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It is shown by making use of the analytic property of the Khuri amplitude near W =0, 
W being the c.m. energy of nN scattering, that two fermion trajectories a± (W) as well as 
their reduced residues fj± (W), with parity ± and with the same signature, are related with' 
each other by reflection of their argument W, i.e. a+ (W) =a- (- W), and ff+ (W) =li- (- W). 

This symmetry cannot be obtained from the analytic property of the partial-wave amplitude, 
cont:uary to the conventional assertion. 

§ 1. Introduction and summary 

One of the recent topics in the theory of relativistic Regge poles is the so­

called "conspiracy" among trajectories with different quantum numbers. At 

. present, the conspiracy relations are obtained elegantly by the group theoretical 

methods. 1
) These methods, however, are not applicable to fermion trajectories, 

but only to boson trajectories rela6ng to reactions in which ,the initial and final 

states contain equal-mass particles (e.g. NN~7m) . Furthermore, the group the­

orE,tical methods cannot give any conspiracy relations at finite mass, but only at 

zero mass. 

Gribov2
) has first suggested that 1\;vo fermion trajectories with opposite parity 

should intersect each other at zero mass. His argument, however, contains the 

unpleasant assumption on the behavior of helicity partial-wave amplitudes at u = 0 

that one of helicity partial-wave amplitudes should remain finite at u = 0, where 

u is the 'total c.m. energy squared of rrN scattering. At u = 0, the point cos {}u 

= -1 corresponds to the infinity on the 1;1andelstam diagram (stu plot). 

Hence, the behavior of helicity partial-wave amplitudes at u = 0 is controlled by 

the Regge pole in the direct, not crossed, channel. It is, therefore, not very 

clear that the amplitude is finite at u = O. 

Sakmaril) has proposed another approach: He asserts that the conspiracy js 

a straightforward consequence of the "MacDowell reflection Symmerty" for th~ 
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Reflection Symmetry of Conspiring Fermion Tl-ajectorics 395 

Froissart-Gribov partial-wave amplitudes f± (VV, J) :4),*) 

f+ (W, J) = f- ( - W, J)" (1·1) 

where J is the total angular momentum in nN scattering, W is the c.m. energy, 
and the index ± refers to the parity (_1)J±(1/2). To any pole trajectory of f+, 

say a+ (liV), there corresponds some trajectory of f-, say a- (W), which is related 

to a+ (1:V) by 

a+ (W) = a-.( - W) (for the same signature). (1· 2) 

The two trajectories a+ and a- then intersect each other at TV = O. 

We should, however, reconsider the meaning of Eq. (1·1). The amplitudes 

f± (Vlt, J) are related to the helicity amplitudes G (u, J) and H(ll, J) through' 

f±(.)zl, J) =t[G(u, J) ±H(u,J)/vu], (1· 3) 

where Vu = W, and G (u, J) and H(u, J) are the Froissart-Gribov interpolations of 

+1 

G J (U) = t ~ G (u, t) [PJ-Cl/2) (z) + PJ+ (lj2) (z)] dz , (1· 4) 
-1 

+1 

HJ (u) = t ) H(u, t) [PJ -(1/2) (z) - PJ +(1/2) (z)] dz . (1·5) 
-1 

Since the full helicity amplitudes G (u, t) and H(u, t) defined by (2·3) have 

the ordinary Mandelstam analyticity, G (u, J) and H(u, J) have a cut passing 
through u = 0 in the u plane, or equivalently,' a vertical cut along the whole 

imaginary axis of the W plane. If such a cut were absent, the functions G (u, J) 
and H(u, J) could be analytic even functions of W (= Vlt), and the symmetry 

(1·1) follows immediately. At first sight, Eq. (1· 4) or (1· 5) seems to define 

onq analytic even fupction of W, but in fact, due to the vertical cut, it defines 

two analytic functions, one in the right and one in the left half of the TV 
plane.**) Consequently, each of the functions f± (1V, J) defined by (1· 3) is also 

a "hybrid" of two analytic functions. 

