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Abstract—Feeding integrated antennas during a measurement
requires special feeding structures. Due to the small antenna
dimensions these feeding structures are often much bigger than
the antenna under test (AUT) itself and with chip sizes of around
1 mm2, the achievable separation between antenna and feed is
limited. Wafer probes have to be used to feed the AUT during
passive antenna measurements and present a large reflective
surface in close proximity to the AUT. Reflections from the wafer
probe cause interference on the measurement surface and distort
the results. The same is true for active antenna measurements,
where bondwires and the package can have a significant effect
on the radiated fields. The fragility and size of the components
do not allow to reduce reflections with absorbers, which is why
modal filtering was used in this paper to mitigate undesired
reflections and improve the measurement result through post
processing. Two issues that limit the performance of the algorithm
are discussed, namely phase center inaccuracies of the AUT and
a limited measurement surface.

It is shown that modal filtering is applicable to integrated
antenna measurements at frequencies over 100 GHz and that a
significant improvement in the measured radiation pattern can
be achieved. Furthermore, it is shown that the post processed
results make it possible to measure the directivity of integrated
antennas, despite strong probe reflections.

Index Terms—Integrated antenna, millimeter-wave (mm-
wave), antenna measurement, spherical wave expansion, SWE,
modal filtering, phase center, wafer probe, MARS.

I. INTRODUCTION

Ideally, antennas should be measured in free space with no

objects in the measurement environment to interfere with the

radiated fields; however, this is not possible in a real setup.

The required measurement equipment, feeding structures, and

mechanical setup can often not be sufficiently shielded to

achieve the desired accuracy. Therefore, other measures have

to be implemented to reduce unwanted influences of the

measurement environment on the results.

One possibility is post processing the data to separate the

desired radiation from unwanted reflections in order to sup-

press interferences. A common approach to separate different

paths of propagation in time domain is by Fourier transforming

a broadband measurement [1]. However, time gating requires

large bandwidths of the measurement setup and AUTs for a

sufficient temporal resolution, especially for reflections that

occur close to the AUT.

A different method is the Mathematical Absorber Reflection

Suppression (MARS) algorithm, which was presented in [2]

for a spherical near field range and is based on modal filtering.

The measured fields are being represented with orthogonal ba-

sis functions or modes to achieve a modal separation between
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Fig. 1. Wafer probe reflections cause interference on the measurement surface.
Signal blockage in the shadow region behind the probe. Measurement surface
is limited by θmax.

the desired and reflected signals. It can be applied to various

measurement surfaces depending on the used basis functions,

e.g. spherical [3], cylindrical [4]–[6], and planar [7] near field

measurements as well as far field [8], [9] measurements.

The algorithm was used for an antenna fed with a wafer

probe in [10], using the 60 GHz patch antenna presented

in [11] as AUT. For integrated antennas at frequencies over

100 GHz, wafer probes are the only applicable option to feed

antennas that are not fed directly from active on-chip circuitry.

Due to the comparatively large size and the proximity to

the AUT, wafer probes distort antenna measurements signifi-

cantly [12], as indicated in Fig. 1. Custom made wafer probes

(probe B in Fig. 1) can be used to reduce the interference [13],

[14], but they are expensive and difficult to fabricate. The

fragility of wafer probes and the small distance to the AUT

do not allow for covering the probes with absorbers, which

is why post processing is used in this paper to obtain mean-

ingful measurement results, despite the strong reflections from

standard probes (probe A in Fig. 1).

The AUT that was used for all simulations and measure-

ments was a scaled version of [15], designed for 160 GHz.

Section II describes the spherical wave expansion (SWE),

required for the MARS algorithm explained in Section III. The

impact of a limited scanning surface (see Fig. 1) and of an

inaccurate phase center location on the calculated coefficients

is discussed in Sections IV and V respectively. Section V also

introduces a new method to determine the phase center of

an AUT from disturbed measurement data. Section VI shows
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Fig. 2. Definition of the spherical coordinates (0 ≤ φ < 2π, 0 ≤ θ ≤ π).

the results of the MARS algorithm applied to an integrated

antenna measurement at 160 GHz for radiation pattern and

directivity, and demonstrates that the influence of reflections

can be reduced significantly.

