration span for nk of film
TI	L_{i}	lower limit of iteration span for film thickness

Name	Symbol	Description
CPHI2	$\cos \phi^{\prime}$	complex cosine of complex angle of refraction in film
CHPI3	$\cos \phi_{S}^{\prime}$	complex cosine of complex angle of refraction in substrate
PL	D	complex optical path length
RIS	r_{15}	Fresnel reflection coefficient at airfilm interface for polarization normal to plane of incidence
R1P	$r_{I p}$	Fresnel reflection coefficient at airfilm interface for polarization parallel to plane of incidence
R2S	$r_{2 s}$	Fresnel reflection coefficient at filmmetal interface (normal polarization)
R2P	$r_{2 p}$	Fresnel reflection coefficient at filmmetal interface (parallel polarization)
RS	r_{s}	reflection coefficient at film-metal combination (normal polarization)
RP	r_{p}	reflection coefficient of film-substrate combination (parallel polarization)
RHO	$\rho=r_{s}$	
A, B,		temporary variables
A flow sheet and reproduction of the program appear on the next two pages.		
The output for the program "FILM" is almost the same as the output for the		
program "SFILM" for which a sample output is given at the end of Appendix		
II. In the output from "FIIM", however, the line beginning with "RANGES"		
might (if desired by user) be amended to include information concerming the		
range of film thickness considered along with the iteration increment.		
the line regarding imaginary part of film thickness does not appear.		

"FIIM" program, Fortran II version

```
FOR IRAN II PRCGRAN FILHITIPUT,OUTPUT,TAPE2=INPUT,TAPE3=OUTPUT,
    TMIS PROGRAK CALCULATES THE THICKNESS ANC CGNPLEX REFRACTIVE
    N
    COR = C.C174E3
    T READ (2,E) TITLE, RANGE
```



```
    3REAO (2,8) NFFI, OTN2(1), TN2M(1), TAKFI, OTN2t21, YN2M(2)
    4 REAO (2, S) II, OT, TM, DELY, EPSIP, ECELM
    S REAO (द'10, PHI1, PSIM,
```



```
    M,
    13 FORMAT (1H1, EALO//RAICI, F10.5,1OX, THCELN = , F1C.5//32H NO SOLUT
    CION HITHIAGIVENLIFITSI
        M[1= COR#PHII
    ice\TN2(1)= TNFI
calculaticn of cosine cf angle ef reffacticn in film
    (C A(C)= -TA1**2*SIAF{PHII)**2
    A(2)=C+C
    8(1)=TN2(1)**2-TN212)
    CALL CDSC, A. AI,
c calcelaticm of cosine cF angle cf reffacticN in substaate
    MB(1)=TN2(1)**2-TN3(2)
    CALL cosc, A.8,
C CALLCER(CPH13,C) 
    CALL CMCC, TN2, CPHI2)
    A(2)=-C(1)+ TNL*CCSFIPHII)
    CALL CDIRIS, A, B' 
    A(1) = TN 1
    CALL CMC, A. CPHI2)
    A(1)=C(1)= (N2)
    A(1)=C(2)-0(2)
CM
    CNALL CMCC, NN2. CPEHI2)
    M
c
```



```
    *)
c
    C
    CALL CEEC, PL, 
    CALL CPIC:RIP:O)
    B(1)=1..c++
    CALL CO(2), A, B)
C
M,
    PSIC =AJANFITPSI)/CDR (OEGRES)
    OELCEPCELC/CDR 
```



```
    PHII, PHII/CDR 
```


?OCC CONTINLE

CINENSION C(2) $A(2), ~ B(2)$
$C(1)=A(1) * B(1)-A(2) * E(2)$
$C(1)=A(1) * B(1)-A(2) * E(2)$
$C(1)=A(2) * B(1)+A(1) * B(2)$
$B E(1)$
RETERA

OMEKSIOK $C(2)$, A(2), e(2)

CRTURA
RENO
En

RETURE

1 IF AA111
$2 C(1)=C . C$
$C(2)=C . C$
$G 0)=$ SCRTF(ABSF(AIt))

$4 \mathrm{E}=\mathrm{C}=\mathrm{S}=\operatorname{SORTF}(A(1) * A(1)+A(2) * A(2))$
$C(1)$

