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Abstract. The propagation of plane waves in fibre-reinforced media is discussed.
The expressions of phase velocities of quasi-P (qP) and quasi-SV (qSV) waves
propagating in plane symmetry are obtained in terms of propagation vectors. We
have established a relation from which the displacement vector can be obtained
in terms of the propagation vector. Expressions for the reflection coefficients of
qP and qSV waves are obtained. Numerical results of reflection coefficients are
obtained and presented graphically. The partition of energy between qP and qSV
waves reflected on free and rigid boundaries due to incident qP and qSV waves are
also obtained and presented graphically.
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1. Introduction

Fibre-reinforced composite materials have become very attractive in many engineering appli-
cations recently due to their superiority over other structural materials in applications requir-
ing high strength and stiffness in lightweight components. Consequently the characterisation
of their mechanical behaviour is of particular importance for structural design using these
materials.

Effects of earthquakes on artificial structures are of prime importance to engineers and
architects. During an earthquake and similar disturbances a structure is excited into a more or
less violent vibration, with resulting oscillatory stresses, which depend both upon the ground
vibration and physical properties of the structure (Richter 1958). Most concrete construction
includes steel reinforcing, at least nominally. Thus wave propagation in a reinforced medium
plays a very important role in civil engineering and geophysics.

The propagation of body waves in anisotropic media is fundamentally different from their
propagation in isotropic media, although the differences may be comparatively subtle and dif-
ficult to observe (Crampin 1975). In general, for any type of anisotropy, there are always three
types of body waves propagating with three different velocities. Choosing the three compo-
nents of displacement adequately, they are called quasi-P(qP), quasi-SV(qSV) and quasi-SH
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(qSH) waves. The velocities of these three waves change according to the type of symmetry
present in the medium. Owing to these properties, anisotropy is detected by observations of
change in P-wave velocity along two perpendicular directions and by observations of S-wave
splitting. For both these effects it is not necessary that the whole medium be anisotropic; only
some part of it need be so (Udias 1999). Generally, particle motion is neither purely longitu-
dinal nor purely transverse. For this reason, the three types of body waves in an anisotropic
medium are referred as qP, qSV and qSH instead of P, SV and SH.

The problem of reflection and refraction of elastic have been discussed by several authors.
Without going into the details of the research work in this field, we mention the papers by Knott
(1899), Gutenberg (1944), Thapliyal (1974), Keith & Crampin (1977), Dey & Addy (1979),
Tolstoy (1982), Norris (1983), Pal & Chattopadhyay (1984), Achenbach (1976), Henneke
(1972), Chattopadhyayet al (1995) and Singhet al (2002), as giving a broad picture of the
work done so far.

Crampin & Taylor (1971) studied surface wave propagation in examples of unlayered
and multi-layered anisotropic media which is examined numerically with a program using
an extension of the Thompson-Haskell matrix formulation. They studied some examples of
surface wave propagation in anisotropic media to interpret a possible geophysical structure.
Crampin (1975) showed that the surface waves have distinct particle motion when propa-
gating in a structure having a layer of anisotropic material with certain symmetry relations.
Chattopadhyay & Saha (1996) have studied the problem of reflection of qSV-wave at free
and rigid boundary in a medium of monoclinic type.

The above mentioned authors have not studied the reflection behaviour at a free and
rigid boundaries of a fibre-reinforced medium. The reflection of qP and qSV waves in a
fibre-reinforced medium is discussed. In this paper we have computed the reflection coef-
ficients of qP and qSV waves at the free and rigid boundary of a fibre-reinforced medium.
It is well known that in an anisotropic medium the direction of particle motion is neither
perpendicular nor parallel to the direction of propagation. Considering this fact, a rela-
tion has been established to calculate the displacement vector in terms of propagation vec-
tor. The expressions for phase velocity of qP and qSV waves are obtained in terms of the
propagation vector. The partition of energy between qP and qSV waves reflected for qP
and qSV waves incident on a free and rigid boundaries have been derived and presented
graphically.

