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ABSTRACT

We combined deep Chandra, ROSAT HRI, and XMM-Newton observations of M87 to study the impact of ac-
tive galactic nucleus (AGN) outbursts on its gaseous atmosphere. Many X-ray features appear to be a direct result
of repetitive AGN outbursts. In particular, the X-ray cavities around the jet and counterjet are likely due to the
expansion of radio plasma, while rings of enhanced emission at 14 and 17 kpc are probably shock fronts associated
with outbursts that began 1 2 ;107 yr ago. The effects of these shocks are also seen in brightenings within the
prominent X-ray arms. On larger scales, �50 kpc from the nucleus, depressions in the surface brightness may be
remnants of earlier outbursts. As suggested for the Perseus Cluster by Fabian and his coauthors, our analysis of the
energetics of the M87 outbursts argues that shocks may be the most significant channel for AGN energy input into
the cooling-flow atmospheres of galaxies, groups, and clusters. For M87, the mean power driving the shock
outburst, 2:4 ;1043 ergs s�1, is 3 times greater than the radiative losses from the entire cooling flow. Thus, even in
the absence of other energy inputs, outbursts every 3 ; 107 yr are sufficient to quench the flow.

Subject headinggs: galaxies: active — galaxies: individual (M87, NGC 4486) — X-rays: galaxies

1. INTRODUCTION

M87 (NGC 4486) provides a unique laboratory in which to
study the interaction between energy generated by a supermas-
sive black hole and the hot intracluster medium. Its proximity
allowed the disk surrounding its active nucleus to be resolved
by theHubble Space Telescope (HST ), providing a measure for
the mass of the central black hole of 3:2 ;109 M� (Harms et al.
1994; Ford et al. 1994; Macchetto et al. 1997). M87’s proximity
also provides a unique view of its jet, detected in optical, X-ray,
and radio (e.g., Sparks et al. 1996; Perlman et al. 2001;Marshall
et al. 2002; Harris et al. 2003).

M87 is the central elliptical galaxy in the rich Virgo Cluster
and is surrounded by an extensive gaseous atmosphere with a
mean temperature of �2 2:5 keV (Mathews 1978; Bahcall &
Sarazin 1977; Fabricant & Gorenstein 1983; Böhringer et al.
2001; Matsushita et al. 2002). X-ray structure in the gaseous
halo of M87 was first reported by Feigelson et al. (1987) using
Einstein Observatory observations. Using ROSAT and XMM-
Newton observations, Böhringer et al. (1995), Churazov et al.
(2001), and Belsole et al. (2001) discussed the relationship be-
tween the observed X-ray structure and the radio emission.

Like many other optically luminous galaxies at the centers
of clusters, M87 has been considered to be a classic example of
a cooling-flow system, in which the gas cooling time is relatively
short compared to the age of the system (e.g., Stewart et al. 1984;

Nulsen & Böhringer 1995; Böhringer et al. 2001). However,
observations with XMM-Newton have shown that cooling flows,
such as that aroundM87, deposit cooled gas at much lower rates
than expected in the standard cooling-flowmodel (Fabian1994;
Peterson et al. 2003 and references therein). This requires con-
siderable energy input to compensate for radiative losses. M87,
with its proximity, its active nucleus, jet, and extensive system
of radio lobes, provides an ideal system for studying the energy
input from the active galactic nucleus (AGN) to the hot, cooling
gas.
Using radio studies, Owen et al. (2000; see also Binney 1999)

pioneered the view that the mechanical power produced by the
supermassive black hole at the center of M87 was more than
sufficient to compensate for the energy radiated in X-rays. Tabor
&Binney (1993) and Binney&Tabor (1995) developedmodels
without mass deposition and included energy injection from the
central AGN. Heinz et al. (1998; see also Reynolds et al. 2001)
modeled shock heating of the intracluster medium (ICM) by
an expanding radio source. Churazov et al. (2001; see also Kaiser
& Binney 2003; Bruggen 2003; De Young 2003; Kaiser 2003)
first argued that the morphology of the X-ray and radio obser-
vations could be explained by radio-emitting plasma bubbles
buoyantly rising through the hot X-ray–emitting gas. Further-
more, Churazov et al. showed that these buoyant bubbles could
uplift the coolest gas and provide significant energy input as bub-
ble enthalpy is converted to kinetic energy, then thermalized
into the gas in the bubble wake.
The results outlined above relied primarily on pre-Chandra