$\underset{\substack{\text { RETURN } \\ \text { ENO }}}{\substack{\text { (2) } \\ \hline}}$

Variables -- real

Name	Symbol	Description
DETM	Δ (measured)	relative phase change (degrees)
DELC	\triangle (calculated)	relative phase change (degrees)
DTNI	on	fteration increment of refractive index n
DTNK	\%(nK)	iteration increment of $n k$
DT	δI	iteration increment of film thickness L
EPSIM	ϵ_{ψ}	experimental error in ψ (degrees)
EDELM	ϵ_{Δ}	experimental error in \triangle (degrees)
PHII	ϕ	angle of incidence (degrees)
PHI	ϕ	angle of incidence (radians)
PSIM	ψ (measured)	relative amplitude change (degrees)
PSIC	ψ (calculated)	relative amplitude change (degrees)
TNI	n_{0}	refractive index of incident medium
TNS	n_{s} (substrate)	refractive index of substrate
TNKS	$n_{s} \kappa_{s}$ (substrate)	n_{K} of substrate
TNI	n_{1}	lower limit of iteration span for film index n
TN	n	n index of film
TNM	n_{m}	upper limit of iteration span for film index n
TNKI	$(\mathrm{nk})_{1}$	lower limit. of iteration span for $n k$ for film
TNK	$n k$ (film)	$n \mathrm{~K}$ of film
tNKM	$(\mathrm{nk})_{\mathrm{m}}$	upper limit of iteration span for $n k$ for film
TI	L_{i}	lower limit of iteration span for film thickness L
T	I	film thickness
TM	I_{m}	upper limit of iteration span for film thickness
WL	λ_{0}	vacuum wave length

