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Abstract. Reflection removal from photographs is an important task
in computational photography, but also for computer vision tasks that
involve imaging through windows and similar settings. Traditionally, the
problem is approached as a single reflection removal problem under very
controlled scenarios. In this paper we aim to generalize the reflection re-
moval to real-world scenarios with more complicated light interactions.
To this end, we propose a simple yet efficient learning framework for
supervised image reflection separation with a polarization-guided ray-
tracing model and loss function design. Instead of a conventional image
sensor, we use a polarization sensor that instantaneously captures four
linearly polarized photos of the scene in the same image. Through a
combination of a new polarization-guided image formation model and
a novel supervised learning framework for the interpretation of a ray-
tracing image formation model, a general method is obtained to tackle
general image reflection removal problems. We demonstrate our method
with extensive experiments on both real and synthetic data and demon-
strate the unprecedented quality of image reconstructions.

Keywords: Reflection Removal, Polarization Simulation Engine, ray-
tracing, Polarization Tracing

1 Introduction

There are a number of circumstances in photography as well as scientific and
computer vision imaging systems in which it is unavoidable to capture images
through glass windows or transparent enclosures. In these scenarios, the captured
image is a mixture of transmitted and reflected light paths, which degrades
both the visual quality of the scene in photography applications, as well as the
performance of computer vision algorithms. Therefore, reflection removal and
the separation of reflected and transmitted images are topics of considerable
interest in both computational photography and computer vision.

For traditional photography, a range of different techniques have been devel-
oped to suppress reflections. These range from controlling the lighting on the
near side of the window (the darker the better), or using a linear polarizer while

⋆ Jointly first author.
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shooting the image at an angle close to the Brewster angle of the reflective sur-
face. However, even in such controlled environments, complete reflection removal
is surprisingly hard in practice – for example, the angle to the glass surface varies
spatially over the image plane, especially for wide-angle photography. Moreover,
in many situations “in the wild” such constrained setups are simply not possible
and we need to contend with bright reflections at arbitrary angles. As a result,
there has been considerable interest in recovering the transmitted image by uti-
lizing a single image as input [1–4], assuming that the reflected and transmitted
scenes are independent in terms of low-level features, high-level semantics or
even the motion of views. The independence assumption, however, is not always
reliable or discriminating enough to solve this highly ill-posed inverse problem.
Moreover, transparent windows often cause weak ghost images due to multiple
reflections in the glass (Fig. 1 b), which are not modeled by most prior work.

In this work, we propose a full multi-bounce reflection model for the interac-
tion of reflected and transmitted light with the glass window. At every surface
bounce, we model the full change of the polarization state due to the Fresnel
equations. The spatial shift introduced by each bounce also creates weaker ghost
images, especially of high-intensity light sources. The change in each bounce is in-
fluenced by unknown parameters such as the material of the transparent medium
and the incident angle. The weak polarization of light from these light-surface
interactions acts as an additional cue for separating the reflected and the trans-
mitted component, and to reconstruct a clean image for both components. We
design a simple yet effective deep network architecture to perform this separation
and image restoration.

To separate the two independent components (i.e., reflected, transmitted)
from captured polarization images efficiently, we propose a comprehensive po-
larization image formation model by taking into account the Stokes vector and
Mueller matrices conversion, coordinate between the image sensor and transpar-
ent medium, multiple reflectances as well as transmittance, and medium thick-
ness caused ghosts by solving an simple iterative parameter searching problem.
Considering a high-quality polarization image dataset is lacking in this area, our
experiment dataset includes both unpolarized and polarized cases. This care-
fully captured high-resolution dataset includes different polarization scenarios
that are required to be solved in the real world, we will make it public for this
research area. In particular, the main contributions of our works are:

– We propose a differentiable polarization simulation engine to accurately trace
the polarization state of light in the transparent medium, combining it with
a deep learning framework for end-to-end training.

– We design a mixed network architecture that considers a learnable forward
inference model to separate reflected and transmitted scene, and a physically
backward simulation loss to further verify and refine network output.