2. Formulation of the problem

The constitutive equations for fibre-reinforced linearly elastic medium whose preferred direc-
tion is that ofa are (Spencer 1972)

τij = λekkδij + 2µT eij + α(akamekmδij + ekkaiaj )

+ 2(µL − µT )(aiakekj + ajakeki) + β(akamekmaiaj ),

whereτij are components of stress,eij are components of infinitesimal strain,aj are compo-
nents ofa, all referred to cartesian coordinates. The vectora may be a function of position.
The coefficientsλ, µL, µT , α andβ are elastic constants with the dimension of stress.

If a is so chosen that its components are (1,0,0). The stress components (1) become

τ11 = (λ + 2α + 4µL − 2µT + β)e11 + (λ + α)e22 + (λ + α)e33,

τ22 = (λ + α)e11 + (λ + 2µT )e22 + λe33, (1)
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τ33 = (λ + α)e11 + λe22 + (λ + 2µT )e33,

τ12 = 2µLe12, τ13 = 2µLe13, τ23 = 2µT e23, (2)

where 2eij = ui,j + uj,i andui(i = 1,2, 3) are the displacement components.
We take the plane of symmetry of the fibre-reinforced medium as thex1x2-plane andx2-

axis vertically upwards. For the plane wave propagation inx1x2-plane, we have∂/∂x3 = 0.
The non-vanishing equations of motion without body forces are

∂τ11

∂x1
+ ∂τ12

∂x2
= ρ

∂2u1

∂t2
,

∂τ21

∂x1
+ ∂τ22

∂x2
= ρ

∂2u2

∂t2
, (3)

∂τ31

∂x1
+ ∂τ32

∂x2
= ρ

∂2u3

∂t2
,

The stress equations of motion (3) with the help of (2) become

(λ + 2α + 4µL − 2µT + β)
∂2u1

∂x2
1

+ µL

∂2u1

∂x2
2

+ (λ + α + µL)
∂2u2

∂x1∂x2
= ρ

∂2u1

∂t2
,

(4)

µL

∂2u2

∂x2
1

+ (λ + 2µT )
∂2u2

∂x2
2

+ (λ + µL + α)
∂2u1

∂x1∂x2
= ρ

∂2u2

∂t2
, (5)

µL

∂2u3

∂x2
1

+ µT
∂2u3

∂x2
2

= ρ
∂2u3

∂t2
. (6)

From (4) to (6), it is obvious that qSH wave which is represented byu3 motion in (6) is
decoupled from(u1, u2) motion representing qP and qSV waves. The phase velocity of qSH
wave is

ρc2
n = µL{p(n)

1 }2 + µT {p(n)
2 }2, (7)

wherep (p
(n)
1 , p

(n)
2 , 0) denote the unit propagation vector,cn is the phase velocity andkn

is the wave number of plane waves propagating in thex1x2-plane. We consider plane wave
solutions of (4) and (5) as(

u1

u2

)
= A

(
d

(n)
1

d
(n)
2

)
exp

[
ikn(x · p − cnt)

]
, (8)

whered (d
(n)
1 , d

(n)
2 , 0) is the unit displacement vector.

Using the expressions of (8) foru1 andu2 in the equations of motion (4) and (5), we obtain

d
(n)
1

d
(n)
2

= S

ρc2
n − R

= ρc2
n − T

S
, (9)

where

R = (λ + 2α + 4µL − 2µT + β){p(n)
1 }2 + µL{p(n)

2 }2,

S = (λ + α + µL)p
(n)
1 p

(n)
2 ,

T = µL{p(n)
1 }2 + (λ + 2µT ){p(n)

2 }2. (10)
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Equation (9) may be used to find thed in terms ofp.
From the above equation, we have

ρ2c4
n − (R + T )ρc2

n + (RT − S2) = 0.

The solutions of the above equation are

2ρc2
n = (R + T ) ± [(R − T )2 + 4S2]1/2.

Velocities of qP wave and qSV waves are

2ρc2
L = (R + T ) + (

(R − T )2 + 4S2
)1/2

, (11)

2ρc2
T = (R + T ) − (

(R − T )2 + 4S2
)1/2

, (12)

From (4) and (5), we obtain

[(λ + 2α + 3µL − 2µT + β)d
(n)
1 d

(n)
2 {p(n)

1 }2] + (µL − λ − 2µT )d
(n)
1 d

(n)
2 {p(n)

2 }2

+ (λ + α + µL)[{d (n)
2 }2 − {d(n)

1 }2]p(n)
1 p

(n)
2 = 0. (13)

Pure longitudinal and shear waves can propagate only in certain specific directions. Longitu-
dinal and transverse specific directions are found by takingd = p andd perpendicular top .
In the anisotropic case no such relations can be considered between the displacement vector
and the propagation vector.