Name	Evaluates	Converts
CSQRI (C)	$\sqrt{\text { c }}$	complex to complex
CEXP(C)	e^{C}	complex to complex
$\operatorname{CABS}(\mathrm{c})$	$\|\mathrm{C}\|$	complex to real
AIMAG (C)	finds the imaginary part of C	complex to real
REAL (C)	finds the real part of C.	complex to real
$\cos (\mathrm{X})$	$\cos x$	real to real
$\operatorname{SIN}(\mathrm{X})$	sinx	real to real
$\operatorname{ATAN}(\mathrm{X})$	$\tan ^{-1} x$	real to real
ATANL ($\mathrm{X}, \mathrm{Y})$	$\tan ^{-1}(x / y)$	real to real
ABS (X)	$\|\mathrm{x}\|$	real to real
$\operatorname{CMPIX}(\mathrm{A}, \mathrm{B})$.	constructs $A+i B$ from A, B	real to complex

```
            PROGRAM FILNZIINPLT, OLTPUT, TAFEZ=INPUT, TAPEZ=CUTPUT)
            HIS PROGRAM CALCLLATES THE THICKNESS aNO CCMPLEX REFRACT IVE
            NDEX OF a SINGLE ABSO&bING FILN GN AN bRSCREINE SUESTRATE
            COMPLEX TN2, TN3, CFHI2, CPHI3, RIS, RIP, R2S, A2P, C, RS, RP, RHO
            dimfasicn fitle (E), Range {8)
            READ (z,2) tItLE, RANGE
    2 FERMAT (EAIC/EAIC)
    WRITE (2,4) TITLE, PANGE
    4 format (lhi, ealc/fealc
    5 READ (2,S) TM1, HL, INS, TAKS
    IF (NN1) בCCC, 3CCC,6
    READ (E.IC) Thi, CTR, INN, TNKI, DTAK, TNKN
    7 READ (2,11) TI, DT, IM
    READ (\hat{C12) PHII, PSIM, OELH, EPSIM, ECELM}
    FORMAT (FS.C. 3FiC.C)
    c FCRMAT (FC.C., sfic.c)
    11 FGRMAT (FS.C. ZFIC.C)
    12 FCRMAT (FS.C: 4FIC.C)
    13 FORMAT (1HO,1EHPHI=,F5.2,10X,4HA = FT.4, 10X, 13HMAVELENGTF =
    C FS.C. IIH ANGSTRCMS/IB3H REFRACTIVE INCEX CF SUESTRATE = , F7.4;
    2x.44+ 1, F7.41
    14 FDRMAT I1HC, 2THREFRACIIVE INCEX EF FILM = , FT.4. 2x,
    C 4F+ I, F7.4//IEHFILN THICKAESS= FF7.2, 1OH ANGSTROMS,
    %8F PSIC = . FIC.E. ICX, THOELC = . FIO.5
    FORMAT IIHC, THPSIM= FIC.5,10X, FFCELM=. FIC.5//32H NO SCLUT
    CION MITHIN GIVEN IIMITS
    M=1
    PFI=CCSCPHIT
    SP = SIN(PHI)
    TN3 = CMPLX(TAS, TNKS)
    CPHI3 = CSORT(1.0 - 1^1**2*SF**2/(TN3**2))
    TN = TNI
    ic ink = INk
    2C %N=1I
ICC TNZ = CNPLX{TN, TNK)
    CPMI2 = CSORT1.0 - IN1**2*SP**2/(TA2**2))
    R1S = (TN1*CF - TN2*CPHI2)/(TM1*CF + TA2*CFH12)
    R1P = (TN1*CPHI2 - TN2*CP)/(TN1*CPHI2 + TN2*CP)
    R2S = (TN2*CPH12 - TA 3*CPHI3)/(IN2*CPHI2 + TA3*CPF13)
    R2P = (TN2*CPHI3 - IN3*CPHI2)/{TN2*CFHIZ + TA3*CPFI2)
    o = (C.0.1.C)*(4.C*3.1415927*T/hL)*TN2*CPM12
    RS = RRIS + R2S*CEXP(D)I/I1.0 & FIS*F2S*CEXFIC),
    RP = R1F + R2P*CEXP(D)I/(1.0 & P1P*R2P*CEXP(D);
    RHC = R\/RF
    PSIC = ATANICABSIPHC)110.017453
    PELC = ATAN2(AIMAGIPHC).0REALIFHC)1/0.017453
    IF (EPSINAN-ABS(PSICC-PSIN)) 4CC, 2CO, 200
2CC IF (EDELM - ABS(DELC - DELM), 400, 30C, 200
3CC WRITE (2,12) PHII, TM1, WL, INS, TNKS
    HRITE (3,14) TA, INK, T, PSIC, OELC, FSIN, CELM
    M= 2
4CC IF ITM - IT + OTH ECC, 60C,500
scc t= T + OT
    IF :INKM - ITNK + DTAKI) 8CC, eCC, 700
    ECC IF INKKM-ITNK
    CO IC בC 
8CC IF IINN - ITN + DTNM 1000, 1000,900
SCC IN = IN. CIN
    GC IC AC
10cc GO IC (2CCC, 1)N
2CCO WRITE {2.13) PHII, TNI, WL, TNS, TAKS
    HRITE (2.15S PSIN, DELP
    CC IC 1
zoCC CONTINLE
    ENo
```

$$
\begin{align*}
r_{2 s}= & \frac{n_{c} \cos \phi^{\prime}-n_{c s} \cos \phi^{\prime}}{n_{c} \cos ^{\prime}+n_{c s} \cos \phi_{s}^{\prime}} \tag{KI}\\
r_{2 p}= & \frac{n_{c} \cos \phi_{s}^{\prime}-n_{c s} \cos \phi^{\prime}}{n_{c}{\cos \phi_{s}^{\prime}}+n_{c s} \cos \phi^{2}} \tag{59}\\
& v \tag{77}\\
\rho_{\text {meas }}= & \tan \psi_{\text {meas }} e^{i \Delta_{\text {meas }}}
\end{align*}
$$