If we denote by f±R and f±L the values of f± in the right- and the left-half 

planes, respectively, the relation (1· 1) means 

*) Note that ~ur partial-wave amplitudesf± are different from those of MacDowell's by the factor 
W-1. See Eqs. (2,2). 

**) A simple example to illustrate this situation is the function defined by 

. For ReW>O, we havef(W)=l/(l+W)--fR(W), while f(W)=l/(l-W)-~fL(W) for ReW<O. 
Clearly- this function is not Qne analytic even function, b~t is a "hybrid" of two analytic function::;, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/40/2/394/1876719 by guest on 16 August 2022



396 T. Kanki, G. Konisi and T. Saito 

f+R(W, J) =f-L( - w, J) for Re W>O, (1· 6) 

and 

f+L(W, J) =f-R( - w, J) for Re W<O. (1· 7) 

Equations (1· 6) and (1· 7) imply, instead of (1· 2), 

a+R(W) =a-L( - W) for Re W>O, (1· 8) 

a+L(W) =a-R( - W) for Re W<O. (1· 9) 

As the function f+L is not the analytic continuation of f+R, there is no reason 

to believe that the a+L coincides with the a+ R to yield (1· 2), and the same is 

true for a- .. 
In § 3 of this paper, we show that the relation (1· 2) actually follows from 

the analytic properties of full amplitudes. In order to enjoy the analytic prop­

erties of full amplitudes maximally, we employ, in § 2, the Khuri amplitudes 

instead of the partial-wave amplitudes because as will be shown in § 3, the 

vertical cuts of the Khuri amplitudes do not cover the whole imaginary axis 

of the W plane and these amplitudes are analytic in the vicinity of W = 0, so 

that we can continue the amplitudes analytically from the right-half W plane into 
the left-half W plane. 

To sum up, we obtain the relation (1· 2) by making use of the analytic 

property of the Khuri amplitudes near u = 0. The same reflection symmetry is 

also obtained for their reduced Regge residues. This relation shows not only 

that each a+ trajectory must intersect some a- trajectory at u = 0, but also that 

these two trajectories are obtained from single analytic function of W. Recent 
experimental observations of parity doublets of baryon resonances strongly suggest 
that the relation (1· 2) holds.5

) 

§ 2. The Khuri amplitudes 

We first summanse the relevant notations and formulas. Let P'i and qi be 
the four-momenta of the incoming (i = 1) and outgoing (i = 2) nucleon and pion. 

We take u= (Pl+ql)2 to be the c.m. energy squared and denote t= (PI-P2) 2, 

the invariant momentum transfer, and s = (PI - q2) 2 = 2m2 
- 2/.i - u- t, the crossed 

channel c.m. energy squared. The differential cross section in the c.m. system 
can be written4

) 

(2 ·1) 

where the matrix element is taken between the two component spInors. (We 
consider only a definite isospin state.) The functions fl and f2 are related to 
the .' two invariant amplitudes A (u, t) and B Cu, t) which are assumed to have 

the ordinary Mandelstam analyticity: 
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Reflection Symmetry of Conspiring Fermion Trajectories 397 

fl (Wt) = (E+ m) [A+ (W -m)B], (2·2·1) 

f2(Wt) = (E-m) [-A+ (W+m)B], . (2·2·2) 

where W=,JU and E= (W2+m2-,u2)j2W (the. c.m. energy of nucleon). The 

two helicity amplitudes are given by 

fl+f2=2mA+ (u-m2_,u2)B-=.G(u, t), (2·3·1) 

fl-f2= W- 1 [(u+m2_,u2)A+m(u-m2+,u2)B]=W-1H(u, t). (2·3·2) 

The functions G and H defined here possess the Mandelstam analyticity, and, in 

particular, holomorphic in the vicinity of u = 0 for Re t sufficiently large. 
The helicity amplitudes G (u, t) and W- 1 H(u, t) are related to the partial­

wave amplitudes fJ± (W) by 

00 

W- 1H(u, t) =:E [fJ+ (W) - fJ- (W)] [PJ+(1/2) (z) +PJ-(1/2) (z)], (2·4·2) 
J=I/2 

where z ~ 1 + t/2q2, q2 = E2 - m 2, and the superscript ± refers to the parity 
(_1)J±1/2. Equations (2·4) can be inverted by 