II. MODAL FILTERING

Modal filtering can be implemented for different scanning

surfaces like planar, cylindrical, and spherical measurement

geometries. The small dimensions of integrated antennas allow

to perform far field measurements at relatively small distances,

which is why the far field approach with a spherical scanning

geometry is used in this paper. In case of a current-free and

lossless space the scalar wave equation is

∆ψ(r) + k2ψ(r) = 0 , (1)

where k = 2π/λ is the wave number. In this paper only the r-

component of ψ(r) is considered. Assuming that the solution

can be written as a product of functions that only depend on

a single coordinate, separation of variables can be used. For

a spherical coordinate system as shown in Fig. 2 the ansatz

is [16]

ψ(r, θ, φ) = R(r)Θ(θ) Φ(φ) . (2)

A solution to the wave equation can now be calculated as

shown in [17] and has the form of

ψ(i)
mn(r) = z(i)n (kr) P̄ |m|

n (cos θ) e jmφ . (3)

The φ dependency is specified through a complex exponen-

tial function, while the variation in θ-direction is expressed

through the normalized associated Legendre function of the

degree n and order m

P̄m
n (x) =

√

2n+ 1

2

(n−m)!

(n+m)!
Pm
n (x) , (4)

with

Pm
n (x) =

(1− x2)
m/2

2nn!

dn+m

dxn+m
(x2 − 1)

n
. (5)

The limits of the modal indices m and n in ψ
(i)
mn(r) are

0 ≤ n ≤ ∞ and −n ≤ m ≤ n .

Four different solutions in r-direction can be given, which

apply to different modes of propagation. Bessel or Neumann

functions z
(1,2)
n (kr) can be chosen for standing waves, the

spherical Hankel function of the first kind z
(3)
n (kr) represents

propagation in negative r-direction, but in case of propagation

in positive r-direction, the spherical Hankel function of the

second kind is the most suitable solution and therefore z
(i)
n (kr)

is set to

z(4)n (kr) = h(2)n (kr). (6)

In this paper the following far field approximation was used:

h(2)n (kr)
kr→∞≈ jn+1 e

−jkr

kr
. (7)

The radiated electrical field can be split in a transverse

electric (TE) and a transverse magnetic (TM) component [8]

E = ∇× r êrψ
(4)
mn(r)

︸ ︷︷ ︸

=m
(4)
mn (TE)

+
1

k
∇×

(

∇× r êrψ
(4)
mn(r)

)

︸ ︷︷ ︸

=n
(4)
mn (TM)

. (8)

m
(4)
mn and n

(4)
mn are spherical wave functions that can be

normalized to [18]

M(4)
mn(r) = A ·m(4)

mn(r) ,

N(4)
mn(r) = A · n(4)

mn(r) , (9)

with

A =
1

√

2πn(n+ 1)
·
{
1 , if m = 0 .
(

− m
|m|

)m

, otherwise .
(10)

The radiated electric field can now be written as a weighted

sum of the power normalized spherical wave functions

M
(4)
mn(r) and N

(4)
mn(r)

E(r)=
k√
η

∞∑

n=1

n∑

m=−n

[

B(1)
mnM

(4)
mn(r)+B

(2)
mnN

(4)
mn(r)

]

. (11)

The complex weighting factors B
(1)
mn and B

(2)
mn are called

spherical mode coefficients (SMC) [8]. The factor k/
√
η, with

η =
√

ε/µ, ensures that B
(1)
mn and B

(2)
mn have the unit W1/2.