We consider a homogeneous fibre-reinforced half-space occupying the regionx2 ≤ 0 and
the plane of symmetry is taken as thex1x2-plane. Plane qP wave is incident at the traction-
free boundaryx2 = 0 and will generate reflected qP and qSV waves. Letn = 0, 1,2 be
assumed for incident qP, reflected qP and reflected qSV waves respectively. We consider the
plane strain problem and hence

u1 = u1(x1, x2, t), u2 = u2(x1, x2, t), u3 = 0.

The displacement field may be represented by

u1 =
2∑

j=0

Ajd
(j)

1 eiηj , u2 =
2∑

j=0

Ajd
(j)

2 eiηj , (14)

where

ηn = kn(x1p
(n)
1 + x2p

(n)
2 − cnt). (15)

For incident qP wave, which makes an angleθ0, we have

p
(0)
1 = sinθ0, p

(0)
2 = cosθ0, c0 = cL.

In the planex2 = 0, the displacement and stress components due to incident qP-wave may
be written as

u
(0)
1 = A0d

(0)
1 eiη0, u

(0)
2 = A0d

(0)
2 eiη0,

τ
(0)
22 = iA0k0[(λ + α)d

(0)
1 sinθ0 + (λ + 2µT )d

(0)
2 cosθ0]eiη0, (16)

τ
(0)
21 = iA0k0µL[d(0)

1 cosθ0 + d
(0)
2 sinθ0]eiη0,

where

η0 = k0(x1p
(0)
1 − cLt). (17)
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For a reflected qP wave which makes an angleθ1 we have

p
(1)
1 = sinθ1, p

(1)
2 = − cosθ1, c1 = c′

L.

In the planex2 = 0, the displacement and stress components due to reflected qP-wave may
be written as

u
(1)
1 = A1d

(1)
1 eiη1, u

(1)
2 = A1d

(1)
2 eiη1,

τ
(1)
22 = iA1k1[(λ + α)d

(1)
1 sinθ1 − (λ + 2µT )d

(1)
2 cosθ1]eiη1,

τ
(1)
21 = iA1k1µL[−d

(1)
1 cosθ1 + d

(1)
2 sinθ1]eiη1, (18)

where

η1 = k1(x1p
(1)
1 − c′

Lt).

If the reflected qSV wave makes an angleθ2, we have

p
(2)
1 = sinθ2, p

(2)
2 = − cosθ2, c2 = cT .

In the planex2 = 0, the displacement and stress components due to reflected qSV-wave may
be written as

u
(2)
1 = A2d

(2)
1 eiη2, u

(2)
2 = A2d

(2)
2 eiη2,

τ
(2)
22 = iA2k2[(λ + α)d

(2)
1 sinθ2 − (λ + 2µT )d

(2)
2 cosθ2]eiη2,

τ
(2)
21 = ik2A2µL[−d

(2)
1 cosθ2 + d

(2)
2 sinθ2]eiη2, (19)

where

η2 = k2(x1p
(2)
1 − cT t).

3. Boundary conditions and solution of the problem for incident qP-waves

Case 1:Reflection reflection of qP-wave at a free boundary.
Whenx2 = 0 is a free surface, the sum of the three tractions must vanish atx2 = 0 and we
can write the boundary conditions as:

τ
(0)
22 + τ

(1)
22 + τ

(2)
22 = 0,

and

τ
(0)
21 + τ

(1)
21 + τ

(2)
21 = 0. (20)

Substituting in (20), the values ofτ (n)
22 , τ

(n)
21 (for n = 0, 1,2) from (16), (18) and (19), we

obtain:

ik0A0[(λ + α)d
(0)
1 sinθ0 + (λ + 2µT )d

(0)
2 cosθ0] exp(iη0)

+ ik1A1[(λ + α)d
(1)
1 sinθ1 − (λ + 2µT )d

(1)
2 cosθ1] exp(iη1)