– We also release a real scene polarized image dataset with and without medium
reflection, it contains a pair of clear polarized images and several reflected
scenes with different scene parameters.
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Fig. 1: Light reflection and transmission model: Incident angle θi, reflection angle
θr, transmission angle θt, and POI. (a) Object surface and camera image plane
are in different coordinate (b) Multiple light paths for reflected the (blue) and
transmitted (red) scenes. The top-right is a a color polarization camera with
micropolarizer at four different angles and Bayer filter layout.

2 Related Work

Single image reflection separation is a well-known ill-posed problem. There are
two general approaches to this. One is based on handcrafted priors [5–11], while
the other is based on deep learning methods [1–3]. The handcrafted priors that
are based on the observations from specific natural images. Properties like gra-
dient sparsity [8, 5, 11], relative smoothness [12–14], and ghosting cues [10], are
leveraged in the literature. Although reasonable performance can be observed
when these assumptions hold, high-level understanding for the specific input
data is required for the prior based approaches. In deep learning based methods,
deep convolutional neural networks (CNN) are applied to solve this inverse prob-
lem. Fan et al. [1] propose an image learning network to predict the background
layer in an end-to-end approach. Yang et al. [15] estimate background and re-
flection in an alternating fashion, to improve the accuracy of reflection removal.
Jin et al. [16] propose a neural network approach with a focus on handling color
ambiguity and saturation. Wan et al. [17] applies a multi-scale strategy on the
learning network to improve the target details. Wen et al. [18] synthesizes and
remove reflection with a non-linear model. Perceptual loss functions have been
adopted in [4]. An alignment-invariant loss is introduced in [19] to improve the
performance under misaligned data.

Multiple image reflection removal is also an active research area, where some
measurement diversity is introduced in the form of motion or rotating polarizers
etc. By estimating the motion between the transmitted and reflected images with
different strategies [20–22], researchers manage to separate them for reflection
removal. Recently, there is an emerging interest in polarization guided image re-
flection separation [23–25]. With multiple images captured for the same scene at
different polarization angles, the reflections from glasses are separated by apply-
ing independent components analysis [26]. Kong et al. [25] propose a multi-scale
strategy to find the reflection separation by investigating the properties of dif-
ferent polarization angles. However, they failed to consider the thickness of the
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transparent medium, which introduced ghost images. By leveraging the proper-
ties of polarized light, the reflection and transmission images are separated with
more impressive results in recent approaches [24]. Lyu et al. [23] takes unpolar-
ized and polarized images for reflection separation. However, to the best of our
knowledge, all these methods assume a simplified model with only one transmit-
ted light path, whereas multiple reflections between the two glass surfaces are
ignored. In contrast, we proposed a comprehensive polarization engine, to jointly
describe polarization states for each reflection in a physical plausible way, which
significantly improves our results compared to the state of the art.

3 Physically-Based Image Formation Model

When photographing in front of a double-surfaced transparent planar medium,
people always capture a transmitted image with the unwanted reflected im-
ages. Therefore, we propose a comprehensive polarization-based image forma-
tion model for separating the reflection layer and transmission layer of blending
scenes. Specifically, we separate the image into a reflected and a transmitted
component, while taking into account multiple bounces in the glass surface and
the associated ghost images (Fig. 1b).

3.1 Polarization Image Formation Model

Considering a local coordinate frame of a light ray hitting a transparent surface
(Fig. 1a), a plane of incidence (POI) subsumes the transmission angle θt and the
reflection angle θr, which is equal to the incident angle θi. The angles are related
to the refractive indices via Snell’s law: n0 sin θi = n sin θt, where the transparent
medium has refractive index n, and n0 is the refractive index of the ambient
medium (e.g. n0 ≈ 1 for air). An incident light passing through or reflected off a
transparent media is partially polarized and consists of two orthogonal polarized
components that perpendicular and parallel to the POI. This relationship is
guided by the Fresnel equations, which we briefly summarize in the following.
We define reflectance R and transmittance T as the intensity ratio of reflected
light and transmitted light to incident light, respectively. The subscripts ‖ and ⊥
represent the polarized components parallel and perpendicular to the POI. R is
derived from two orthogonal polarized elements of reflectance, R = (R‖+R⊥)/2.
Likewise, T = (T‖ + T⊥)/2.