$$
\begin{equation*}
A=\left(\rho r_{1 s}-r_{1 p}\right) r_{2 s} r_{2 p} \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
B=\rho\left(r_{1 p} r_{1 s} r_{2 s}+r_{2 p}\right)-\left(r_{1 s} r_{1 p} r_{2 p}+r_{2 s}\right) \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
C=p r_{1 p}-r_{1 s} \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
x=\left[B^{2}-4 A C\right]^{1 / 2} \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
E_{I, 2}=\quad(-B \pm X) /(2 A) \tag{82}
\end{equation*}
$$

$$
\text { see }(82)
$$

$$
\begin{equation*}
I_{1,2}=\frac{\lambda_{0}}{4 \pi n_{c} \cos \phi^{i}}\left[\tan ^{-1}\left(\frac{I m E_{1,2}}{\operatorname{ReE}_{1,2}}\right)-1 \log \left|E_{1,2}\right|\right] \tag{85}
\end{equation*}
$$

$I=$ real part of L_{1} or L_{2}, whichever has smaller imaginary part

$$
\begin{align*}
D & =\frac{4 \pi i L}{\lambda_{0}} n_{c} \cos \phi^{\prime} \tag{76}\\
r_{s} & =\frac{r_{I s}+r_{2 s} e^{D}}{I+r_{I s} r_{2 s} e^{D}} \tag{75}
\end{align*}
$$

Card	Col. 1	Col. 10	Col.	Col. 3	Col. 40	Col. 50
1	Title and comments (up to 80 columns)					
2	Ranges	n and $n k$	(up to 8	lumns)		
3	n_{0}	λ_{0}	n_{s}	$\mathrm{n}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$		
4	$\begin{gathered} n \\ \text { (initial) } \end{gathered}$	$\begin{gathered} \text { (increment) } \end{gathered}$	$\begin{aligned} & \mathrm{n} \\ & (\text { final }) \end{aligned}$	$\begin{gathered} n k \\ \text { (initial) } \end{gathered}$	$\begin{gathered} \text { onk } \\ \text { (increment) } \end{gathered}$	$\begin{gathered} n K \\ \text { (final) } \end{gathered}$
5	ϕ	ψ	\triangle	ϵ_{ψ}	${ }^{\epsilon}$,	

These five cards constitute a set. Any number of sets may follow. Two blank cards (these are dummy title cards and need not necessarily be blank) must follow card 5 of the last set of data, and a card with 0.0 punched in the first field (columns 1 - 9) must follow these blank cards. (When the computer reads this card it sets $n_{0}=0.0$. It thus transfers to the end of the program.) All numbers punched on cards 3 through 5 must contain a decimal point and may be located anywhere in the field of columns 1-9, 10-19, etc.

Name	Symbol	Description
A	A	intermediate variable
B	B	intermediate variable
C	C	intermediate variable
CPHI2	$\cos \phi^{\prime}$	cosine of angle of ref. in film
CPHI3	$\cos \phi_{S}^{\prime}$	cosine of angle of ref. in substrate
D	D	complex optical path length
E1, E2	e^{D}	
I	$\sqrt{-1}=i$	imaginary unit
N2	$n+i n k$	refractive index of film
N3	$n_{s}+i n_{s} k_{s}$	refractive index of substrate
RIS	$\mathrm{r}_{\text {ls }}$	Fresnel reflection coefficient at air-film interface for polarization normal to plane of incidence
RIP	$\mathrm{r}_{\text {Ip }}$	Fresnel reflection coefficient at air-film interface for polarizätion parallel to plane of incidence
R2S	$\mathrm{r}_{2 \mathrm{~s}}$	Fresnel reflection coefficient at film-substrate interface for polarization normal to plane of incidence
R2P	$r_{2 p}$	Fresnel reflection coefficient at film-substrate interface for polarization parallel to plane of incidence
RS	$r_{\text {S }}$	reflection coefficient of filmsubstrate combination for polarization normal to plane of incidence
$R P$	r_{p}	```reflection coefficient of film- substrate combination for polari- zation parallel to plane of incidence```
RHO	$p=r_{S} / r_{p}=\tan \psi e^{i \Delta}$	culated)
RHOM	$\rho=r_{s} / r_{p}=\tan \psi e^{i \Delta}$	sured)
T1, T2	L_{1}, L_{2}	calculated complex film thicknesses