+ ik2A2[(λ + α)d
(2)
1 sinθ2 − (λ + 2µT )d

(2)
2 cosθ2] exp(iη2) = 0, (21)
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and

ik0A0[d(0)
1 cosθ0 + d

(0)
2 sinθ0] exp(iη0)

+ ik1A1[−d
(1)
1 cosθ1 + d

(1)
2 sinθ1] exp(iη1)

+ ik2A2[−d
(2)
1 cosθ2 + d

(2)
2 sinθ2] exp(iη2) = 0. (22)

Equations (21) and (22) must be valid for all values ofx1 andt , hence

η0 = η1 = η2, (23)

which means

k0(x1 sinθ0 − cLt) = k1(x1 sinθ1 − c′
Lt) = k2(x1 sinθ2 − cT t).

This gives

k0 sinθ0 = k1 sinθ1 = k2 sinθ2 = φ

and

k0cL = k1c
′
L = k2cT = ω, (24)

whereφ is the apparent wave number, andω is the circular frequency.
From the above relations we have

k1

k0
= cL

c′
L

= sinθ0

sinθ1
,

and

k2

k0
= cL

cT

= sinθ0

sinθ2
. (25)

Equations (21) and (22) after using (23) may be written as

P0A0 + P1A1 + P2A2 = 0,

P3A0 + P4A1 + P5A2 = 0, (26)

where

P0 = k0[(λ + α)d
(0)
1 sinθ0 + (λ + 2µT)d

(0)
2 cosθ0],

P1 = k1[(λ + α)d
(1)
1 sinθ1 − (λ + 2µT)d

(1)
2 cosθ1],

P2 = k2[(λ + α)d
(2)
1 sinθ2 − (λ + 2µT)d

(2)
2 cosθ2],

P3 = k0[d (0)
1 cosθ0 + d

(0)
2 sinθ0],

P4 = k1[−d
(1)
1 cosθ1 + d

(1)
2 sinθ1],

P5 = k2[−d
(2)
1 cosθ2 + d

(2)
2 sinθ2]. (27)

Solving the above two equations, we have,

A1

A0
= a2 − b2

a1b2 − a2b1
,

A2

A0
= − a1 − b1

a1b2 − a2b1
, (28)



The reflection of quasi-P and quasi-SV waves 619

where

a1 = P1

P0
, a2 = P2

P0
, b1 = P4

P3
, b2 = P5

P3
.

d
(i)
1 /d

(i)
2 (i = 0, 1,2) can be calculated from (9) and are as under:

d
(0)
1 /d

(0)
2 = (ρc2

L − T )/S (29)

where R, S and T can be calculated after puttingp1 = p
(0)
1 = sinθ0 andp2 = p

(0)
2 = cosθ0

in (10).

d
(1)
1 /d

(1)
2 = (ρc′2

L − T1)/S1, (30)

whereR1, S1 andT1 can be calculated after puttingp1 = p
(1)
1 = sinθ1 andp2 = p

(1)
2 =

− cosθ1 in (10).

d
(2)
1 /d

(2)
2 = (ρc2

T − T2)/S2 (31)

whereR2, S2 andT2 can be calculated after puttingp1 = p
(2)
1 = sinθ2 andp2 = p

(2)
2 =

− cosθ2 in (10).
From (11) and (12), the velocities of incident qP, reflected qP and reflected qSV may be

defined by

2ρc2
L = (R + T ) + (

(R − T )2 + 4S2
)1/2

,

2ρc′2
L = (R1 + T1) + (

(R1 − T1)
2 + 4S2

1

)1/2
,

2ρc2
T = (R2 + T2) − (

(R2 − T2)
2 + 4S2

2

)1/2
, (32)

whereR, R1, R2, S, S1, S2, T , T1 andT2 are defined in (29) to (31).
Using the following values of reinforced-free medium

µL = µT = µ, α = β = 0,

equations (28) reduce to

A1

A0
= sin 2θ0 sin 2θ2 − K̄2 cos2 2θ2

sin 2θ0 sin 2θ2 + K̄2 cos2 2θ2
(33)

A2

A0
= 2K̄ sin 2θ0 cos 2θ2

sin 2θ0 sin 2θ2 + K̄2 cos2 2θ2
(34)

where,

K̄ = [(λ + 2µ)/µ]1/2

which are the reflection coefficients of P and SV waves respectively for free boundary in
isotropic case (Achenbach 1976, p. 175).