observations of M87 that lacked sufficient angular resolution to
allow detailed comparison to the radio structures shown in the
Owen et al. (2000) study. Young et al. (2002) used a 37 ksChandra
observation to both confirm previous structures and describe sev-
eral new features, including two nearly spherical ‘‘edges’’ at�4500

and �30, which they attribute to activity in the nucleus associated
with jet production. The Chandra images also show cavities and
filaments in the eastern and southwestern X-ray arms. Young et al.
argued that the arms were overpressurized and multitemperature.
Molendi (2002) used XMM-Newton observations to show that the
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X-ray arms required two-temperaturemodelswith gas temperatures
in the ranges kT � 0:8 1 keVand kT � 1:6 2:5 keV.

In this paper, we combine deep Chandra, ROSAT HRI, and
XMM-Newton observations to study the impact of AGNoutbursts
on the gaseous atmosphere around M87 and the interaction of
the radio-emitting plasma with the hot gas. As others have noted,
theChandra,XMM-Newton, andROSATHRI observations show
rich structure on many angular scales. These include knots in
the jet, surrounding cavities, a coincident X-ray and radio bubble
just budding from the southeast of the radio core region, a weak
shock, filaments and cavities in the east and southwest arms, and
an arclike region of enhanced emission coincident with the outer
edge of the southern radio halo. In this paper, we describe the
X-ray observations and discuss the origin of these features in
M87.

2. OBSERVATIONAL DETAILS

M87 has been well studied at all wavelengths and by each
new X-ray mission. Here, we describe our analysis for Chandra,
XMM-Newton, and the ROSAT HRI. X-ray observations were
obtained from the Chandra, XMM-Newton, or HEASARC ar-
chives. While Chandra provides unprecedented angular reso-
lution, XMM-Newton and the ROSAT HRI yield large field of
view (FOV) images with which to study the larger scale struc-
tures aroundM87.We adopt a distance forM87 of 16Mpc (Tonry
et al. 2001), which yields a scale of 4.65 kpc arcmin�1. We used a
broad suite of tools to analyze the ROSAT, Chandra, and XMM-
Newton data, including XSPEC 11.2.0, FTOOLS, CIAO 3.0.1,
and SAS 5.3. All X-ray images are displayed in the standard
orientation with north up and east to the left. The coordinate
system used throughout the paper is J2000.

For all analyses of radial distributions, projections, and spec-
tra, point sources were detected and then excluded (231 for
Chandra), as was the bright M87 nucleus and jet.

2.1. Chandra

M87 was observed with Chandra on 2000 July 29–30 (ObsID
352) and 2002 July 6–8 (ObsID 2707) for 37 and 105 ks, re-
spectively, with ACIS-S at the focus. Details for the 2000 July
and 2002 July observations are given by Young et al. (2002) and
Jordan et al. (2004), respectively. The 2002 July observation
was used by Jordan et al. (2004) to analyze the point-source pop-
ulation of M87. Sparks et al. (2004) used the Chandra obser-
vations to study the relationship between the X-ray structures
and those seen in H� . They discussed the effects of thermal con-
duction on the hot, X-ray–emitting, and cooler, H� emitting,
gas. As part of our analysis, we applied standard screening to
the event list, excluded intervals with high background, and omit-
ted ASCA grades 1, 5, and 7, known hot pixels, bad columns,
and chip node boundaries.

