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Summary 

The classical problem of a line source, emitting an axisymmetric time- 
harmonic disturbance, and situated at a finite distance from a plane 
interface separating two different viscoelastic solids, is considered. 
Asymptotic expressions for the reflected, transmitted and diffracted waves 
are obtained. The emphasis of the work is directed towards the study of 
the spatial amplitude variations, induced by the presence of dissipation. 

1. Introduction 

Studies of seismic records indicate an amplitude decay, varying with epicentral 
distance, which is not accounted for by geometric spreading, loss at sharp boundaries 
etc. The effect, which is small is usually attributed to scattering and anelasticity. 
Some success has been obtained in the interpretation of the data, on the assumption 
that certain regions of the Earth, particularly the upper mantle, are linear visco- 
elastic. However, little theoretical work has been done on the propagation of seismic 
waves through such a medium. The work presented in this paper is an attempt to 
provide a better understanding to such problems and in particular, to provide a 
global picture of the amplitude decay associated with the dissipation in linear visco- 
elastic solids. To this end, all the essential features are exhibited in the simplified 
problem of a line source situated at a finite distance from a plane interface separating 
two linear viscoelastic solids which are in a state of anti-plane strain. The source is 
assumed to be time-harmonic. This has the advantage that no explicit model of 
viscoelasticity need be chosen-the dissipation can be simply represented by a small 
imaginary part in the wave numbers. It transpires that important differences occur 
when the dissipation in one medium is greater than or less than the dissipation in the 
other. The problem is solved using a well-known technique. The formal solution is 
obtained in integral form and after suitable deformation of the contours, asymptotic 
expressions are derived for the principal phases. The method employed here essen- 
tially parallels that of Brekhovskikh (1960). 

2. Integral representation of the solution 
The geometry of the problem is depicted in Fig. 1. M and M' are two linear 

viscoelastic solids in welded contact along the plane z = 0. M occupies the region 
- 03 < x, y < 00, z < 0 and M' the region - 00 < x, y < 00, z 2 0. The line source 
S is situated along x = 0, z = - h  and is assumed to emit an axisymmetric dis- 
turbance of harmonic time variation exp ( - io t ) .  It is further assumed that the 
wavelength A, of the disturbance in M is less than the corresponding wavelength A', 
in M'. As is well known, this condition assures the existence of the ' head wave ' or 
diffracted wave. 
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98 Peter W. Buchen 

h 

Y J 
/ MCp.A.A 1 

Fro. 1. The geometry of the problem. 

For the SH-mode of propagation the displacement vector has the form 
(0, V (x ,  z )  exp (- iot), 0) in M ,  where 

Vz V + k 2  V = O,Z  < 0. 

k = ~ ( l  +id), 6 Q 1 

(2.1) 

(2 * 2) 

k is the complex wave number and can be written in the form 

where K = 24.4 and 6 is a small parameter which determines the extent of dissipation. 
In terms of the more familiar ‘loss parameters’ Q (the quality factor) and A (the 
logarithmic decrement), 

Similarly, for the disturbance in M’, 
V2 V’+k’’ V’ = 0, z 2 0 

where 
k’ = ~ ’ ( 1  + id ’ ) ,  6‘ Q 1 (2 * 5 )  

and JC > JC‘. 

if p and p’ are the densities, the boundary conditions on z = 0 are 
Across the boundary the displacements and normal stresses are continuous. Thus 
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Reflection, transmission and diffraction of SH-waves 99 

In the absence of the plane boundary, the line source radiates a field which can 
be written as 

V, = H,")(kJ(x2 + (Z +h)')) = H,(')(kR) (2 * 7) 

where Ho(') is the Hankel function of zero order and of the first kind. For distances 
which are large compared with the wavelength 

Thus the line source emits a disturbance with cylindrical wave fronts and which 
asymptotically displays an exponential decay of decrement A = 2zd. The amplitude 
is constant on the wave front. 