The partition of energy between reflected qP and qSV waves for incident qP wave is given
by

(
A1

A0

)2
cL

c
/

L

m1 cosθ1

m0 cosθ0
+

(
A2

A0

)2
cL

cT

m2 cosθ2

m0 cosθ0
= 1, (35)
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where

m0 = (ap
(0)
1 d

(0)
1 + bp

(0)
2 d

(0)
2 ) sinθ0d

(0)
1 + µL(d

(0)
1 p

(0)
2 + d

(0)
2 p

(0)
1 )

× (d
(0)
1 cosθ0 + d

(0)
2 sinθ0) + (bd

(0)
1 p

(0)
1 + cd

(0)
2 p

(0)
2 )d

(0)
2 cosθ0,

m1 = (ap
(1)
1 d

(1)
1 + bp

(1)
2 d

(1)
2 ) sinθ1d

(1)
1 + µL(d

(1)
1 p

(1)
2 + d

(1)
2 p

(1)
1 )

× (−d
(1)
1 cosθ1 + d

(1)
2 sinθ1) − (bp

(1)
1 d

(1)
1 + cp

(1)
2 d

(1)
2 )d

(1)
2 cosθ1,

m2 = (ap
(2)
1 d

(2)
1 + bp

(2)
2 d

(2)
2 ) sinθ2d

(2)
1 + µL(d

(2)
1 p

(2)
2 + d

(2)
2 p

(2)
1 )

× (−d
(2)
1 cosθ2 + d

(2)
2 sinθ2) − (bp

(2)
1 d

(2)
1 + cp

(2)
2 d

(2)
2 )d

(2)
2 cosθ2.

a = λ + 2α + 4µL − 2µT + β, b = λ + α, c = λ + 2µT .

For an isotropic case, (35) becomes

(
A1

A0

)2

+
(

A2

A0

)2
cT

cL

cosθ2

cosθ0
= 1,

which is same as that of Achenbach (1976, p. 182).
The velocity of surface wave can be obtained from (28) by equating the denominator to

zero. It has been observed that the surface wave velocity atθ = 8.8◦ in the case of a fibre-
reinforced medium is 1.58 times more than the Rayleigh wave in the classical case (values of
λ, α, β, µT andµL are defined in (6).
Case 2:Reflection of qP -wave at a rigid boundary.
Since the boundaryx2 = 0 is bounded by a rigid layer, the boundary conditions may be taken
as

u
(0)
1 + u

(1)
1 + u

(2)
1 = 0,

and

u
(0)
2 + u

(1)
2 + u

(2)
2 = 0. (36)

Substituting the values ofu(n)
1 , u

(n)
2 for n = 0, 1,2 from (16), (18) and (19) in (36), we get

A0d
(0)
1 exp(iη0) + A1d

(1)
1 exp(iη1) + A2d

(2)
1 exp(iη2) = 0, (37)

A0d
(0)
2 exp(iη0) + A1d

(1)
2 exp(iη1) + A2d

(2)
2 exp(iη2) = 0. (38)

Solving the above two equations, we have

A1

A0
= d

(2)
1 d

(0)
2 − d

(2)
2 d

(0)
1

d
(1)
1 d

(2)
2 − d

(1)
2 d

(2)
1

,

A2

A0
= d

(0)
1 d

(1)
2 − d

(1)
1 d

(0)
2

d
(1)
1 d

(2)
2 − d

(1)
2 d

(2)
1

. (39)

The above equations are the reflection coefficients of qP and qSV waves for rigid bound-
aries.
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4. Reflection of qSV waves at a free boundary

Incident qSV wave will generate reflected qP and qSV waves. Letn = 0, 1,2 be assumed
for incident qSV, reflected qP and reflected qSV waves respectively. For incident qSV wave,
which makes an angleθ0 , we have

p
(0)
1 = sinθ0, p

(0)
2 = cosθ0, c0 = c′

T . (40)

In the planex2 = 0, the displacement and stress components of incident wave and reflected
waves are same as in (16), (18) and (19). Equation (17) to be replaced by

η0 = k0(x1p
(0)
1 − c′

T t). (41)

5. Boundary conditions and solution of the problem for qSV waves

5.1 Reflection of qSV wave at a free boundary

Substituting in (20), the values ofτ (n)
22 , τ

(n)
21 (for n = 0, 1,2) from (41), (18) and (19), we

obtain the same expressions as (21) and (22) except thatcL is replaced byc′
T . The ratio

d
(0)
1 /d

(0)
2 is mentioned in (43), other ratios are the same as (30) and (31).