+1 

fJ+(W) +fJ-(W) =i j G(u, t) [PJ-(1/2)(z) +PJ+(1/2) (z)]dz " (2·5·1) 
-1 

+1 

fJ+(W) -fJ-(W) =i j W- 1H(u, t) [PJ-(1/2)(Z) -PJ+(1/2) (z)]dz . (2·5·2) 
-1 

Let us define the "Khuri amplitudes ,,6) associated with the t cut by 
00 

t "-(1/2) ( 

g (u, v) = 0 n J dt r v -(1/2)G t (u, t), (2·6·1) 
to 

to" - (1/2) 00 

h (u, v) == --~-j dt r v -(1/2) H t (u, t), (2·6·2) 
to 

where to = (2,u) 2 is the t-channel threshold and G t and H t are the discontinuities 

across the t cut of G and H, respectively. The integrals in Eqs. (2·6) converge, 

according to the conventional hypothesis of the polynomial bound, for Re V 

greater than some real number N. For Re v<N the functions g and hare 
defined by analytic continuation. Corresponding to the usual assumptions, g and 
h are assumed to contain only moving poles in the plane for Re v> -L where 
L is some constant. 

If ~i(U) (i=l, 2, ... ) are the poles of g(u, v) in Rev>-L, we may write 

g(u, v) =~v~iii7~) +g(u, v), (2·7) 
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where g (u, v) IS a function regular in Re v> - L. The inversion of (2·6 ·1) IS 

given by 
N+iro 

1 \ (t)"-C1/2) 
Gt(u, t) =~ ) ~ g(u, v)dv. 

- 2z" _ to 
ill -~co 

(2·8) 

Equations (2·8) and (2·7) yield 

-L+iro 

( t ),hCW)-C1/2) 1 ~ (t )"-c1/2)_ 
G t (u, t) = ~ ri (1V) ~, + --:- g (u, v) dv . 

t to 2z _ to 
-L-tro 

(2·9) 

On the other hand Eq. (2·5 ·1) implies that G t (u, t) contributes to the Frois­

sart-Gribov amplitudes as 

00 

=-~- \ Gt (u, t) [OJf(l/2 l (1 + t -) + OJ-O/2) (1 + -~)Jdt. 
2nq2 ~ 2q2 2q2 , 

(2·10) 

The superscript in the bracket refers to the signature. Inserting Eq. (2·9) and 

using a truncated asymptotic expansion of the Ol functions we get for the r.h.s. 

of (2 ·10) 

~ N~) _(~ 1)~r(J+!? --!--jl~.(2.! + l)r-i (vV)_ (_iH~) J+k-(1/2) 

i k=O k!r(2J+2+k) J-~\(W) +k to 

+ terms regular in Re J> - L . (2 ·11) 

The integers Ni (vV) are determined so as to satisfy - L<Re [t;i (W) - Ni (W) ] 
< - L + 1. We compare the l.h.s. of (2 ·10) with (2 ·11) to conclude: (i) The 

Regge poles located in the region Re J> - L should be sought among the Khuri 

poles t;i (W). The Khuri -poles which coincide with one of the Regge poles 
are called "principal Khuri poles". (ii) For each Regge pole, say a (W), there 

should exist a family of "satellite Khuri poles" to cancel out the redundant -
poles a(W) -k (k=l, 2, 3, ... ). 

Given a set of Regge poles an ± (W) (n = 1, 2, 3, ... ) we relabel the Khuri 

poles according to the criterion introduced above, and rewrite Eq. (2·7) as 

- Kn±CW) r;;=r(vV) _ 
g (u, v) = ~ L: ~ ---'-- --------- + g (W, v). 

n ± r=o V - an ± (W) + r 
(2·12·1) 

Here and henceforth we suppress the signature in order to simplify the notation. 
By an identical procedure we get 

Kn±(W) ± Wr'± (W) -
h(u, v) =~ I.: ~ -----.!!>!"--------+h(u, v). 

n ± r=o V - an ± (vV) + r 
(2 ·12·2) 