Together with (4) and (9) this allows to calculate the total

radiated power as a simple summation over the SMCs

P =
1

2

∞∑

n=1

n∑

m=−n

[∣
∣
∣B(1)

mn

∣
∣
∣

2

+
∣
∣
∣B(2)

mn

∣
∣
∣

2
]

. (12)

After the calculation of m
(4)
mn and n

(4)
mn with (8) and splitting

E(r) in an Eφ and Eθ component, (11) can be solved for B
(1)
mn

and B
(2)
mn as shown in [18]. The SMCs can then be calculated

with

B(1)
mn =

√
η (−1)

m

k h
(2)
n (kr1)

1
√

2πn(n+ 1)

(

− m

|m|

)m

·
∫ 2π

φ=0

∫ π

θ=0

[

Eθ(r1)

(

− jm

sin θ
P̄ |m|
n (cos θ)

)

+

Eφ(r1)

(

−∂P̄
|m|
n (cos θ)

∂θ

)]

e−jmφ sin θ dθ dφ (13)
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and

B(2)
mn =

√
η (−1)

m

k
[

1
kr1

∂(kr1 h
(2)
n (kr1))

∂kr1

]
1

√

2πn(n+ 1)

(

− m

|m|

)m

·

∫ 2π

φ=0

∫ π

θ=0

[

Eθ(r1)

(

∂P̄
|m|
n (cos θ)

∂θ

)

+

Eφ(r1)

(

− jm

sin θ
P̄ |m|
n (cos θ)

)]

e−jmφ sin θ dθ dφ , (14)

where r1 is the measurement distance and r1 = (r1, φ, θ) is a

point on the measurement surface. Equation (11) shows that an

infinite number of spherical wave functions have to be added

in order to calculate the radiated field. However, the function

values of the Hankel function h
(2)
n (kr) decline strongly for

n>kr0 (see (7)), where r0 is the minimum radius of a sphere

around the center of the coordinate system that envelops the

aperture of the source (minimum radius sphere, MRS). This

means that modes with a degree n > kr0 are attenuated

significantly compared to lower degree modes and can be

neglected for the far field calculation. Thus, the summation in

(11) can be confined to spherical mode coefficients of degree

1≤n≤N [18], with

N = ⌊kr0⌋+ n1. (15)

n1 is a safety margin that ensures that no significant modes

are truncated and ⌊x⌋ denotes the floor function.

III. MARS

Mathematical Absorber Reflection Suppression is a com-

bination of post processing and measurement technique that

allows to reduce reflections that occurred during the measure-

ment and uses spherical wave expansion to separate direct

radiation from reflections.

As shown in (15), the number of modes required to represent

the radiated fields of an antenna depends on the AUT size,

which means that an antenna with an MRS of r0 is fully

described by SMCs of degree n ≤ N . Modes of a higher

degree can therefore be attributed to interferences, which can

then be suppressed by using only lower degree modes for

the back transformation into the far field. The remaining

coefficients are

B(s)
mn(n > N) = 0 , s = 1, 2 . (16)

Therefore, the further antenna and reflection mode coefficients

are apart, the better reflections can be canceled out.

For MARS the measurement is performed with an out-of-

center AUT, with an offset of ∆z > 2r0. This offset position

increases the size of the MRS as indicated in Fig. 3. As

the measurement is not performed around the phase center,

the phase change of the field on the measurement surface is

increased as well. Thus, the SMCs are spread over a larger

region in the mode spectrum. The AUT can then be moved

back to the origin of the measurement surface by adjusting the

phase and amplitude of the measured values to account for the

path difference ∆r(θ, φ)= |r1(θ, φ)| − |rv(θ, φ)| between the

real measurement distance |rv(θ, φ)|=rv(θ, φ) and the desired

x y

r
′

0r0

∆z

z

AUT with offset

MRS with offset

AUT with MRS

Fig. 3. An AUT offset increases the size of the minimum radius sphere (MRS)
and the amount of modes required for the far field representation.

x y

z

P

r1

rv

φ

θ

∆z

Fig. 4. Path difference between the original measurement distance r and the
distance rv of the updated position for an offset of ∆z.

measurement distance |r1(θ, φ)|=r1 as shown in Fig. 4. This

undoes the phase change caused by the offset position for

direct radiation, focusing the AUT at lower degree modes,

while further spreading reflections over the mode spectrum.