We seek the solution to our problem in the form, 

V = Vo+ - v A(c)  expi{Cx+(h-z)v}dc,z 6 0 (2.9) 
7c - m  i -  

m 

V' = - 1 v- 'A' (c)  expi(cx+v'z+vh)dc, z 2 0 (2.10) 
7l 

- m  

where the integrals represent the perturbation on the main field Vo due to the presence 
of the boundary. A and A' are coefficients chosen to satisfy the boundary conditions 
and 

(2.11) 

Noticing that V, can be expressed in integral form as 

(2.12) dC V, = f 1 expi{cx+(h+z)vj-,z+h 2 0 
V 

- m  

the boundary conditions (2.6) are satisfied with 

(pip') k" Y - kZ V' 

(plp') k" v + k2 v' A(c) = 

and 

(2.13) 

(2.14) 

The expressions (2.9) and (2.10) are the formal solutions of our problem. The 
integrals, or their equivalents, have been obtained previously by many authors, for 
the case of either zero dissipation or perhaps when only one of the media is dissipative. 
At this point, we could obtain asymptotic expressions for the integrals as done by 
Lapwood (1949) or Gerjuoy (1953). However, we find it more suitable to first make 
a conformal transformation from the c-plane, thereby reducing the integrals to a 
form similar to that obtained by Brekhovskikh (1960). 
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100 Peter W. Buchen 

3. The conformal transformation 6 = k cos y 

Under the conformal mapping c = k cos y,  the integrals (2.9) and (2.10) become 

V = Vo + - A(y) exp (ikr cos (0-y))dy (3 * 1) 
71 ‘ s  

Y 

and 

A‘(y) exp i{kr’ cos 4’ cos y + v’ r’ sin 4‘ + kh sin y }  dy (3.2) 
71 

Y 

respectively, where for z < 0, x = r cos 0, z = h - r  sin tl and for z 2 0, x = r’ cos 4’, 
z = r’ sin4‘. 

Further, 
(3.3a) I (3.3b) 

and 

The transformation takes the real axis of the [-plane into the path %‘ of the y-plane 
given by 4m k cos y = 0 or with y = a+iP by 

v -+ k sin y 

V’ + J ( k r 2 - k 2  COS’ y), 4 w z  V’ 2 0. 

sin a sinh p-6 cos CI cosh p = 0. (3.4) 
The path starts at G+ioo, passes through (n/2,0)  at an angle -6 with the a-axis, 
and ends at ~ - 6 - - i o o ,  as shown in Fig. 2. When M is perfectly elastic, i.e. 6 = 0, 
the path reduces to the familiar Weyl contour. 

The (-plane is a 4-fold Riemann surface (corresponding to the four combinations 
of sign of 9 m  v and 9m v‘) joined along the branch cuts defined by 9m v = 0 and 
94% v’ = 0. The transformation ‘ unfolds ’ the branches through = f k and divides 
the y-plane into a 2-fold Riemann surface. The top-sheet ( 9 m t v ’  2 0), consists of 
alternate curvilinear strips for which 4 m  v 3.0, corresponding to sheets 1 and I11 
of the (-plane. The path %? is taken in the strip for which 4~ v 2 0, 9~ v‘ 2 0. 
Similarly, the lower-sheet of the y-plane (9m v’ < 0) consists of alternate curvilinear 
strips corresponding to the sheets I1 (4% v 2 0) and IV (9mt v < 0) of the r-plane. 

The two sheets of the y-plane are joined along the branch cuts defined by 

4m J ( k t 2  - k2 C O S ~  7) = 0 (3.5) 
and the corresponding branch points are situated at yo and n-y0 where 

cos yo = k’/k.  (3.6a) 

Writing yo = a. + ipo, we find to the first order of 6 and 6’ that 

6 -6’ 
cco = c0s-I (id/?+ po = 

J(IC2 / l c ’2 - -  1) ‘ 
(3.6b) 

Thus the branch point at y = yo lies above or below the real axis according as 6 3 6‘ 
and lies on it only when 6 = 6’. Further, since 9 m  k cosyo = ~ ‘ 6 ‘  0 the branch 
point yo lies below the path of integration W. Also, since 

l c26  - lcf2 6’ 
J ( K ’ - I c ’ 2 )  

Ymk sin yo N 

to first order, yo lies in the strip corresponding to sheet I or I11 of the c-plane according 
as rc2S 3 ~ ‘ ~ 6 ’ .  
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Reflection, transmission and diffraction of SH-wares 101 

y - plane 

( i l l  
(i) 

FIG. 2. The y-plane indicating the path of the integration V, the branch cuts L,  and 
the branch points yo, “ - y o  for the cases (i) 6 <  6’, and (ii) 6 >6‘. 