We adopt Mueller calculus to represent the polarization state of light. The
full polarization state is described by a 4D Stokes vectors s = (s0, s1, s2, s3)

T .
However, in our case we only consider linear polarization, in which case we only
require a 3D vector, corresponding to the first 3 components of the full Stokes
vector. In the coordinate frame of the camera sensor we perform polarization
measurements with four different linear polarizer angles resulting in four images
I0

◦

, I45
◦

, I90
◦

and I135
◦

, which are acquired simultaneously with a polarization
image sensor. Given the four linear polarizer images our Stokes vector in the
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image plane can be computed as

s =





s0
s1
s2



 =





1

2
(I0

◦

+ I45
◦

+ I90
◦

+ I135
◦

)

I0
◦

− I90
◦

I45
◦

− I135
◦



 , (1)

The change of polarization states as we propagate the light through the
transparent surface can be described by Mueller matrices, which operate on
the Stokes vectors. First, it is necessary to transform the vector between the
local coordinate frame of the transparent surface and the coordinate frame of
the camera sensor, which we also take to be the global coordinate frame for
simplicity. This is achieved with a rotation Mueller matrix:

C(ψ) =





1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ



 , (2)

which maps a Stokes vector ŝ in local coordinates to a Stokes vector s in global
coordinates. C−1(ψ) = C(−ψ) is used for the reverse mapping.

Next, we need to model the Mueller matrices for the individual reflection and
transmission operations along the light path (Fig. 1a,b). There are two pairs of
Mueller matrices: R1 and T1 describe the reflection and transmission as the
light travels from the outside (optically thinner medium) to the transparent ob-
ject (optically thicker medium). When the light travels from the inside (optically
thicker) to the outside (optically thinner), reflection and transmission are respec-
tively described by R2 and T2. Please see the supplemental materials or [27, 28]
for the definition of these four matrices.

The contribution of the reflected scene consists of the direct reflection on the
surface, as well as all possible ghost images, with the latter being characterized
as all light paths transmitted into the medium, followed by an odd number of
reflections, and transmission out of the medium. In the local coordinate frame
of the transparent object, this can be described as

ŝr(x) = R1ŝ
0
r(x) +

∞
∑

i=0

T2R
2i+1

2 T1ŝ
0
r(x− i ·∆x), (3)

where∆x = 2d tan θt sin θt is the spatial offset between ghost images (see Fig. 1b),
and ŝ0r = C(−ψ)s0r describes the polarization state of the reflected scene before
interacting with the transparent object.

Likewise, the total contributions of the transmitted scene are given by a
transmission into the object, followed by an even number of internal reflections
(possibly zero), and a transmission out of the object:

ŝt(x) =
∞
∑

i=0

T2R
2i
2 T1ŝ

0
t (x− i ·∆x), (4)

with ŝ0t = C(−ψ)s0t being the initial polarization state. The total light imaged
by the camera can then be described in global/camera coordinates as

s = C (ψ)(ŝr(x) + ŝt(x)) . (5)
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3.2 Polarization Simulation Engine

To accurately simulate the polarization state for a reflected Ir and transmitted
It scene, our forward simulator takes RGB image pairs (Ir, It) that correspond
to “clean” images without interaction with a transparent surface. From these in-
puts, the simulator generates blended images of reflected and transmitted scenes
with full polarization state, i.e., simulated polarized images as described above.
The initial polarization states s0{r,t} can either simply be set to unpolarized states
or some other manually selected value, or it could be estimated from the reflected
and transmitted scenes.Thus, our simulator can be represented as,

Iφ = S(Ir, It, Θ), (6)

where Iφ are a set of linearly polarized images corresponding to simulated sensor
images. The scene parameters Θ correspond to the thickness of the transparent
object d, light incident angles θi, and refractive index n. In our setup, the glass
object has a constant thickness refractive index. The glass thickness d and in-
cident angle θi, together with the corresponding transmission angle θt, mainly
affect the spatial shift ∆x in Eqn. (3) of multi-bounce images (maximal bounce
number is 10). Therefore, we only need to estimate the spatial shift ∆x to obtain
the light incident angle θi. The energy loss within the glass was considered, but
can actually be neglected in our setting: the attenuation coefficient in glass is
approximately α ≈ 0.5db/km, corresponding to an energy loss of around 12%
per km. This amounts to only a reduction by a factor of 2.4× 10−4 per bounce
for a typical glass thickness. We will show that the simulation results can verify
and refine the output of recovered reflected and transmitted scenes.