Therefore, MARS increases the separation between wanted

and unwanted modes and improves the filter performance of

the spherical wave expansion.

The translated field can be calculated with

E(θ, φ) =

(
rv(θ, φ)

r1

)2

Ev(θ, φ)e
−jk∆r(θ,φ) . (17)

IV. LIMITED SCANNING SURFACE

Due to limitations of the measurement setups and the

required feeding fixtures for the AUT, the radiated fields

cannot be measured on a complete hemisphere around the

AUT, which means that part of the field is truncated for post

processing.

Fig. 5 shows the spherical mode coefficients that were

calculated based on a far field pattern simulation of the
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Fig. 5. Mode spectrum B
(1)
mn of the simulated AUT at 160 GHz for different

maximum scanning angles θmax.
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Fig. 6. Impact of a limited scanning surface on the calculated far field based
on spherical wave coefficients of degree N ≤ 13, E-plane.

integrated antenna. The triangular shape is due to the limits

of m and n (see Section II). With kr0 = 3.3, three spherical

wave functions are sufficient to fully represent the field of the

antenna, which is why the SMCs with n≤3 have much higher

values compared to higher degree modes in Fig. 5a. Fig. 5b

shows the calculated SMCs of the same antenna, but based on

far field data with θmax=50◦. The non-physical truncation of

the field leads to an increase of higher degree SMC values.

Fig. 6 displays the calculated far field for different θmax values

based on the coefficients with n < 13. The error between

the original and the calculated far field increases for smaller

scanning surfaces and the largest error occurs at the edge of

the scanning surface.

The impact of the safety margin n1 is shown in Fig. 7,

where the calculated far field and the deviation to the original

field is displayed for θmax = 50◦. Fig. 7b shows that the

difference between the simulated and the calculated far field

pattern decreases when more SMCs are taken into account,

which means that the error can be reduced with a large safety

margin. On the other hand, the number of SMCs has to

be limited for the back transformation in order to mitigate

−40 −20 0 20 40
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0

θ in ◦

C
(θ
)

in
d

B

Simulation

SWE (n1 = 3)
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(a) Radiation pattern comparison.
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(b) Difference between simulation and calculation.

Fig. 7. Comparison of the calculated far field pattern in the E-plane for
different amounts of considered modes N = 3 + n1 (θmax = 50◦).

reflections. n1=10 proved to be a good compromise between

filter performance and transformation accuracy and is used

hereafter. The required computing time is around 10 sec.

As the error shown in Fig. 7b is deterministic for a given

radiation pattern, the error can be determined based on a

simulation of the AUT and subtracted from the obtained far

field MARS result to further reduce the effect of a limited

scanning surface (see Section VI). The error was calculated

as |Csim − Ccalc(n1)| .

A second option to mitigate the effect of a limited scanning

surface would be to substitute missing measurement points

with simulation data. However, this requires high phase agree-

ment between simulation and measurement, which is difficult

to achieve as the measurement environment with all scatterers

has to be reproduced with very high accuracy in the simulation.

V. AUT PHASE CENTER

In order to get the best separation between reflection modes

and AUT modes, the measured far field has to be translated

back to the phase center of the AUT, which concentrates the

AUT at SMCs of low degree. Therefore, the position of the

phase center has to be precisely known. With a wavelength

of less than 2 mm and AUT dimensions of around 1 mm, the

measurement of the phase center position is challenging.

Fig. 8a shows the calculated mode coefficients of the inte-

grated antenna based on a measurement performed at 160 GHz.

The AUT position was measured with a laser range finder and
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Fig. 8. B
(2)
mn mode spectrum of the measurement (probe A) before and after

translation of the far field into the calculated phase center, which focuses the
coefficients at a few modes of low degree.

the measurement was performed around the expected AUT

position with an offset of ∆z = 0. The calculated coefficients

do not show the desired concentration of the SMCs at modes

of low degree, which indicates that the accuracy of the phase

center position was not sufficient.

In order to obtain a more accurate phase center position,

the phase center of the AUT can be calculated based on an

initial radiation pattern measurement as shown in [19], [20].