For any point on the branch cut given by ( 3 . 9 ,  k t 2  - k2 cos2 y = X 2  where X 2  
is real and positive. For large [ X I ,  k cosy + +iX or We k cosy --f 0. Thus the 
branch cut through yo tends to n/2-6-i00 and the branch cut through n- yo tends 
to n/2+6+iw. The situation is depicted in Fig. 2. 

The poles of the integrand must also be investigated. To simplify the discussion, 
we shall assume that p x p’. This condition is generally satisfied in geophysical 
applications and is unlikely to detract anything from the qualitative results. The poles 
are then given by the roots of 

k t2V+k2V=0 (3.7a) 
or 

(3.7b) 

There are two roots of (3.7b) in 0 < y < n of the form y = yl, n-y, where 
tan y, = k/k‘. With y ,  = a, fib,, we find to first order 

kI2 sin y -t k J ( k r 2  - k2 cos2 y) = 0. 

However, since (3.9) was obtained by squaring, these roots need not lie on the 
top-sheet of the y-plane. They do so when 9m (k t2 /k )  sin y1 < 0 or when 

S/Sl > 2 + ICI2/lc2. (3.9) 
It is easy to deduce that a, > ao, lp,l < [pol and that y ,  lies on the same side of the 
real axis as yo.  Note, that for 6 < a’, the pole always lies on the lower-sheet. The 
position of the poles relative to the branch cuts and path of integration is shown in 
Fig. 3. 

4. The reflected wave 

The integral in (3.1) can be written in the form 

1 w = - 1  71 4 Y )  exp ( K T f ( Y ) ) d Y  
y: 
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102 Peter W. Buchen 

where 
jyr) = i ( I  + id) cOS (e-y). 

The asymptotic expansion of (4. l), for 1cr % 1 ,  can be obtained by the method of 
steepest descent. The saddle point ys is given byf'(y,) = 0 or ys = 0, and lies on the 
real axis. The path of steepest descent is given by 9 m f ( y )  = Smf(y , )  and leads to 
the contour, S(8) expressed explicitly by 

cos (8-a) coshfi-8 sin (0-a) sinh f l  = 1 .  (4.3) 
The path starts at -z/2+0+6+im, passes through the saddle point at an angle 
E = -(n/4+b/2) with the real axis and ends at n/2+6-6-ioo. When 6 = 0, S(8) 
reduces to the contour obtained by Brekhovskikh (1960). The path of integration V 
is distorted into the path of steepest descent S(8), and any singularities which are 
crossed in the process must be taken into account. It transpires that S(0) cannot be 
contained to the top-sheet alone. However, this is permissible provided the path 
begins and ends on the top-sheet. The distortion into the path of steepest descent is 
shown in Fig. 3, from which we can determine the following: 

e > COS- ' ( K % )  

( i )  (ii) (iii) 

FIG. 3. The path of steepest descent S (0) and pole y1 for the cases 0 >< cos-' ( K [ / K )  

and (i) 6 <  S', (ii) 1 < 6/6' < 2+ K"/K2, and (iii) S/S' > 2 + K " / K 2 .  Full lines 
represent positions on the top-sheet, dashed lines for the lower-sheet. 
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Reflection, transmission and diffraction of SH-waves 103 

(i) No singularities are crossed when 8 > COS-’(IC’/IC). Note however, that for 
6 > 6‘ and 8 < cos-’((.’/~)J(6’/6)), the saddle point must be taken on the lower sheet 
of the y-plane. 

(ii) For 6 < COS-’(K’/K), the branch point y o  is traversed so that a corresponding 
branch line contribution must be included. 

(iii) For 6 < COS-~(IC’/K) and 6/6’ > 2 + ~ ’ ~ / 1 c ~  the pole y ,  is traversed so that its 
contribution must also be included. 