A reproduction of the program SFILM appears on the next page, followed by a sample output. The flow diagram is the same as that of the program "FILM" with two exceptions. Since film thickness is calculated, not guessed, the

"SFILM" Program

```
PROGRAN SFILN (INPUT, CUTPUT, TAFE2=IAPUT, TAPE3=CUTPUT,
    THIS PROGRAM CALCULATES THE THICKNESS ANC CCMPLEX REFRACTIVE
    INDEX OF A SINGLE AESCRBIAG FILN CA AN AESCREING SURSTRATE
    COMPLEX CPHI2, CPHIZ,N2, N3, R1S,R1F, R2S, R2F, RS, RP, RHO
    COMPLEXA, E, C, [, E1, E2, I, PHCN, T1, T2, X
    I, AKN,A,AK
    DIMENSICN TITIEI8I. RANGEIE)
    CDR = C.C174E?
```



```
    FORNAT (GAIC/OALCI
    MRITE (3,4) TITLE
    FORMAT (IH1, &AICIIEALOI
```



```
    REAO (2,E) Al, WL, NS, NK
    READ (2,S) MI, DN. AN, NKI, CAK, AKM
    7 REAC (2, 1C) PHI, PSIN, CEL*, EFSI*, ECELM
    & FORMAT IFS.C. 3FIC.CS
    S FORMAT (FS.C, EFIC.C)
    C FORMAT IFS.C. 4FIC.C
    1 FORMAT \1HC./EMPHI =,F5.2.10X.4HN =,F7.4, 10X, 13HWAVELENGTH=
        CFS.C, 11H ANGSTRCMS/133H REFRACTIVE INDEX CF SURSTRATE = , F7.4,
    C 2X,4t+ 1, F7.41
    12 FORMAI I IHC, 27HREFRACIIVE INCEX CF FILM = , FT.4, 2X,
    C 4t+ 1, F7.4//18H FILN THICKNESS = , F7.2, 10H ANGSTRCNS//
        3GH INAGINARY PART CF FILN THICKNESS = FIO.5, lCF ANGSTRDMS,
        C /18H PSIC = FIC.5, 10X, 7HDELC = F10.5;
    3 FORMAT (1HC, THPSIN=,FIC.5.10X, 7HCELN=, F10.5/132H NO SOLUT
        CICN MITHIN GIVEN IINITSI
        N=1
        N3 = CMPIX\AS.NKS)
        RHOM = TAAIPSIM*CCR)*CEXP(I*LELN*CCF)
        SP=SIN(FH{#CCR)
        CP=CCS(FHI*CER)
        CPHI2=CSERT(1.C - N1**2*SF**2)(N3**2))
        P}=\textrm{hl/(4.C*3.1415527)
        N=NI
    ZCNK=AKI
    ICC N2 = CMPLY(N, NK)
    CPH{2=CSORT(1.0-N1**2*SP**2/(N2**2))
    R1S = (N1*CF-N2*CPHI2)/(Nl*CF +N2*CFH12)
    R2S = (A2*CPHI2 - NZ*CPHI3)/CN2*CPHI2 N2*CPH13)
    R2P = NN2*CPHI3 - N2*CPH121)AN2*CPHE3 +N2*CFMI2
    R = (RHOM*R1S P1PI*R2S*R2P
    B = PHCM*(R1P*R1S*R2S &R2F) - (R1S*F1F*R2F + R2S)
    C= RHON*RIP - RIS
    X=CSORT(B#*)2 - 4
    F1 = (-B * X)/(2.O*A)
    T1 = P*(ATANZ(AIMAG(E1), REAL(E1)) - I*ALCG(CABS(E1:I)/(N2*CPO12)
    T2 = P#(ATAMZ(AIMAG(E2), REAL(EZ)) - I*ALCG(CAES(E2)))/(N2*CPF12)
    IF (ABSIAINAGIII) - AES(AINAG(T2)I) 110. 110. 120
    T = REAL (T])
        ERRCR = AINAG \T1)
        GC TC 13C
    1zCT=REAL\Tこ)
    ERROR = AINAG(12)
13CD = (4.C*3.141, %2%*Y/WL)*I*N2*(PHT2
    RS = {R1S + R2S*CEXP{D)|/(1.0 + F1S*F2S*CEXP{CI:
    RP= (R1F + R2P*CEXP(D)J/(1.0 + F1F*F2F*CEXP(O))
    RHC = RS/RP
    PSIC= ATAM(CABS(AMCI)/CDR
    DELC = ATANZ(AIMAG(RHC), REAL/RFCI)/CEA
    DELC = ATANZ(AIMAG(RHC), REALIRHCII/CCA
    2CC IF IEDEIM - ABSIPSIC - PSINI)400. 200, 200
    2CC IF ITEEL3,11)