In Eqs. (2 ·12), Kn± (IV) denotes the greatest integer smaller than Re (an ± (vV) 
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Reflection SY17lmetry of Conspiring Fermion Trajectories 399 

+ L). The residues rand r' can be expressed in terms of the Regge residues 

f3n±(~V). In particular, for r=O we have 

± W = '± W =_ TC?an± + 1) (.~)an±-(1/2)± W ' 
Tn,o( ) rn,o( ) T.(a

n
±+ (1/2)) 4q2 f3n ( ). (2 ·13) 

§ 3. Proof of conspiracy 

\lVe begin with exammmg the analyticity of the Khuri amplitudes g (u, v) 

and h (u, -v) in the u plane. Apart from a finite number of subtractions the 

absorptive part G t (u, t) has the following integral representation due to the 

assumption' of the Mandelstam analyticity on G: 

(3 ·1) 

with Uo = So = (m + /t) 2. Then, in view of Eq. (2·6 ·1) one sees that, for Re v> N, 
g (u, v) is regular in the u plane with the right-hand and the left-hand cuts along 

the real axis. The right-hand cut starts at U o, while the end point of the left­

hand cut c.orresponds to the maximum value of u on the Landau curves of the 

diagrams shown in Fig 1. This maximum U 1 is attained by the curve of the 

diagram (a) and is calculated to be -1.5 jl2. It is a crucial point for the follow­

ing discussion that U 1 is negative and that g (u, v) turns o~t to be regular at 

u = O. In the W plane the functions g and h have four cuts along the real and 

imaginary axes as is shown in Fig. 2. 

With this analytic property of g and h in mind, we assume that the trajectory 

functions an ± (W) are regular in some region in the W plane containing the 

I J " 

, I~'" 16fL2 
------------------- -- ,-::,----------------------

_MU"'!'""L ___ m ___ ~ ~~~"""--__________ _ 

I ' , ' 
U,o U 

(0 ) (b) 

Fig. 1. The diagrams and their Landau curves The ui 
corresponds to the left-hand branch point of Khuri 
amplitudes (Ul """ -1.5,u2) . 

-(m+fL) -iv'TiJ;j +(m+fL) 

Fig. 2. The analyticity of Khuri 
amplitudes. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/40/2/394/1876719 by guest on 16 August 2022



400 T. Kanki, G. Konisi and T. Saito 

point W = O. In the most optimistic case, as suggested by the N / D method, this 
region may be the whole W plane with unitary cuts. Now, we define the region 

ID around W = 0 such that no principal Khuri poles cross the line Re V = - L 
when W takes all values of ID. (Here it is assumed that no principal poles 
lie on the line Re J) = - L as W= 0.) 

Next we revise the "r.h.s. of Eqs. (2 ·12) and let the summation include all 

the satellite terms that appear in Re v> -L for some value in ID, that is, we 
replace Kn± (W)by constant integers satisfying 

(3·2) 

After this modification the separation of the pole terms m Eqs. (2 ·12) IS now 

analytic with respect to W. 
The first step of our proof IS to show that the residue functions r~r and 

r~~ cannot have cuts in ID. Suppose that the r~r's and/or g have the vertical 

cuts W= ±ip(p>JjUJ) as g(u, v) does. Then Eq (2·12·1) gives, for Re v>N, 

Kn± D"' ± (W) 
Disc g (u, v) = ~ ~ ~ __ ~c rn.~ ________ + Disc g (W, v) . (3·3) 
U::;;'U1· n ± r=O V - an ± (W) + r w 

The 1.h.s. of this equation can be computed by using Eqs. (3 ·1) and (2·6 ·1) : 

(3·4) 

Since the integration range IS finite, Disc g (u, v) is an entire funCtion of v. 