Thus (4.1) can be expressed as 

w = ws+ w B +  wp (4.4) 
where the three terms correspond to the saddle point, branch line and pole contri- 
butions respectively. We now, in turn, investigate these contributions to the field in M .  

In the regions for which A(y) is slowly varying compared with ~ ~ r f ( y ) ,  the saddle 
point contribution gives the asymptotic result (Jeffreys & Jeffreys 1966) 

A(8) exp (- I&) exp i(rcr -6/2 - 44). (4.5) = (3 
This is the geometrically reflected wave with angle of reflection 8 and reflection 
coefficient A(8).  The wave fronts are cylindrical and appear to come from an image 
source at z = h.  The amplitude variation, like the radiated or direct wave, is constant 
on the wave front. The reflection coefficient, which is analysed in more detail in 
Section 8, is complex, indicating that there is a phase shift relative to the direct wave. 

5. The head wave 

The branch line contribution to (4.4) gives the diffracted field or head wave. The 
integration is taken along the two borders L, and L, of the branch cut 9 m  v’ = 0. 
The integrands on L, and L, differ only in the sign of Wev’. On L,, A(?) = A-(y) 
with Re v’ < 0 and on L,, A(y) = Af(y) with Re v’ > 0. Thus combining the two 
integrations into one along the path L = L, = -L, we obtain 

where 

- 4(p/p‘) (k”/kZ) VV’ - - %v‘ > 0. 
(~’/p’’)(k’/k)~ V‘ - V” ’ 

For K r  %- 1, the asymptotic form of WB is obtained by deforming the path L in such 
a way that it goes from the branch point yo = ~ , + i / 3 ~ ,  along the path r, on which 
the exponential in the integrand decreases most rapidly. The major contribution to 
the integral will then come from the initial part only of r. Withf(y) given by (4.2), 
r is the contour given by, 
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104 Peter W. Buchen 

The contour is shown in Fig. 4. Disregarding, for the present, any possible poles or 
other singularities which may be crossed, we can deform L into I? to obtain 

1 

2 p ’ k 2  exp (ikr cos (0 - yo)) 
{ ~ r  sin (ao -0)}+ J(2 cot Yo)  exp ( i + @ O )  

- - --- 
J n  p k r 2  

(5 .4 )  

(5.5) 

( 5 . 6 )  

(5.7) 

( 5 . 8 )  

(5  9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

The physical interpretation of the head wave is obtained from its complex phase 

@(y)  = kr cos (e-Yo). (5.15) 

The wave fronts are given by the curves 9hCD = const. and the dissipation induces 
an amplitude variation which is constant on the curves 9 m  CD = const. 

The results of Appendix I determine the familiar ray path of the head wave and 
the loss of amplitude along it. A purely geometrical interpretation for this amplitude 
decay is given in Appendix 11. 

From (3.6) and (5.15), the wave fronts of the head wave are given by the planes 

(5.16) x-z  tana, = const., z < 0 

and the lines of constant amplitude (induced by the dissipation) by 

(5.17) 
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Reflection, transmission and diffraction of SH-waves 105 

It is thus evident, that in general, the amplitude is not constant on the wave front, 
as it would be in the absence of any dissipation. The following special cases illustrate 
the point: 

(i) 6 = 0. When M (the medium containing the source) is free of dissipation, the 
lines of constant amplitude, induced by the dissipation in M' ,  are perpendicular to 
the wave fronts. The head wave is then a plane inhomogeneous wave propagating in 
a perfectly elastic medium. 

The lines of constant amplitude are normal to the interface 
z = 0. 

When the attenuation per unit wavelength is the same for both 
media, the amplitude is so adjusted to be constant on the wave front. 

When M' is free of dissipation, the lines of constant amplitude, 
induced by the dissipation in M ,  are parallel to the interface z = 0. 

We can further show that the induced amplitude on the wave fronts of the head 
wave, increases exponentially from the interface for 6 < 6' and decreases exponentially 
for 6 > 6'. 

(ii) rc26 = ~ " 8 ' .  

(iii) 6 = 6'. 