    WRITE (Z,1Z) N,NK, I, ERRCF, FSIC
    WRITE (Z,13) N, NK, ERRCF, FSIC, CELC. FSIN, CELM
    M=2
    4CC IF IAKN - (AKK + CAKI) EOC, 5CC, 500
    \CC IF INKN - IAK 
    GO TC ICC
    IF INM - IN + ONI) ECC, 70C. 7CO
    TCCN=N + ON
    GO IC 2C
    &CC GO TC 1SOC. 11M
    CCC WRITE {2.11) PHI, NI, WL.NS, NKS
        WRITE (3,12) PSIM, DELN
        GC TO 1
ICCC CONTINLE
    ENO
I. J. Stone, Radiation and Optics (McGraw-Hill Book Co., New York, 1963) Ch. 15, 16.
2. B. Rossi, Optics (Adaison-Wesley Pub. Co., New York, 1959) pp. 366-375.
3. R. H. Muller and J. R. Mowat, Reflection of Polarized Light from Absorbing Media, UCRL Report No. 11813 (1966).
4. C. E. Leberknight and B. Lustman, An Optical Investigation of Oxide Films on Metals, J. Opt. Soc. Amer. 29, 59-66 (1939).
5. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1964) pp. 615-620.
6. P. Drude, Ueber Oberflächenschichten, Ann. der Physik und Chemis 36, 531-561, 865-897 (1889).
7. T. Fry, Plane Waves of Light, J. Opt. Soc. Amer. 16, 1-25 (1928).
8. A. Winterbottom, Optical Studies of Metal Surfaces...., Norske Videnskabers Selskabs Skrifter (1955) pp. 10-49.
9. R. J. Archer, Determination of the Properties of Films on Silicon by the Method of Ellipsometry, J. Opt. Soc. Amer. 52, 970-977 (1962).
10. R. H. Muller and J. R. Mowal, Analysis of Elliptically Polarized Light, UCRI Report No. 11802 (1966).
II. R. W. Ditchburn, Light (Interscience Publishers, New York, 1966).
12. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Pub. Co., Washington, D.C., 1955) p. 49.
13. A. Vasicek, Optical Study of a Thin Absorbing Film on a Metal Suriace, Ellipsometry in the Measurement of Surfaces and Thin Films, U. S. Dept. of Com. N.B.S. Misc. Pub. 256 (1963) p. 27.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of , or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.```


[^0]:    * Others using Drude's convention are Winterbotton, ${ }^{7}$ Mccrackin, ${ }^{15}$ and Leberknight and Lustman. ${ }^{4}$

[^1]:    ${ }^{*}$ McCracken ${ }^{15}$ and other authors use the definition $\rho=\tan \psi e^{I \Delta}=r_{p} / r_{s}$. Owing to this and other differences in convention the $\psi$ given here will be the complement of that found in much of the literature, while the $\Delta$ given here is essentially the same as that in the literature (i.e., $\Delta=\delta_{p}-\delta_{s}$, Eq. (9)). In practice one solves the exact Eq. (77) for $\tan \Delta$ and not $\Delta$. When only the tangent of an angle is known (and not its sine or or cosine) the quadrant in which the angle is to be placed is ambiguous. Thus, further differences arise in the literature.

[^2]:    * Ref. 18, p. 55.