Because the Virgo Cluster is both bright and extended, we
used the ACIS-S1 chip to monitor the instrument background
rate in the energy band 2.5–6.0 keV (see M. Markevitch 2001,
Chandra calibration memo8). We found significant background
flaring in both observations, and the corresponding time inter-
vals were removed. The remaining exposure times for ObsID’s
2707 and 352 were 87.9 and 30.0 ks, for a total observation time
of 117.9 ks. For all imaging analyses, we generated images,
exposure maps, and backgrounds separately and then combined

the results in sky coordinates. We normalized the exposure maps
between frontside- and backside-illuminated CCD’s, assuming
the emission was characterized by thermal emission from hot
gas with kT ¼ 2 keV. For spectral analyses, we extracted spec-
tra separately from each observation and fit the spectra jointly in
XSPEC. Response matrices and effective areas were averaged
by weighting by the observed X-ray emission.

2.2. XMM-Newton

XMM-Newton observed M87 for 57.4 ks on 2000 June 19.
Details of this observation are given by Bohringer et al. (2001)
and Belsole et al. (2001). We report on results obtained with the
MOS instrument. Calibrated event lists were generated using
SAS version 5.3. The MOS background was calculated using
the blank field data accumulated over a large number of obser-
vations (Lumb et al. 2002). For analysis, we usedMOS data with
patterns in the range 0–12 and the recommended value of the
flag (XMM_EA). For generating the temperature map, we used
one of the MOS response matrices provided by the XMM-SOC
and assumed that the same response (corrected for energy-
dependent vignetting) is applicable for all regions. The gas tem-
perature map was calculated as described by Churazov et al.
(1996; see also Churazov et al. 2003 for this method applied to
XMM-Newton data for the Perseus Cluster). An adaptive smooth-
ing also was applied to the map, so that each value of the tem-
perature was calculated using regions containing �3600 counts.
Comparison of the overall structure with the results of direct
spectral fitting of individual regions shows good agreement.

2.3. ROSAT HRI

M87 was observed seven times with the ROSAT HRI between
1992 and 1997 (ROSAT sequence numbers rh700214, rh702081,
rh704000, rh701712, rh702774, rh701713, and rh702775) for a
total observation length of 171.6 ks. A detailed description of
the ROSAT HRI observations is given by Harris et al. (1999a,
1999b). We generated images from each observation using PHA
channels 3–9 to reduce the instrumental background and im-
prove the signal-to-noise ratio (S/N) for the diffuse emission.
The images were then summed for further analysis.

3. X-RAY IMAGING

X-ray images of the two merged M87 Chandra observa-
tions are shown in Figures 1 and 2. Figure 1a shows the central
region at full resolution (1 pixel ¼ 0B492) in the energy band 0.5–
2.5 keV. Figure 1b covers a slightly smaller region and includes
6 cm radio contours. Figure 1c labels the features discussed in
the text below. Figure 2 is an adaptively smoothed image. On
the smallest scales, Figures 1 and 2 show:

1. The well-known X-ray jet extending �2000 from the nu-
cleus, with the brightest emission coming from the nucleus and
knot A, and showing emission from at least seven knots (Marshall
et al. 2002; Harris et al. 2003).

2. X-ray cavities surrounding the jet (including one sur-
rounding the location of the unseen counterjet), with an overall
extent described as an ellipse with semimajor and semiminor
axes of 4000 and 1500, respectively, oriented along the jet direction
(approximately west-northwest) and coincident with the bright
radio emission seen at 6 cm (see Fig. 1b). The radio lobe cavities,
particularly the counterjet cavity, are delineated by bright rims of
X-ray emission.

3. An X-ray cavity (with a radius of about 1200), delineated
by a bright X-ray rim, coincident with radio-emitting plasma
budding from the southeast of the 6 cm radio lobes.