4 Proposed Method

Given a set of linearly polarized images Iφ = {Iφi | φi = 0, · · · , N}, our approach
first independently decomposes each polarized image into a transmitted scene
Îφt = {Iφi

t | φi = 0, · · · , N} and a reflected scene Îφr = {Iφi

r | φi = 0, · · · , N} via
the proposed PolarNet, then FusionNet takes all pairs of proposed separations
Îφr , Î

φ
t and polarized image set Iφ as input to generate a refined final Îr and Ît.

4.1 Network Architecture

Our pipeline mainly contains two cascade networks, PolarNet and FusionNet, for
processing single polarized images and combining multiple separated results for
refinement, and one polarization simulation engine (PSE) takes refined Îr and Ît
as input to recover polarized image set Iφ by physically simulating light traveling
in transparent medium. The PolarNet first decomposes each polarized image Iφi

into two independent reflected and transmitted images Îφi

r and Îφi

t . The encoder
uses a pre-trained VGG-19 network as feature extractor with fixed parameters,
and the decoder concatenates feature maps in the selected downsampling layers
and upsampling layers (see Fig. 2).
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Fig. 2: Overview of system architecture.

FusionNet combines all the pairs of predicted (Îφi

r , Îφi

t ) to have a final refined
Îr and Ît. Our PSE automatically estimate scene parameters and accurately sim-
ulate the polarization state of light when traveling thought transparent medium,
to match the input of polarized image set Iφ by Îr and Ît. For example, light
travels through transparent medium will have multiple bounces between two
surface of glass, for each bounce, the polarization state will change as detailed
in Section 3. PolarNet, FusionNet, and the PSE are connected together to form
a loop with an end-to-end training process.

4.2 Perceptual and Simulation-based Loss Function

We assume that the real reflected scene Ir and transmitted scene It are per-
ceptually different, and the recovered Îr and Ît can physically reconstruct the
input polarized images Iφ by given the estimated scene parameter (e.g., incident
angle). Our pipeline integrates those two assumptions into the loss function and
network architecture design. Our loss function contains 5 terms: a pixel-wise loss
term Ld measures the per pixel difference between estimated Îr, Ît and synthetic
ground truth Ir and It. For real scene polarized data acquisition, Ir is hard to
capture in general, so Ld only measures Ît and It for training. The perceptual loss
Lp measures the perceptual independence of reflection and transmission, while
the PSE loss Ls forces the output to accurately reconstruct polarized inputs.
The edge independent loss Le encourages the gradient of two scene to be inde-
pendent, and an adversarial loss La encourages production of realistic images.
Therefore, our overall loss function is,

L = Ld + λpLp + λsLs + λeLe + λaLa. (7)

Pixelwise Loss Ld. Ld compares estimated polarized images {Îφi

t }, {Îφi

r }, Îr and

Ît with synthetic ground truth {Iφi

r }, {Iφi

t } or camera captured scenes {Iφi

t }, in
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terms of feature space,

Ld = ‖It − Ît‖2 + ‖Ir − Îr‖2 +

N−1
∑

i=0

‖Iφi

r − Îφi

r ‖2 + ‖Iφi

t − Îφi

t ‖2, (8)

where N = 4 in our system setting indicates 4 polarized images, the target It or
Ir could be calculated via canonical Stokes vector s0 from Eqn. (1).

Perceptual Loss Lp. The reflected and transmitted scenes are perceptually in-
dependent, therefore, they should be semantically different. As shown in many
successful applications (e.g. [4]), pre-trained networks can be directly utilized as
high-level feature extractors. To combine high-level loss, we use a pre-trained
VGG-19 network [29] to measure the difference between recovered layers and
ground-truth layers (reflected and transmitted scenes). The perceptual loss func-
tion can be defined as the concatenation of a selected layers of VGG-19 network,
and we compute the L1 loss to measure distance in feature space as,

Lp =
∑

l

λl(‖Φl(Ir)− Φl(Îr)‖1 + ‖Φl(It)− Φl(Ît)‖1), (9)

where Φl is the output of VGG-19, we stack 5 layers output as features: ‘conv1 2’,
‘conv2 2’, ‘conv3 4’, ‘conv4 4’, ‘conv5 4’, and λl is the weight of the layer.