However, this so-called flip-test was only used for offsets and

tilts in one plane and requires multiple measurements.

In this paper two phase center calculation methods are

used and compared. In the first method the phase center is

calculated based on a far field measurement at the distance r.

If a far field measurement is performed around the phase

center of an antenna, the phase should ideally be constant

on a spherical measurement surface. Thus, the phase center

can be determined by optimizing the center of the measure-

ment c in post processing such that the phase change on the

measurement surface is minimized.

The distance between the measurement positions pi and the

updated measurement center position c ′ is calculated with

r′i = |pi − c ′| . (18)

The difference between r and the new measurement dis-

tances r′i is

∆ri = r − r′i , (19)

which corresponds to a phase change of ∆φi = k∆ri .

Therefore, the updated phase at each position is

S′
21,i = S21,i e

−j∆φi . (20)

The phase center can now be found by minimizing the standard

deviation of arg(S′
21,i) for two orthogonal cuts of the measured

far field pattern.

However, strong reflections can alter the phase on the

measurement surface, potentially leading to a false phase

TABLE I
CALCULATED OFFSET FROM THE PHASE CENTER OF THE AUT.

δx in mm δy in mm δz in mm
Wafer probe A B A B A B

Far field method
∆z = 0mm 2.7 3.0 0.5 0.2 2.6 1.6
∆z = 6mm 2.6 2.9 0.5 0.3 8.7 7.6

Mode method
∆z = 0mm 3.1 3.1 0.3 0.3 2.2 2.3
∆z = 6mm 3.0 3.0 0.2 0.3 7.8 8.3

center position. This uncertainty of the phase center position

impacts the post processing and causes errors in the calculated

far field pattern.

A new method to increase the accuracy of the phase

center determination based on the calculated SMCs was im-

plemented. As previously mentioned, the translation of the

far field in the phase center focuses the SMCs in a small

number of modes. If the AUT is translated into the correct

phase center, the MRS has the smallest possible radius (see

Fig. 3) and the number of relevant modes to represent the

far field is minimal. Therefore, the amount of modes with

significant magnitude can be used as a quality function for

an optimization of the phase center position. In this case the

phase center position was chosen such that the number of

SMCs with a magnitude larger than −5 dB was minimized.

The Nelder-Mead method [21] was used and required around

70 iterations. The starting value was obtained from an initial

far field phase center calculation.

In order to compare the performance of the far field and

the SWE approach for the phase center determination, an

AUT was measured twice in the exact same position with

two different wafer probes, A and B (see Fig. 1), that cause

different interferences. Table I shows the calculated phase

center offsets in x-, y-, and z-direction for both methods and

probes. In the x-, y-plane the calculated offsets for the far

field method deviate by around 300µm between the two probe

measurements, while the calculated offset values are almost

identical when using the mode method. This clearly shows

that the mode method is more robust towards interferences

in the measurement setup and better suited to determine the

phase center compared to the far field method. However, the

mode method is more likely to run in a local minimum in

case of a poor start value, which is why the initial guess was

calculated with the far field method.

The phase center position of a real antenna is not concen-

trated in one single point and changes with the frequency, θ,

and φ [22], with the highest standard deviation in the direction

of radiation, which is why the biggest deviations in Table I

occur for δz.

Fig. 8b shows the calculated spherical mode coefficients

after the far field has been mathematically translated to the

calculated phase center. Compared to Fig. 8a, it shows that the

coefficients are much more focused at modes of lower degree

and order, which indicates that the calculated phase center

position is accurate. The magnitude of the SMCs decreases

significantly for degrees n>3, which agrees with the expected
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Fig. 10. Mode spectrum of an integrated antenna at 160 GHz in the phase
center (∆z = 6mm).

result for the given antenna dimension and the simulation

shown in Fig. 5b. Comparatively high values of SMCs for

degrees larger than 10 are caused by the previously mentioned

strong reflections from the surface of the wafer probe [13].

VI. INTEGRATED ANTENNA MEASUREMENTS

Fig. 9 shows the robotic measurement setup that was used

to perform the measurements. A detailed description of the

setup can be found in [23].

