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The operator previously introduced for the \Vick-Cutkosky eigenvalue prohlem is ex­

preosed in terms of the generators in the positive discrete series of unitary representations 

of SU(l, 1). A reflection symmetry of the eigenvalues follows from the representation thus 

ol1tnincd. 

§ l. Introduction 

In the Bethe-Salpeter formalism.]J the Wick-Cutkosky modeFJ provides a rather 

tractable and yet nontrivial subject for the bound state problem in quantum field 

theory. The eigenvalue problem associated with the model has thus been im-esti­

gated extensi,·ely. The main results and references are summarized in Nakanishi's 

re,·iew article. 3) The perturbation method \vith respect to the bound state energy 

has usually been employed in the calculation of the eigenvalues at nonvanishing 

energy. As a new perturbation scheme global in the energy variable, an expansion 

method with respect to the inverse of the principal quantum number \Nas introduced 

in the previous paper.')·*) The asymptotic expansion obtained in (I) seems to 

display a square-root type threshold singularity and suggests a kind of reflection 

symmetry. 

In the present note the reflection symmetry of the eigenvalues is proved 

nonperturbatively. In the next section, a summary of (I) is presented together 

with the next higher order perturbation calculation. The Wick-Cutkosky operator 

introduced in (I) is expressed in § :3, in terms of the generators in the positivE' 

discrete series of unitary representations of the group SU(l, 1) .5) The reflection 

symmetry is derived with the aiel of this representation and a certain property nf 

the Lie algebra of SU(l, 1). The final section IS devoted to discussion. 

§ 2. Summary of the previous results 

The eigenvalue problem for the coupling constant, at a given bound state 

energy squared 4u = s ( < 4) in the rest frame, in the Wick-Cutkosky mode F) was 

red ucecl in (I) to the eigenvalue problem for the opera tor 

*' This is referred to as (I) hereafter. 
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Ln(6) = -/(n-tN)(il+N +))[ 1-6g (N, n) +6c~ ~Nn)atr 

+ 6(a_II ~~ n)rJ v(n -t N) (1z + :N+ 1), (2 -1) 

defined on the representation space of the commutation relation [a, a1] = 1, N being 

the number operator N =a1a. The functions g and h are given by 

g(tc,n)= 2[(n+tcl_Cn+tc+12_+~_-:-1J, 
(2n + 2tc -1) (2n + 2tc + 3) 

( tc(2n+tc) ) 112 

h (tc, n) = (21;-+ 2tc -1)(2n + 2tc +l) · 

The operator Ln(6) is expanded for large principal quantum number n as 

with 

Ho = 2 v 1-6 ( M + ~ ) , 

H 1 = l_ { (2-6) (2M+ 1)2 - (2+ 6) -6[bt'(2M + 3) +(2M+ 3) b']}, 
8 

H 2=-1
6 -(1:_) 2 [(48+6) (2M+1)- (50-6) (bt2 +b2)], 

2v1-6 8 

H 3 =- 1?!!__ -(l_)s {- 3 (192- 466 + 6') [(2M+ 1Y + 1] 
(2v1-6) 2 8 

+ 4(146-26+62) [bt'(2M + 3) +(2M+ 3) b2] -2 (146 -6)6 (bt4 + b')}. 

The new creation and annihilation operators b1 and b are the unitary transforms 

of a 1 and a; 

with 

a= t [ (1- 6) -1/4 + (1- 6) 1/4], /3 = ~ [ (1- 6) -1/4- (1- 6) 1/4] 

and M = b1b is the new number operator. 

By taking H 0 as an unperturbed Hamiltonian, the usual perturbation method 

yields the asymptotic expansion for the eigenvalue ), ( s; rz, tc) (denoted as A ten ( s) 

111 (I)): 

;---(' 1 ') 1 
lc(s; n, IC) =n2 (1-6) +2nv1-6 IC+- +-[(2-6) (2tc+1)2 - (2+6)] 

' 2 8 
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+- 2~~(-~:Yc -O"C2tc+1)3 +3C8-0") C2tc+1)J 
2nVl-0" 8) 

+ -7() -(]:_ r[50"(2-0") (2tc+ 1)4 

(2nv1-0") 2 8 

-2 (144- 340" + 170"2) (2tc + 1y- 9 (32- 20" + cT') J + · · · . 

This suggests a reflection symmetry of the eigenvalues 

/,(s: -n. -tc-1) =l(s;n,tc). 

1405 

(2·2) 

The equality is to be understood as a brief expression that each term in the 1/n 
expansion or in the power series expansion with respect to s is invariant, as a 
rational function of n and IC, under the replacement n and /C by - n and - /C -1. 
This will be discussed in § 4. 

§ 3. Proof of reflection symmetry 

We shall derive another representation for Ln (15). Instead of the creation 
and annihilation operators, the operator is expressed in terms of the generators 
in the positive discrete series of unitary representations of the group SU(1, 1). 

The representation space of Di + (j = 1/2, 1, 3/2, .. ·) in the positive discrete 
series of unitary representations of SU(1, 1) 5) is spanned by the orthonormal basis 
vectors IJ. m), m = j, j + 1, .. ·. The generators lc and Is are represented as 

L IJ, m) = v(m -t-1-J) CJn+ J) IJ, m + 1), 

I -I j, m) = I(1n- ))(m --=-1+ j) IJ, m- 1) , 

IsiJ, m) =mlj, m). 

The Casimir invariant J':=I,'- CI-I-+I-I+)/2 is the identity operator multiplied 
by j(j-1). 