PSE Loss Ls. A good recovery of reflected or transmitted scenes could ideally
recover the input polarized images using our polarization simulation engine, if
scene parameters (e.g., incident angle, thickness of glass, etc.) are given or can
easily be estimated. For normal reflection removal cases, the reflected and trans-
mitted light mainly interact with double-parallel surface of transparent glass.
Since the physical properties of glass are within a narrow range, the major scene
parameters could be estimated by several simple line search to obtain reasonable
values for the thickness and incident light angle. S(Îr, Ît, Θ) is our polarization
simulation model, it takes a predicted Îr, Ît as well as scene parameters Θ as
input, and traces each scene light’s polarization state and spatial shift inside the
two surface of transparent glass. We adopt an L1 loss to measure the difference
between ground-truth polarized images and the simulator output as,

Ls =
∑

i

‖Iφi − S(Îr, Ît, Θ)‖1. (10)

We implement S by pytorch tensor data structure, all the simulation can be com-
puted by interior tensor operations, therefore, Ls can be optimized by autograd
as a normal deep network training pipeline.

Edge Independent Loss Le. Two independent scenes are unlikely to have over-
lapping gradients or edges. Based on this observation, we proposed an edge
independent loss to penalize those overlapping edge to recover better scenes. We
formulate the Le as the normalized downsampled gradient difference as,

Le =
∑

n

‖f↓n∇Ir − f↓n∇Îr‖1 + ‖f↓n∇It − f↓n∇Ît‖1, (11)
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where f↓n is the downsampling operator with a factor of 2n−1.

Adversarial Loss La. To encourage realistic images, we apply normal conditional
GAN’s adversarial loss to avoid potential artifacts in recovered images, such as,
black holes or color errors. The loss for conditional the GAN discriminator D is,

N
∑

i=0

logD(Iφi , It)− logD(Iφi , Ît), (12)

then the adversarial loss La can be formed as,

La =

N
∑

i=0

− logD(Iφi , Îr). (13)

5 Experiments

To further illustrate the superiority of this polarization-based model, we compare
our proposed method with five recently published baseline reflection separation
techniques. The first one is an alignment-invariant loss which is introduced in [19]
(ERRnet) to improve the performance under misaligned data. The second one is
perceptual loss functions proposed by [4] (Zhang et al.). Wan et al. [17] (Wen et

al.) apply a multi-scale strategy on the learning network to improve the target
details. We also compared our results with polarization guided reflection sep-
aration methods [23, 24](ReflectNet and Lyu et al.), which are proposed most
recently. They assume a simplified model with only one transmitted light path,
whereas multiple reflections between the two glass surfaces are ignored.

5.1 Datasets

Synthetic Data. We generate synthetic data using our polarization simulation
engine. Any pair of reflected and transmitted scene can generate a set of blended
images by changing the scene parameters, e.g., incident angle, glass thickness,
and refractive index. We use a widely-adopted single RGB image dataset for
scene blending [4], and a proposed polarization dataset [28]. Our PSE can sim-
ulate several usual cases of reflection, e.g, strong/weak reflection, polarized in-
coming light, mirror reflection, etc.

Real Data. For the real data, we use a color polarization camera PHX050S-
Q from Lucid Vision Labs ⋆. The polarization sensor is shipped with Sony
IMX250MYR CMOS with 2048×2448 pixels. Each pixel size is 3.45µm×3.45µm,
and every 4×4 pixels sample polarization at angles of {0◦, 45◦, 90◦, 135◦} as well
as color filter array for jointly capturing polarization and color information pixel
layout shown in Fig. 1b. We use a 16mm C-mount lens for the results. To capture

⋆ https://thinklucid.com/phoenix-machine-vision/
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a clear polarized scene, we carefully select static scenes, setup camera parameters
and adjust focus, and then take the clear scene as ground truth of the current
scene. To capture the blended polarized image, we set up a glass planar in the
front of the lens, and adjust the angle and position of glass to capture reflected
scenes with various scenarios. Our dataset contains 26 carefully captured scenes,
where for each scene we captured one real ground-truth polarized transmission
image and 6−12 blended images. The resolution of the raw sensor is 2448×2048,
while the resolution for each angle of the polarized image is 1224×1024. To cap-
ture high quality polarized data, we fine-tune the exposure time of polarization
camera within a range of [1× 104, 1× 105]µs.