Interference from wafer probes can disturb integrated an-

tenna measurements such that the results are unfit for a

meaningful AUT characterization and are the main source

of reflection for integrated antenna measurements [13], [24].

Therefore, the MARS algorithm was applied to a wafer

probe measurement to improve the result. Fig. 10 shows the

calculated spherical mode coefficients after translation into the

calculated phase center of the AUT, focusing the SMCs at

low degree modes. As expected from the simulation shown in

Fig. 5b, Fig. 10a shows the same periodic mode pattern for

−40 −20 0 20 40

−20

−10

0

θ in
◦

|C
(θ
)|

in
d

B

Simulation

Measurement ∆z = 0mm

MARS ∆z = 6mm

(a) E-plane (φ = 0◦).
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Fig. 11. Comparison of measurement, simulation, and post processed radia-
tion pattern of the integrated antenna at 160 GHz for an offset of ∆z = 6mm.
Probe reflections cause strong ripples in the measurements. MARS yielded
similar results for ∆z = 2mm and ∆z = 4mm.

coefficients with the order m = ±1, caused by the limited

scanning surface around the AUT. The measurement was

performed at a distance of 300 mm for a maximum angle

θmax=50◦ with an offset of ∆z=6mm using a standard wafer

probe (probe A). Most reflections occur within a distance of

less then 20 mm of the AUT. This corresponds to modes with

a degree of approximately 65, which is why higher degree

modes are of negligible magnitude.

A. Radiation Pattern

Based on the SMCs of degree n < 13, the far field of

the integrated antenna was calculated to obtain the radiation

pattern without probe reflections. Fig. 11 shows a comparison

between the simulation result, a reference far field measure-

ment with an offset of ∆z=0, and the results of the MARS

algorithm for an offsets ∆z=6mm in the E- and H-plane. The

antenna was simulated on an infinite ground plane without

a wafer probe in order to have an undistorted reference. In

the measurement result the impact of probe reflections can

be seen clearly in both planes. Especially the E-plane (x-z-

plane in Fig. 1) is severely distorted and exhibits large ripples

due to the superposition of direct and reflected radiation on

the measurement plane. The decline for θ>15◦ is caused by

blockage of the signal in the shadow region behind the probe.

The reflections have a smaller effect on the plane orthogonal

to the probe plane (y-z-plane Fig. 1). Only the area for
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|θ|<15◦ is affected by the reflections, showing the same

minimum as in the E-plane for θ = 0, due to destructive

interference between the direct and reflected signal.

The distortions can be reduced significantly through MARS.

The calculated E-plane pattern in Fig. 11a does not show any

ripples anymore and is much closer to the simulation result.

Only the shadowing behind the probe cannot be corrected by

MARS. The results that were obtained for different offsets

(∆z = 2mm and ∆z = 4mm) were almost identical. The

result in the H-plane shows hardly any difference compared

to the simulation results, except for the deviation for large θ
values, which is, as discussed in Section IV, due to the limited

scanning surface. Using the calculated error for θmax=50◦

and n1 = 10 shown in Fig. 7b, the error can be subtracted

from the post processed far field result, which reduces the

error at angles |θ| > 50◦ significantly as shown in Fig. 11b.

This, however, is only a valid approach if the simulated and

calculated radiation patterns are similar and thus can only be

performed in the H-plane for the discussed measurement.

As the back transformation yields the complex Eφ and

Eθ component, the technique can also be used for circular

polarized antennas and cross-polarization analyses. Fig. 12

shows a comparison of the measured and simulated cross-

polarization of the integrated antenna at 160 GHz. While

the unprocessed measurement is severely distorted, the post-

processed measurement shows a similar progression as the

simulation result. The difference between simulation and mea-

surement of approximately 7 dB is caused by a non-ideal

position of the dielectric resonator, which was manually glued

on the chip and is used to improve the radiation efficiency [15].