(iv) 6' = 0. 

6. The pole contribution 

There is no pole contribution in the perfectly elastic case, so it is not too surprising 
that the same net result is obtained in the presence of small dissipation. 

As was discussed earlier there is a pole contribution to W of equation (4.4) when 
0 < cos-'(rc'/rc) and S/S' > 2 + 1 c ' ~ / r c ~ .  This contribution is readily obtained to give 

4iklk' 
wp = exp (ikr cos (0 - 7,)). k4/kt4 - 1 

We now investigate the possibility of a pole contribution from the branch line 
integral evaluated in Section 5. Here, the branch line L was distorted into a new 
path and poles of the integrand may have been crossed in the process. The poles 
of the integrand are those of B(y), given by (5.2), with WBV' > 0. The path L can 
be distorted into r without crossing the curve 928 v' = 0 (see Fig. 4.) so all that 
remains is to investigate if B(y) = A+(y) -A-(y)  has a pole between L and r for 
which 9 8  v' > 0. 

I 

FIG. 4. Branch line L and steepest descent path for the head wave. The two cases 
are (i) 6/6'< K ' ~ / K ~ <  1, and (ii) 6 / 6 ' > 2 + K ' 2 / K 2 .  
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106 Peter W. Buchen 

We have already seen that A(y) has a pole lying between L and I’ when 
616‘ > 2 + d 2 / K 2  and since 

B(y)  does have the required pole at y = yl, corresponding to azero of the denominator 
of A-(y) ,  and at this point A+(y) = 0. It is now a simple matter to show that the 
contribution from this pole is equal in magnitude to (6. l), but of opposite sign. The 
net pole contribution is now seen to be zero, in accordance with our previous remarks. 

7. The transmitted wave 

contains the complex phase 
The disturbance in the lower medium M’ is given by the integral (3.2) which 

@(y)  = k cos yr‘ cos 4’ + J(k” - k’ 60s’ 7) r’ sin 4’ + kh sin y. (7.1) 
The saddle point ys, satisfies @’(yS) = 0, giving 

k’ sin ys cos ys 
J(k” - k’ cos2 ys) 

- k sin ys r’ cos 4’ + r’ sin4‘+kh cos ys = 0 (7.2) 

or 

r’ sin ( y i  -4’) 
sin ysf 

= h cot ys 

where 
k‘ cos 7: = k cos ys. 

(7.3) 

(7.4) 

(7.4) is of course just the mathematical expression (in complex form) of Snell’s 
Law of Refraction. 

The solution of (7.3) and (7.4) for ys and ys’ can be obtained for 8 > COS-’(K’/K) 
in the form 

ys = e+ig, igiel 4 1 

y; = e’+ip’, Ip’le’l 4 1. 

(7.5) 

(7.6) 

Thus to the first order of 6 and 6‘, we find that 0 and 8‘ correspond geometrically to 
the angles of incidence and refraction respectively (see Appendix I) and 

and 

(6 -6’) P‘ K sin 8 cos 8 ’ = pic' sin2 e’ + P’ 1c sin 28 

- (6 -8’) PK‘ sin 8’ cos 0’ 
PK’ sin’ 8’ + P’ K sin’ 8 

p’ = 

where P = (h/sin0) and P’ = (r’ sin#/sin8’) are the ray paths of the transmitted 
wave in M and M’ respectively. Thus the saddle point for the transmitted wave 
(unlike that for the reflected wave) does not in general lie on the real axis, but above 
it for 6 > 6’ and below it for 6 < 6’. The position of the saddle point also depends 
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Reflection, transmission and diffraction of SH-waves 107 

on the length of the ray path and from (7.7), I f l I  has the maximum value 

16-6‘1 
I P r n a x l  = ~ tan 6 (7.9) 

But for €I > c0s-l   ti'/^), 

so the saddle point will always lie closer to the real axis than does the branch point. 
The path of steepest descent through the saddle point is the curve given by 

WecD(y) = WecD(y,). (7.10) 

This starts at -I)+ +6+im and ends at $- -6-ico where 

(7.11) 