8 See ACIS Background memo at http://cxc.harvard.edu /contrib/maxim /
bg/index.html and a file describing how to use the tools and the background data
at http://cxc.harvard.edu /contrib/maxim /acisbg /COOKBOOK.
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fig.1afig.1bfig.1cFig. 1.—(a) Central region of M87 as seen by the Chandra ACIS-S detector in the energy band 0.5–2.5 keV with a Gaussian smoothing of 1 pixel ¼ 0B492.
Several cavities are seen in the counterjet direction, as is the beginning of the large-scale eastern arm. (b) Same image at a slightly larger scale, with contours (1, 5,
20, and 45 ; 10�5 Jy per 0B1 ; 0B1 pixel) from the 6 cm radio observations of Hines et al. (1989) superposed on the X-ray image. A ‘‘bud’’ of radio-emitting plasma
fills the X-ray cavity to the southeast. The region referred to as the cocoon in the text is the radio-emitting plasma-filled region defined by the radio contours
(excluding the bud). X-ray filaments surround the bubbles in the eastern arm. (c) Identifies features discussed in the text. All images of M87 are shown with standard
astronomical orientation with north up and east to the left, and the coordinates in (a) are J2000.

Fig. 1a Fig. 1b

Fig. 1c



4. An X-ray bright core region, surrounding the 6 cm radio
lobes, with a radius of approximately 5000, with more pronounced
emission to the north (overexposed region in Fig. 3). Young
et al. (2002) suggested that an edge at the 3.9 kpc radius arises
from sound waves driven by nuclear activity. Alternatively, this
structure could originate either as a cold front (see the XMM-
Newton temperature map in Fig. 6) or as a sheath of cool mate-
rial surrounding the cocoon. The southern edge of the radio
cocoon is bounded by a bright X-ray rim ( just south of the out-
ermost radio contour in Fig. 1b).

5. At least four cavities (typical scales of �1000) extending
into the eastern arm, with associated filamentary structures that
surround them.

To study the emission on larger scales, we used the Chandra
ACIS-S2 and S3 CCDs, as well as the ROSAT HRI and XMM-
Newton observations of M87. The Chandra large-scale image
was prepared by (1) extracting the 0.5–2.5 keV images from
each pointing, (2) generating ‘‘exposure’’ maps (accounting for
vignetting, quantum efficiency, and bad pixel /columns/gaps
with an assumed kT ¼ 2 keV thermal spectrum to normalize the
front- and backside CCD chips), (3) smoothing (Gaussian fit of
100) each of the images and exposure maps, (4) dividing each im-
age by its exposure map, and (5) summing the two flat-fielded
images. The resulting Chandra image is shown in Figure 3.

To enhance the view of the faint asymmetric structures,
we processed the Chandra, XMM-Newton and ROSAT images
to remove the large-scale radial surface brightness gradient.

Figures 4 and 5 show the relative deviations of the surface
brightness from a radially averaged surface brightness model
(� model for Chandra and ROSAT, with a ¼ 8B86 and � ¼
0:37, and an azimuthal average for XMM-Newton), i.e., ½Data�
Model�/Model. These images show evidence on large scales for
buoyant bubbles and energetic outbursts powered by the super-
massive black hole in the M87 nucleus. These features, outside
the 10 core, are labeled in Figures 4b and 5. The features include

1. A nearly azimuthally symmetric ring of emission with a
leading edge at a radius of 14 kpc (30) most prominent to the
north and northwest (see Figs. 3 and 4), which we interpret as a
weak shock (see below).

2. A second partial ring (i.e., arc) of enhanced emission, just
beyond the 14 kpc ring, at a radius of 17 kpc, most prominent at
azimuths of 0

�
–60

�
from the west (see Fig. 4), which we also

interpret as a shock.
3. The prominent eastern and southwestern arms that brighten

significantly at approximately the radius of the 14 kpc ring.
4. The division of each arm into two filaments at radii be-

yond the 14 kpc ring. For the southwestern arm, the filaments
( labeled S1 and S2 in Fig. 4b) turn east, while for the eastern
arm, the two filaments (labeled E1 and E2 in Fig. 4b) turn north.

5. A southern arc, at a radius of approximately 37 kpc (�80)
seen inChandra,ROSATHRI, andXMM-Newton images (Figs. 4
and 5).