Equations (21) and (22) must be valid for all values ofx1 andt , hence

k0 sinθ0 = k1 sinθ1 = k2 sinθ2 = φ,

and k0c
′
T = k1c

′
L = k2cT = ω, (42)

whereφ andω are defined in (24). Solving (21) and (22) we have the same sets of equations
as (26) with some changes as mentioned below:

d
(i)
1 /d

(i)
2 (i = 0, 1,2), may be calculated from (9) and are as under.

d
(0)
1 /d

(0)
2 = (ρc′2

T − T )/S, (43)

where R, S and T can be calculated after takingp1 = p0
1 = sinθ0 andp2 = p

(0)
2 = cosθ0 in

(10).d(i)
1 /d

(i)
2 (i = 1,2) are defined in (30) and (31).

From (12) and (11), the velocity of incident qSV may be defined by

2ρc′2
T = (R + S) − (

(R − S)2 + 4T 2
)1/2

. (44)

Reflected qP and qSV waves velocities are already defined in (32).
Using the following values of reinforced- free medium (values are mentioned in section

3), we obtain the reflection coefficients for isotropic case as

A1

A0
= − K̄ sin 4θ0

sin 2θ0 sin 2θ1 + K̄2 cos2 2θ0
,

A2

A0
= sin 2θ0 sin 2θ1 − K̄2 cos2 2θ0

sin 2θ0 sin 2θ1 + K̄2 cos2 2θ0
, (45)

whereK̄ = [(λ + 2µ)/µ]1/2.
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The partition of energy between reflected qP and qSV waves due to incident qSV wave is
given by

(
A1

A0

)2
c′

T

c′
L

m1 cosθ1

m0 cosθ0
+

(
A2

A0

)2
c′

T

cT

m2 cosθ2

m0 cosθ0
= 1 (46)

where all definitions are as in (35).

5.2 Reflection of qSV wave at a rigid boundary

Since the boundaryx2 = 0 is a rigid layer, the boundary conditions are the same as for
(36).

After substituting the values ofu(n)
1 , u

(n)
2 for n = 0, 1,2 from (41), (18) and (19) in (36),

and solving, we have the same sets of equations as in (39) for reflection coefficients of qP
and qSV waves.

Hered
(i)
1 /d

(i)
2 (i = 0, 1,2) are as defined in (43), (30) and (31).

6. Numerical calculations and discussions

The material constants for fibre-reinforced medium have been considered as per Markham
(1970).

µT = 2.46× 109N/m2, µL = 5.66× 109 N/m2,

λ = 5.65× 109N/m2, β = 220.90× 109 N/m2,

α = −1.28× 109N/m2, ρ = 7800 kg/m3.

6.1 Reflection of qP waves

In figure 1, curve II corresponds to reflection coefficient of qP-wave in fibre-reinforced
medium. All the values of curve II are negative except from 0◦ to 10◦ and from 83◦ to 90◦. In

Figure 1. Amplitude ratios of qP waves due to incident qP waves.
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Figure 2. Amplitude ratios of qSV waves due to incident qP waves.

the isotropic case (curve I), the values of(A1/A0) are all negative except fromθ0 = 57◦ to 78◦.
Significant differences of values exist from 0◦ to 5◦ and from 80◦ to 90◦ in fibre-reinforced
case compared to isotropic case. The values from 21◦ to 80◦ are greater in the isotropic case
compared to those in the fibre-reinforced case.

In figure 2, the reflection coefficients of qSV waves for a free boundary of fibre-reinforced
medium at different angles of incidence have plotted along with the curve for isotropic
medium. The values of(A2/A0) are all positive and equal for curves I and II atθ0 = 0◦, 15◦
and 90◦. The difference in values atθ0 = 50◦ in isotropic case is significantly more compared
to fibre-reinforced medium.