In the vicinity of the 
second order in 5, 

saddle point, let us set y = y,+[ where IC/y,l < I. Then, to the 

since W ( y J  = 0. 
saddle point, approximates to the curve 

Thus the path of steepest descent in the neighbourhood of the 

(7.13) 9x3 cz cD”(y,) = 0. 
Now to the first order in 6 ,8 ‘  we have 

cD”(ys) z W‘(6) + iBW”(6) (7.14) 

where p is given by (7.7). (7.12) thus represents a pair of straight lines through the 
saddle point and inclined to the real axis at angles of - ~ ’ / 2 +  44, (E’ = (@”‘/@”) f l )  res- 
pectively. We chose the lower sign in this expression since the upper corresponds to 
the path of steepest ascent. Thus, assuming A’(y) is slowly varying compared with 
the phase CD(y), we obtain, for 0 > COS-~(K’/K), the saddle point approximation for 
the transmitted wave as 

A’(yJ exp (- (&P+ K’ 6‘ P’)) exp ~ ( K P  + K’ PI- d/2-  7c/4). (7.15) 
2 

The wave fronts are given by tip+ K‘ P‘ = const. and the lines of constant amplitude 
induced by the dissipation by ~ 6 P + d 6 ’  P’ = const. When 6’ = 0, the latter reduces 
to the family of curves P = const. and these are the straight line rays in M‘ which 
are orthogonal to the wave fronts. When 6 = 6’ the amplitude is constant on the 
wave front. Fig. 5 displays, for various values of 6/8’, the lines of constant amplitude 
in relation to the wave fronts. It is evident that the amplitude on the wave front 
decreases with depth for 6 > 6’ and increases for 6 < 6’. 

To calculate the field in M’ for 0 < COS-~(K’/K) we notice that the term v‘  r‘ sin 4’ 
in (7.1) is slowly varying compared to the other terms and can hence be taken outside 
the integration. The saddle point is then given by W(yJ = 0 where 

@(y) = k cos yr’ cos $’+ kh sin y. (7.16) 
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108 Peter W. Buchen 

FIG. 5. The solid lines are the curves of constant amplitude for the transmitted 
wave, i.e. KSP+K‘~’P’ = const. K’IK is taken as 0 .7  and the numbers indicated 
represent the ratio a/&‘. 
The dashed lines are the ray paths, to which the solids curves approach as 6/6’-+co. 
The solid curve labelled 1 is also a wave front. 

This gives ys = 8 on the real axis where 

(7.17) 

At the saddle point, the phase takes the value 
@(8) = kJ(h2 + r r 2  cos2 4’) = k P  (7.18) 

where P is the ray path in M from the source to the interface subject to the restriction 
in (7.17). Proceeding as in the previous Sections, we find that for 8 < cos-’(k-‘/~> 

V‘ - (&)‘A’(O) exp(iv’(8)r’ sin@) exp(-x6P) expi(~P-6/2-n/4). (7.19) 

Now the term exp (iv’(8) r‘ sin 4’) is equal, to first order, to 

d 2  6’-  K~ 6 c0s2 8 
K 2  C O S ~  e - K r 2 )  

r’ sin 4‘)  . (7.20) exp ( - J ( x 2  cos2 8 - K ” )  r‘ sin 4’) exp i 

Thus the disturbance in M’ for 8 < COS-’(K’/K) decays rapidly with depth. It does 
not satisfy Fermat’s Principle so that no true ray path can be associated with it. 
However, the phase factor in (7.20) indicates that there is a small energy fluctuation 
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Reflection, transmission and diffraction of SH-waves 109 

normal to the interface-this does not occur in the perfectly elastic case when 
6 = 6‘ = 0. 

A similar discussion as in Section 6 shows that there is no pole contribution to 
V’. There is however, a branch line contribution when 0 < COS-’(JC’/JC) which gives 
a ray path corresponding, once again, to the head wave. 