6. On the largest spatial scales, the ROSAT HRI and XMM-
Newton images in Figure 5 show depressions in surface brightness

Fig. 2.—Adaptively smoothed Chandra image (minimum significance 4 �) of the central region of M87. Prominent features include the narrow southwestern
arm, the bright 5000 radius inner core (yellow), which shows an especially sharp jump in surface brightness along the northern edge, and multiple bubbles and
surrounding filaments in the core, which form the base of the eastern arm.
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to the northeast and southwest and corresponding excesses to
the southeast and northwest (see regions marked ‘‘Excess’’ in
Fig. 5a).

4. XMM-NEWTON TEMPERATURE MAP

The XMM-Newton temperature map with its large field of
view and high S/N (compared to Chandra) is shown in Figure 6
and is consistent with the discrete temperature fits performed by
Molendi (2002; see also Belsole et al. 2001). The continuous
nature of our map clearly shows some of the large-scale struc-
tures. The eastern and southwestern arms are distinctly cooler
than the surrounding gas, although we found no abundance dif-
ferences between the arms and the ambient M87 atmosphere.
The temperature map shows, at least as clearly as the surface
brightness map, the clockwise rotation to the east of the south-
western arm.

Perhaps the most striking feature of the temperature map is
the similarity of the eastern and southwestern arms. In particu-
lar, the temperatures are similar, and at the end of the arms, when
they start to deviate from the approximately linear structure,
each bends clockwise.

5. ANALYSIS AND INTERPRETATION

We discuss the origin of prominent X-ray features seen in the
Chandra, ROSAT HRI, and XMM-Newton images in terms of
energetic outbursts from the supermassive black hole at the
M87 nucleus. Previous authors have provided ages for the east-
ern and southwestern arms and buoyant bubbles (107 yr; Churazov
et al. 2001) and the outer radio lobes (108 yr; Owen et al. 2000).
We note that while we describe the outer radio lobes as buoyant

bubbles, they must be continuously resupplied with energetic
particles, as Owen et al. (2000) have emphasized.

5.1. Gas Density and Temperature Deprojection

To obtain ambient gas density and pressure profiles (see
Fig. 7), we deprojected the X-ray surface brightness and gas
temperatures in a sector north of the nucleus at azimuths (from
the north) between �30

�
and 45

�
, a region chosen for its rela-

tive absence of asymmetric structure. The deprojection is stan-
dard (Nulsen et al. 2002), except for the handling of weights for
the outermost region. Because the outer edge of the region is
well within the cluster, a model was needed to allow for cluster
emission beyond the deprojected volume. This was done by as-
suming that the surrounding gas is isothermal, with a power-
law density profile (ne / r�1:09, which accurately matches the
profile from 10 50; see Fig. 7c). The outermost ring was assumed
to represent emission from the surrounding gas, and its weight
was determined accordingly in the spectral deprojection.

5.2. X-Ray Core and Inner Radio Lobes

The inner radio lobes, the cocoon region, originated in an epi-
sode of recent nuclear activity. We can use the X-ray observa-
tions to estimate the energetics associated with their formation.
The counterjet cavity is well described as an ellipse with semi-
major axes of 1500 and 1900 on the plane of the sky (see Fig. 1c).
Using the innermost gas temperature of 1.65 keV from our de-
projection (Fig. 7), and assuming the transverse expansion of
the cavity is subsonic, we estimate that its age is more than
1:7 ; 106 yr. The one-sidedness and superluminal motion of the
jet suggest that its path is close to our line of sight. If the axis
of the cavity makes an angle of 20

�
to the line of sight (Biretta

et al. 1999), then its linear dimension is about 9 kpc. Using the
age estimated above, the head of the cavity is advancing at<5 ;

103 km s�1. If the cavity is 107 yr old, the average speed of
the head of the cavity is significantly smaller and only mildly
supersonic.
If the cavity is prolate and lies in the plane of the sky, its

volume is’2:4 ;1065 cm3. Using the pressure for the innermost
ring of our deprojection (centered at a radius of 2200), gives
pV ¼ 1:3 ; 1056 ergs. If the cavity is relativistic (and the pres-
ence of the synchrotron-emitting plasma strongly argues in
favor of this), then its enthalpy is 4pV; otherwise it is 2.5pV. If
the cavity projected as a sphere on the plane of the sky is ac-
tually a prolate ellipsoid with a 20