Under the replacement of m- j and .i by tc and n + 1/2, the identification 
IJ, rn) with lntc) in (I) leads to 

It- lntc) = V (tc + 1)(27l=i~ te+ I) I ntc + 1) , 

I -1 me)= v ~(2nt/C) lntc -I>, 

Islntc) =(n+tc+~)lntc), 

so that the generators I~ and Is are represented by at and a as 

It-= v2n-t-Nat, 

I-=av2Jz-+N, 

Is=n+N+~. (3 ·1) 

As Is easily verified, the operator Ln(O") in (2·1) Is expressed m terms of J as 
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follows: 

(3·2) 

It is to be noted here that (3 ·1) is the analogue of the Holstein-Primakoff 

representation for the generators of SO (3), and the expansion method employed 

m (I) is a version of the Holstein-Primakoff treatment of spin waves.6l 

It is well known that there exists an (outer) automorphism J~J', 

(3· 3) 

m the Lie algebra of SU(1, 1), that is, the commutation relation remains unchanged 

by the replacement (3 · 3). The reflection symmetry follows from the in variance 

of Ln (0') in (3 · 2) under the automorphism. *l (The representation of J' in the 

space of D1 + is equivalent to D1-, the negative discrete series of unitary repre­

sentations.) Let Ln (0') be diagonalized by a unitary transformation V = V (0'; J). 
Since both v-1Ln(O') V and Js are of diagonal form, they commute with each other. 

The irreducibility of D/ implies that v- 1Ln (0') V is a function of ]" and Js: 

v-1Ln(O') V = F (0'; ]", Js). (3·4) 

Here V is assumed to be an identity operator at 0' = 0 and vary continuously with 0'. 

Because of the invariance Ln(O')'=L,.(O'), application of the automorphism to (3·4) 

yields 

V'- 1Ln (0') V' = F(O'; r, Js') = F(O'; ] 2, - ] 3). 

There exist thus two operators, V and V' ( = V (0'; J')), which diagonalize Ln(O'). 

Since they coincide at 0' = 0 and vary continuously with 0' and since all the eigen­

values of L 11 (0') are shown to be multiplicity-free,2l the eigenvector Vij, m) and 

V'lj, m) must be equal up to a possible phase factor. It follows therefore that 

the eigenvalue of Vlj, m) and that of V'lj, m) coincide with each other: 

F(O';j(j-1), m) =F(O';j(j-1), -m). 

From the equalities j=n+1/2 and m=n+tc+1/2, the reflection symmetry 

A(s; n, tc) =F(O'; n 2-!, n+tc+ ~) =F(O'; n 2-!, -n-tc- ~) 

=A(s; -n, -tc-1) 

follows immediately. 

*l In both branches -./=-Js= ±i vJ., the automorphism leads to 

(l/ vJ.)J± c1; vT.)--7- c11 vT.)J"Cl/ vJ.). 
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§ 4. Diseussion 

The representation (3 · 2) can be used to develop a modified scheme for the 

perturbation with respect to u. The operator L, (u) is written as 

where h0 and lz 1 are defined by 

h : = (Jo 2 -- 1 [1- .~. (1 + j__Ci- 1) )] 
0 

" 4 2 l/--1 ' 

I 2 1 [ 1 1 \ 2 1 1 . '] I , 1 h~:=";J,- - (---J~ I 1 + ( 1 1----) .vJ, -- 4 4 v'Js vJ3 \]3 vJs 

The unperturbed Hamiltonian h 0 is of a diagonal form 

h 0[j, m) =E(j, m)]j, m) 

with 

E ( . . ) . - ( . 2 1 \ [1 (j ('1 _L j (.j- 1)) J ), }Jl • -- 7)/ - ·····! - -- 1 ----·---

' 4 · 2 m 2 -1 

and the non\'anishing matrix elements of h 1 are 

(j, m I bll j, 111- 2) 'f_ (j, m), (j, m] hl]j, m + 2) =I (j, m) 

with 

[- 1 \ 2 . ( . · 1) . [ . ( . 1) -J2 ) ' 1 J I 2 
f_(j,m):= (m'---!(1--l~ --·-T - .J J-_-__ . l(m--2)'-- 1

, 

4 m(m-2) m(m-1)'(m-2) \ 4 

F (J, m): = [ (_m'- __1_ J ( 1- -~j__(_j__:::-__l) + [jU- 1) J ) ( (m + 2)' _ -~ )_ ] 1
;:

1 

4 . m (m + 2) m (m + 1)2 (m + 2) - 4 

Since E (j, m), f_ (j, m) 2 and f (j, nz) 2 are rational functions o [ j (j- 1) and 111. 

the equalities E(j.-m)=E(j,m) andf(j,-m)=f_(j,m) ensure that, at each 

step of the perturbation, the approximate eigenvalue is a rational function of j (j -1) 

and m 2 • This is nothing but the reflection symmetry proved in the preceding 
section. It is meaningless, however, to say that the eigenvalue is a function of 
j (j -1) and m', unless the analyticity property is known with respect to these 

,-ariables. It is highly desirable to clarify the analyticity of the eigenvalues in 
connection with the investigation of Regge trajectories in the Wick-Cutkosky mocl 
el.7l 

The modified perturbation method does not constitute, unfortunately, a Pade 
approximant scheme. The advantage of the modified method over the usual une 
consists in that a part of the multiple poles at m 2 = 1, 4, 9, · · · appearing in 
the usual perturbation can be absorbed as moving poles in the complex m' plane. 
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