8. The reflection and transmission coefficients 

dissipation. For 8 > COS-~(JC’/IC), we have JC cose = JC’ cose’ and setting 

p’ JC sine‘ 
p d s i n e  ’ 

Both the reflection and transmission coefficients are affected by the presence of 

a =  

we find to first order, 

and 

a(6-6ycot2e-i) + 2i A’(e+ig) = - 2 
1 + 0  (1 +0)2 

where p is assumed here to be given by (7.9). 

setting 
For 0 < COS-’(JC’/K) we can define an angle I)’ so that JC cose = JC’ coshI)’ and 

p’ K sinh $‘ 
z =  

prc’ sine ’ 

we find to first order, 

1 -iz 22(6-6’)(1 fcoth’ $’) 
1 +iz (1 + iz)‘ 

A(e) = - + 
and 

2 22(6-6’)(1 +coth2 I)‘) 
A’($) = - - 

1 +iz (1 + iz)’ 

Thus for 0 > COS-’(JC’/K) the dissipation introduces a first order phase shift in both 
reflected and transmitted waves, the direction of which depends on whether 6 > 6’ 
or 6 < 6’. For 6 < COS-~(JC’/JC) the dissipation introduces a first order change in 
amplitude. It is interesting to observes that for 6 > a‘, IA(e)I > 1 and this appears 
to violate energy principles. However, for 8 < C O S - ’ ( K ’ / K )  the ‘ transmitted ’ wave 
contains the term (7.20) and for 6 > 6’ this indicates a small energy flux across the 
interface from M’ to M .  

9. Discussion 
We have presented the asymptotic expressions for the direct, reflected and 

diffracted waves in M and the transmitted and inhomogeneous waves in M’. It is 
important to mention that these expressions are not valid in the neighbourhood of 
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the ‘ critical ’ angle 8 = COS-’(K’/K). The concept of criticality for the case of small 
dissippation is somewhat obscure. For example, differences in its interpretation were 
obtained by Lockett (1962) and Cooper (1967), in their work on plane waves in 
linear viscoelastic solids. In fact, there is not a sharp transition from sub-critical 
reflection to super-critical reflection, but a rapid and continuous one-and this is 
also true for the case of plane waves. This interpretation is confirmed by M. 
Schoenberg (1970, private communication). 

Distinct differences in the amplitude distributions for the head wave and trans- 
mitted wave occur if the Q for one medium is greater or less than the Q for the other. 
When Q is the same for both media, the waves display properties similar to the case 
of perfect elasticity. For example, the amplitude on the wave fronts is constant, as 
it is when there is no dissipation, and there is no change, to first order, in the reflection 
and transmission coefficients. 

Suppose our interface represents the Earth’s crust. Then it is evident from the 
discussion of the amplitude of the head wave, that at least theoretically, it is possible 
to determine a mean Q for the upper mantle by observations on the Earth’s surface 
alone. 
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Appendix I 
In this Appendix we shall determine by simple arguments, the ray paths and the 

variation of amplitude along them, when a small amount of dissipation is present. 
In particular, the results are applicable to both the head wave and the transmitted 
wave. 

In the absence of any dissipation, the geometric ray paths for both these waves 
are obtained from a phase function @ ( K ,  IC’; S ,  R) which depends on the (real) wave 
numbers of the two media ( M  and M’) and on the relative positions of the source 
and receiver. For a fixed source and receiver, the phase can be written in general 
form, as 

(A1 . 1) @(K, K ’ )  = KP+IC’ P‘ 
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where P and P’ are the ray paths in M and M‘ respectively. 

Head wave Transmitted wave 

@ = Kr cos (8-uo) @ = K’ r’ cos (8’ - 4’) + K h  sin 8 

K case = Kr case' = K ‘ X + “ / ( K Z - K r z ) ( h - Z ) , Z  < 0 

111 

a. = C O S - ’ ( K ’ / K )  

h -z p = -  
sin u,, 

h -z  p’ = x- - 
tan uo 

r’ sin (el -4’) 
sin 8’ 

= cote 

h p = -  
sin 8 

r’ sin@ p’ = 
sin 8’ 

It is clear from the previous diagram that for fixed h, x ,  z ,  r‘ and 4’ the ray paths 
depend on K and K‘ only through their ratio. That is, 

@ ( K ,  K ’ )  = K P ( K / K ’ ) + K ’  P’ (K /K’ ) .  (A1 .2) 