Training Data and Parameters. To train our proposed network, we generated
10,000 pairs of synthetic blended image from a widely-used RGB image dataset [4],
with synthetic parameters d = 10, incident angle θ = [10, 40, 60, 70, 80, 85], re-
fractive index n = 1.5, and 4 polarization angles matching the camera we use.
For the training parameters, we use the Adam optimizer[30] with a learning rate
of 1 × 10−4, λp = 0.1, λs = 2, λe = 0.1, λa = 0.1. To augment the real scene
dataset, we randomly sample multiple rectangle regions and resize it to 512×512
for each training iteration with proper flip and downsampling operations. We use
13 real scene and synthetic data for training, and other 13 scene for testing.

5.2 Visual Comparison in Synthetic and Real Scene

We compare our method with state of the art methods [19, 18, 4, 23, 24], including
single or polarization-based approaches. The implementation is based on both
polarization-guided synthetic data and our delicately captured experiment data.
We first show a visual comparison ([19, 18, 4]) for synthetic polarized dataset
(Fig. 3). Here, our results clearly remove the reflection as well as the ghosting
effect induced by the thick glass. In the second part, we compare the previous
methods along with our approach on the experiment dataset (Fig. 4), which
are ‘pyramid’, ‘wood’, ‘DNA’, and ‘bird’ from top to the bottom. Our proposed
method yields superior results in suppressing complex reflections (row 1), or high
intensity and strongly polarized reflections (row 2). It also manages to rectify
color when the reflected light distorts the color of the transmitted scene (row 3),
and to remove glossy reflection (row 4). In addition, we compared our results
with polarization-based approaches [24, 23] from real dataset (Fig. 5), which are
‘violin’, ‘paint’, ‘library’, and ‘tea’. ReflectNet changes the background color of
the transmitted images slightly, and Lyu et al. only focus on the gray scale
images that captured by a monochrome polarization camera. Again, our real
experiment results provide a set of distinctive transmission images.

Special Cases. Next, we test several difficult illumination scenarios, with results
shown in Fig. (6). Specifically, we simulate scenes that are weakly polarized
or with partially polarized illumination, which contains an LCD screen. We also
simulate very bright and high contrast (HDR) scenes. The weakly polarized scene
contains diffuse transmitted light with a weakly polarized reflected scene. All the
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Polarized GT ERRnet Wen et al. Zhang et al. Ours

Fig. 3: Visual comparison for synthetic polarized dataset. From left to right
are: polarized images (Polarized), transmitted scene (GT ), ERRnet [19], Wen

et al. [18], Zhang et al.[4], and our transmitted results (Ours), respectively.

competitors achieve reasonable results, and our proposed method outputs a clear
transmitted scene in line with the state-of-the-art. For the fully polarized object,
we show a scene with an LCD screen in the transmission image. This scenario is
more challenging for the competing methods, and results in incomplete removal
of the reflections, whereas out approach recovers a clean transmission image.
High light levels will generally lead to overexposure, and our polarized input
can suppress strongly polarized reflection and recover details. Finally, the HDR
scene contains non-semantic highlights, which is challenging for our competitors
due to the lack of extra cues to identify the two scenes.

5.3 Quantitative Evaluation

In Tab. (1) we quantitatively compare our method against other state-of-the-art
methods using both PSNR and SSIM. Since our approach fully utilizes polar-
ization information, it achieves best results in most of the challenging cases.
We compare Lyu et al. with converged gray-scale images, and our PSNR/SSIM
results in Tab. (2) perform significantly better in each cases.