Figure 3 shows the comparison of partition of energy between reflected P and qP waves
for incident qP waves. In this caseA1/A0 = 0, for angle of incidence at 60◦ and 78◦, and
A1/A0 = 1 for angle of incidence at 0◦ and 90◦ in case of isotropic media. For fibre-reinforced
medium (curve II),A1/A0 = 1 at 0◦ only.

Figure 3. Partition of energy of qP waves due to incident qP waves.
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Figure 4. Partition of energy of qSV waves due to incident qP waves.

Figure 4 shows the comparison of partition of energy between reflected SV and qSV waves
for incident qP waves. In this caseA2/A0 = 0 at 0◦ for both isotropic and fibre-reinforced
(curve II) media. The critical point exists at 13◦.

In figure 5, the values of reflection coefficients of qP-wave for isotropic (curve I)
and fibre-reinforced media (curve II) have been plotted for rigid boundaries. The values
of A1/A0 for fibre-reinforced media sharply increase from 0◦ to 18◦ and then remain
constant from 19◦ to 90◦. The value ofA1/A0 at 90◦ is significantly more in case of
a fibre-reinforced medium compared to the isotropic case, and at 0◦ the value in the
isotropic case is more compared to that in the fibre-reinforced case. The critical point exists
at 18◦.

In figure 6, the values of reflection coefficient of qSV(A2/A0) have been plotted for
rigid boundary in curves II and I. It has been observed that all the values of the reflection

Figure 5. Amplitude ratios of qP waves due to incident qP waves in rigid boundary.
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Figure 6. Amplitude ratios of qSV waves due to incident qP waves in rigid boundary.

coefficients of qSV are negative except those at 0◦ and 90◦. The values are greater in case
of fibre-reinforced media as compared to isotropic media from 15◦ to 89◦. The maximum
difference exists at 10◦. The critical point exists at 15◦.

Figures 7 and 8 show the partition of energy between reflected qP and qSV waves for
incidence of a qP wave in a rigid boundary.

6.2 Reflection of qSV waves

In figure 9, curve I corresponds to isotropic medium and agrees with the result of Achenbach
(1976). Curve II corresponds to fibre-reinforced medium. The value ofA1/A0 in a fibre-
reinforced medium is greater compared to that in isotropic medium but the difference is
greater at 33◦.

In figure 10, the reflection coefficient of qSV-waves (curve II) for reinforced medium for
different values ofθ0 ranging from 0◦ to 33◦ have been plotted which are permissible ofθ0

Figure 7. Partition of energy of qP waves due to incident qP waves in rigid boundary.
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Figure 8. Partition of energy of qSV waves due to incident qP waves in rigid boundary.

for A2/A0 in fibre reinforced medium and compared with those in isotropic media (curve I).
In this case, due to the effect of fibre-reinforced medium the values ofA2/A0 are greater
compared to the isotropic case.

This rigid boundary plays a very important role in case of reflection phenomena. All the
values ofA1/A0 (figure 13) in case of fibre-reinforced material in a rigid boundary are less
compared to the isotropic case.

Figure 14 shows the reflection coefficientA2/A0 for qSV wave. The values ofA2/A0 for
fibre-reinforced media with rigid boundaries coincide with the values ofA2/A0 for isotropic
media at 32◦. This is the critical point. The values for fibre-reinforced media (curve II) are
less compared to those for isotropic media from 5◦ to 31◦.

Figures 11, 12, 15 and 16 show the partition of energy for incident qSV waves due to free
and rigid boundaries.

Figure 9. Amplitude ratios of qP waves due to incident qSV waves.
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Figure 10. Amplitude ratios of qSV waves due to incident qSV waves.

Figure 11. Partition of energy of qP waves due to incident qSV waves.

Figure 12. Partition of energy of qSV waves due to incident qSV waves.
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Figure 13. Amplitude ratios of qP waves due to incident qSV waves in rigid boundary.

Figure 14. Amplitude ratios of qSV waves due to incident qSV waves in rigid boundary.

Figure 15. Partition of energy of qP waves due to incident qSV waves in rigid boundary.
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Figure 16. Partition of energy of qSV waves due to incident qSV waves in rigid boundary.
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