Now, both the head wave and the transmitted wave satisfy Fermat’s Principle. 
Mathematically, this means that, for fixed source and receiver, the phase remains 
stationary with respect to small variations in K / K ’ .  Therefore, 

K P + K ’  P‘ = 0. (A1 ,3)  

When a small amount of dissipation is introduced, we replace K by K + i K 6  and K’ by 
K’ + i d  6’. Thus, by Taylor’s Theorem, we have to the first order in 6 and 6’, 

@ ( K + i K 6 ,  K ‘ + i K ’ 6 ‘ )  X @ ( K ,  K ‘ ) + i  (AT. 4) 
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But from (A1 .2) and (AI. 3), 

Finally then 

and 

-- - P + ( K / K ’ )  P+P’ = P a@ 
a K  

(A1 . 5 )  

(A1 .6) 

(A1 .7) 

(AI. 8) 

The interpretation of this result is obvious. In addition, the amplitude on the wave 
front 9 e  CP = const., varies as exp (- rc(6 -6’) P) or exp (- ~’(6’ -6) P‘), which is 
constant only when 6 = 6’. 

Appendix 11 
Here, we provide a purely geometrical description for the variation of amplitude 

of the head wave. For this purpose it is more convenient to use the ‘ natural ’ wave 
parameters-the wavelength (A = 2721~) and the decrement (A = 2 ~ 6 ) .  

The wave fronts of the head wave can be obtained from a Huygen’s construction. 
Consider two such wave fronts, separated by exactly one wavelength, as shown in 
Fig. 6. 

An observer, who makes measurements on a line parallel to OA (i.e. normal to 
the wave fronts) would measure the true wavelength A and the true decrement A. 
Similarly, a hypothetical observer who makes measurements along the line OA‘ 
parallel to the interface, would obtain the apparent wavelength A’ and apparent 
decrement A’. Now suppose our observer makes his measurements along some 
arbitrary line parallel to OA, inclined at an angle 80 to the interface, obtaining an 
apparent wavelength A, and apparent decrement Ao. Then, 

. (AII. 1) 
A X  

A cos 80 + , / ( A t 2  - A 2 )  sin 8, 
A, = OA,  = A sec (O,-80) = 

Now suppose the amplitudes at A, A ,  and A‘ are W, W, and W’ respectively. Assuming 
an exponential variation of amplitude along the wave front, we can write 

W, = W exp (-crp), W’ = W, exp (-crq) (A11 .2) 

FIG. 6.  Geometrical interpretation of the amplitude variation of the head wave. 
The amplitude at an arbitrary point A .  can be expressed in terms of the amplitudes 

at A and A’ which lie on the wave front through A,,. 
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where p = AA,, g = A ,  A’ and c1 may be positive, negative or zero. Eliminating 
CI we obtain 

w o p + q  = wq W’P. (A11 .3) 

Now suppose Uo is the amplitude at  0. Then dividing (A11.3) by Uop+q  and taking 
logarithms, we obtain 

( p + q )  A0 = qA+pA’. (A11 .4) 

Now from the geometry of Fig. 6 .  we easily find that 

1‘ sin 0, 
p = I tan (8,-O0), g = 

cos (e,-e,) (AII. 5 )  
p +q = 1‘ sin 0, = 1 tan 0,. 

Thus, from (AII.4) we get an expression for the apparent decrement on the line 
OA,  as 

A sinO,+A’sin (0,-0,) cos8, 
sin 0, cos (8, 0,) 

A, = 7 (A11 .6 )  

Note that for 0, = 0,, A, = A and for 0, = 0, A, = A’. In particular, when the 
observer makes measurements on a line on which the amplitude is constant, his 
observed decrement is zero. It must be remembered that by ‘ amplitude ’ we mean 
that induced by the dissipation only. Other amplitude variations such as geometric 
spreading are assumed to have been already taken into account. Thus from (AX1 . 6 )  
when A, = 0 we find 

sin 8, cos 8, - J(I’”jn2- 1) tan8, = - 
C O S ~  8, - A/A’ 1 - I” A/A2 A’ 

(A11 .7) 

and this expression agrees precisely with (5.17). 
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