Each term in Eq. (3·3) can now be analytically continued into the region - L 
< Re v<N where Disc g(W, v) is regular, and we see that Disc r~r(W) should 
vanish as far as Re an ± (W) > -L. In a similar way we can show that the 

r~r's cannot have branch points anywhere else in ID .. The r~~'s also should have 
the same analyticity. *) 

As is seen from the previous discussion the functions g (u, v) and h (u,v) 

are regular at u = 0 and therefore regular even functions of W as far as Re v> N. 
Then we have, due to Eqs. (2 ·12), 

.~ r~r(W). +g(W,v)= ~ r~r(-W) +g(-W,v), (3.5.1) 
n, ±. r V - an ± (W) + r n. ±. r V - an ± ( - W) + r 

*) We remark here that the above result could not be obtained if one had worked directly 
with the (reduced) Froissart-Gribov amplitudes: In unequal-mass cases the amplitudes have a circular 
cut which unables us to continue the functions analytically to the point u=O. In other words the 
usual integral 

00 

271: (:2)F1~dtAt(u, t)Q~(l+ 2;2-) 
to 

defines different analytic fu~ctions inside and outside the circular cut respectively. This point has 
not been considered by Freedman and Wang in Appendix A of their paper7) where they tried to 
show the absence of cuts around u=O. 
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Reflection Symmetry of Conspiring Fermion Trajectories 401 

~ ± Wr~~(W) +h(W, v) = ~ ± (- W)r~~(- W) +h(- W, v) . . (3.5.2) 
n, ±, r V - an ± (W) + r . n,±, r V - an ± ( - W) + r 

By continuing both sides of these equations . analytically into N~ Re v> -L, one 

sees that there should occur a pairing between the families of trajectories such 

that 

and 

an P (W) = ah; ( - W) , 

r~,r(W) =r~;,r( - W) 

I P (W) - I I p' ( W) prn,r - -p·rn',r - , 

(3·6·1) 

(3·6·2) 

(3·6·3) 

where p denotes the parity ±. The last two equations imply, with a special 

choice r= 0 and with the help of Eq. (2 ·13), 

p = - p' and r~,o (W) = r~;,o (- YV). (3· 7) 

That is, after suitable relabelling .of the trajectories, we get finally for Regge 

poles 

(3·8) 

where ;3(W) = (q2)-a+ C1/2)i1(W) is the reduced Regge residue. 

We have so far suppressed the signature. At this stage, the relations in 

(3·8) may be the relations between the same signature as well as between the 

different signature. However, if we consider the Khuri amplitude associated with 

the s cut, we can show that the relations (3·8) are true only for the same 
signature.. Define the Khuri amplitude associated with the s cut by 

00 

/'. S v- C1/2) ( 
g (u, v) = : J ds s-v-(1f2)Gs (u, s), Rev>N, (3·9) 

So 

where Gs is the discontinuity across the s cut of G. By an argument similar to 
the case of g (u, v) one can see that g (u, v) is also regular at u= o. The equa­

tion corresponding to . (2 ·10) is 

~{[f+ce) (W, J) + f- ce) (W, J)] - [f+ cO ) (W, J) + f-CO) (W, J)]} 
2 : 

00 

1 ~G [ (s+u-2m
2
-2/i) =~- s(u, s) QJ-c1/2)-1 

2nq2 . 2q2 . 
~ . 

(
s+ u - 2m2 -2/i )] + QJ+(1/2) 2q2 -1 ds. (3 ·10) 

By quite the same procedure as that of the t-cut case, we have for the pole 
terms of g (u, v) 
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/'- (e) , /'- (0) 
~ ____ r~____ _ ~ ____ r r __ _ 

n,p,r'J) _aCe) + r n,p,r J) -a(O) + r ' 
(3 ·11) 

while the pole terms of g (u, J)) are of the form 

r (e) r (0) . 
~- _.1· ____ . + ~ _ .. _ .. _ ... 3: ___ , (3. 12) 

n,p,r J) - aCe) + r n, p,r J) - a(O) + r 
where the other summation indices nand p are omitted. For r= 0, one obtains 
the relations 

(3 ·13) 

Now, let us assume that the relations (3·8) are the relations between the 
different signature, i.e. 

(3 ·14) 

On the other hand, since g (u, J)) is a regular even function of W, we have, 
from (3 ·11) and (3 ·13), 

race) (W) = - ra(O) (- W). (3 ·15) 

This contradicts (3 ·14); and hence we reach the conclusion that the conspiracy 
relations (3·8) hold for the same signature. 
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