Table 1: PSNR/SSIM measurements for three approaches [19, 18, 4].

eccv bird violin pyramid wood DNA

ERRnet 19.25 / 0.823 24.36 / 0.843 26.77 / 0.885 21.67 / 0.689 11.80 / 0.650 20.66 / 0.314

Wen et al. 22.77 / 0.791 23.40 / 0.823 24.14 / 0.840 19.37 / 0.699 11.49 / 0.620 18.87 / 0.321

Zhang et al. 18.83 / 0.931 25.11 / 0.854 24.33 / 0.879 19.38 / 0.660 16.89 / 0.690 20.79 / 0.290

Ours 26.14 / 0.83 26.78 / 0.802 30.34 / 0.877 27.9 / 0.824 26.79 / 0.79 28.72 / 0.788



12 Rui Li, Simeng Qiu, Guangming Zang, and Wolfgang Heidrich

Polarized GT ERRnet Wen et al. Zhang et al. Ours

Fig. 4: Visual comparison for our real scene dataset. From left to right are: polar-
ized images (Polarized), scene without glass (GT ), ERRnet [19], Wen et al.[18],
Zhang et al.[4], and our transmitted results (Ours), respectively.

Table 2: PSNR/SSIM measurements for polarization-based approaches [24, 23].

violin paint library tea

Lyu et al. 10.56 / 0.519 10.31 / 0.267 11.10 / 0.425 10.33 / 0.450

ReflectNet 14.16 / 0.458 13.28 / 0.504 14.09 / 0.592 12.10 / 0.479

Ours 31.08 / 0.911 25.73 / 0.817 29.16 / 0.907 22.91 / 0.696

5.4 Ablation Study

In Fig. 7, we conduct a comprehensive ablation study to show the behavior of
each loss term. To cancel the individual terms in the main loss function, we set
the related weight parameter to 0 and re-train the model for around 100 epochs.

In Fig. 7(k), we remove our PSE loss, and observed significant artifacts in the
reflection mixtures. In Fig. 7(l), the lack of Le produces an overlapping gradient
in the transmitted scene. In Fig. 7(m), omission of La leads to a noticeable
black spot in the image. Fig. 7(n) shows that replacing the VGG-19 feature
map with a single L2 loss of raw pixel values produces an over-smoothed result.
We also replaced our encoder/decoder architecture with skip connections with
a single multi-layer convolutional network. Fig. 7(o) that these results are in
poor performance and lack of local details. Our complete pipeline shows the best
performance and clear details in the reconstruction. Tab. (3) shows a quantitative
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Fig. 5: Real scene comparison with polarization approaches. From left to right
are: 2 × 2 polarized images at four angles (Polarized Iφ), 2 × 2 ground truth
images (GT ), ReflectNet [24] with reflected scene on the left and transmitted on
the left, Lyu et al. [23], reflected and transmitted scene (Ours), respectively.

ablation study conducted by muting one of the loss terms and refining other
terms weights. We compare generated polarized images with GT by using PSNR
and SSIM measurements. Our GT are captured by the same polarization camera
without glass while keeping lighting conditions and scenes fixed.

Table 3: PSNR/SSIM measurements for ablation study by muting loss terms.

Loss all -Lp -Ls -Le -La

PSNR/SSIM 28.3/0.889 24.1/0.797 26.4/0.842 26.6/0.809 28.1/0.878

6 Conclusion

In this work, we have presented polarization guided image reflection separation.
With a new image formation model where polarization information is leveraged
for physically plausible measurements, we use the captured image pair as input
for our designed supervised deep learning framework. Due to the natural prop-
erties of polarization for separating the reflections as well as the elegant network
for training, an unprecedented quality can be achieved from our approach, which
is demonstrated by the extensive experiments conducted on both synthetic data
and real world captures.
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Fig. 6: Visual comparison for special cases. From top to bottom: weak polarized
diffuse scene (Weak polar.), fully polarized light (Fully polar.), high light reflec-
tion (High light), and dark scene with high dynamic range. From left to right:
Input, reference image, ERRnet [19], Wen et al. [18], Zhang et al. [4], and Ours.
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Fig. 7: Ablation study on five individual loss functions for visual compar-
ison. First row: total intensity, 4 polarized images with polarizer angle of
{0◦, 45◦, 90◦, 135◦}. Second row: recovered Ît, Î

0
◦

t , Î45
◦

t , Î90
◦

t , and Î135
◦

t . Third
row: without Ls, without Le, without La, without Lp, and replace PolarNet with
a simple multi-layer CNN, respectively.
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