As the cross-polarization is very sensitive towards the res-

onator position, even small offsets of around 50µm can have

a significant effect on the cross-polarization level. As already

discussed for the co-polarization results, the limited scanning

surface results in a decrease of the results for large |θ|-values.

The 3-dimensional radiation patterns shown in Fig. 13 also

demonstrate how much the measured radiation pattern can be

improved through the MARS algorithm. Figs. 13a and 13c

show the unprocessed measured/simulated absolute value of

the normalized radiation pattern for the integrated antenna at

−12−10−8−6−4−20 |C| in dB

θ = 0
◦

50
◦

φ= 0
◦

(a) Measurement.

θ = 0
◦

50
◦

φ= 0
◦

(b) MARS result.

θ = 0
◦

50
◦

φ= 0
◦

(c) Simulation.

θ = 0
◦

50
◦

φ= 0
◦

(d) Simulation SWE.

Fig. 13. 3D radiation pattern of the integrated antenna at 160 GHz. The probe
(probe A) is located in φ=0◦-direction.

160 GHz, while Figs. 13b and 13d show the results of the

MARS (offset ∆z = 6mm) algorithm for the measurement

and of the spherical wave expansion (∆z = 0) result for the

simulation. In both cases θmax was set to 50◦ and N to 13.

While the unprocessed measurement shows no resemblance

to the simulation, the post processed measurement largely

agrees with the expected simulation results. The ripples were

filtered out completely and the smooth radiation pattern of

the antenna was reconstructed. The biggest difference between

measurement and simulation after the post processing occurs

behind the probe in φ = 0◦-direction, where the signal was

blocked during the measurement.

B. Directivity

The directivity of an antenna can be determined by integra-

tion over the normalized radiation pattern C(θ, φ) on a sphere

around the AUT

D =
4π

∫ 2π

φ=0

∫ π

θ=0
C2(θ, φ) sin θ dθ dφ

. (21)

The calculated directivity of the simulated integrated antenna

is 9.5 dBi.

If the radiation pattern is only known on a section of the

sphere, the integration cannot be performed over the entire

surface. If the unknown part of the sphere is assumed to be

zero, the value of the denominator in (21) is underestimated,
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which results in an upper bound for the directivity. With

θmax = 50◦ (Fig. 13c), the calculated directivity of the

simulated antenna increases to 10.2 dBi. The same value is

obtained after the spherical wave expansion (SWE, Fig. 13d).

In order to obtain a lower bound for the directivity it was

assumed that the directivity for angles 50◦<θ≤90◦ is equal to

the directivity on the edge at θ=50◦, in which case the integral

is overestimated. This resulted in a lower bound of 8.1 dBi

and 9.3 dBi for the simulated directivity without and with

SWE respectively. The spherical wave expansion increases the

directivity, because the beamwidth is decreased for θ angles

close to 50◦, as shown in Fig. 6, but this effect is counteracted

by the overestimation of the integral, which is why the lower

bound of the SWE is very close to the real directivity.

The distortions of the measurement result (Fig. 13a) do

not facilitate a meaningful directivity calculation; however,

after post processing (Fig. 13b), the upper and the lower

bound of the measured directivity were 11.5 dBi and 10.7 dBi

respectively. The blockage behind the probe, which is not

completely reconstructable, and the limited scanning range

with the MARS algorithm increase the measured directivity,

but the measured values are still reasonably close to the

simulated results.

VII. CONCLUSION

Strong reflections render measurement results unreliable,

when measuring integrated antennas with commercially avail-

able wafer probes. In order to reduce interferences, the MARS

algorithm was applied to integrated antenna measurements for

frequencies over 100 GHz for the first time. The effect of a

limited scanning surface was analyzed and the impact of a

faulty phase center position was discussed. A new method to

determine the phase center position that is more robust towards

reflections in the measurement setup was proposed.

While the raw measurement results of the integrated antenna

are not a meaningful representation of the radiation pattern and

cannot be used to determine the directivity of an antenna, the

post processed results show a much better agreement with the

simulations and make it possible, for the first time, to measure

the directivity of an integrated antenna with commercially

available wafer probes.
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