�
angle between the line of

sight and the axis of the ellipsoid, then the volume of the cavity
increases by a factor of �2.9, and the center of the cavity shifts
to a larger radius by the same factor. At this position, the gas
pressure is 2.6 times smaller, so that our estimate of the enthalpy
is only slightly altered, based on the assumption that the pres-
sure inside the cavity is uniform (due to the high sound speed of
the relativistic gas). Note that the fact that the external pressure
changes over the extent of the cavity implies that the configu-
ration must be dynamic: either parts of the lobe far from the nu-
cleus (where the external pressure is lower) are overpressured
and thus expanding into the gaseous atmosphere, or the inner
parts, close to the nucleus, are underpressured, and thus col-
lapsing, or both. The maximum overpressure of a factor of 2.6
would imply that the head of the cavity is advancing at a Mach
number of 1.5. Since the cavity itself is likely oriented close
to the line of sight, it is quite possible that the assumption of
sphericity breaks down in the inner bins and that the derived
pressure is therefore an overestimate. In either case, a detailed hy-
drodynamical model is needed to make a more accurate estimate

Fig. 3.—Merged, flat-fielded Chandra image in the energy band 0.5–2.5 keV
generated by summing the two pointings after flat-fielding and smoothing each
separately (see text for details). The prominent eastern and southwestern arms
are apparent, as is the surface brightness enhancement with an outer edge at a
30 radius from the nucleus.
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of the enthalpy, but it is unlikely to increase over our estimate by
more than 50% and certainly not by more than a factor of 2.6.
Doubling the calculated enthalpy to allow for the jet cavity to
the west, our best estimate for the total enthalpy of these cavities
is ’1:1 ; 1057 ergs and not more than 2:9 ;1057 ergs, 2.6 times
larger.Additional radio-emitting plasma andX-ray cavities (plasma
bubbles) are observed beyond the jet cavities. Therefore, given
the bubble formation time calculated below, this material is
probably produced in the current outburst as well. Including
this material would at most double the total enthalpy of the ra-
dio plasma from the outburst.

5.3. Azimuthal Rings

5.3.1. The 14 kpc (30 ) and 17 kpc (3A75) Rings

The 14 kpc ring is the clearest example of a shock-driven
feature inM87. Althoughmost prominent to the north and west,
it is seen over nearly 360

�
in the azimuth centered on the M87

nucleus (Fig. 4). As described in x 5.1, we measured the surface
brightness and temperature profiles in a sector north of the nu-
cleus. The deprojected gas density profile is shown in Figure 7,
along with the deprojected gas temperature. If we identify the
inner radio lobes with the piston that drives this shock, since
they are small compared to the volume encompassed by the ex-

panding front, the event that drove the shock may be treated as
instantaneous. If the shock is expanding into a spherically sym-
metric medium, it will become increasingly spherical, regard-
less of the shape of the initial outburst. Thus we model the
outburst required to generate the 14 kpc ring by assuming that
energy is injected in a single event into the atmosphere by the
central AGN. Our estimate of the outburst energy is robust to
varying details of the actual outburst. Before the passage of the
shock, the gaseous atmosphere is hydrostatic and isothermal,
with a power law density profile ne / r�1:09, chosen to match
the surface brightness profile immediately outside the shock.
We derived the parameters of the outburst by matching calcu-
lated surface brightness profiles to that observed and verifying
that the temperature data were consistent with those calculated.
The model that best matches the data is characterized by an
energy deposit of 8 ; 1057 ergs about 107 yr ago and is shown in
Figure 7c, compared to the observed surface brightness distri-
bution. The shock is mildly supersonic, with M ¼ v /cs ¼ 1:2
(v ¼ 950 km s�1). A weak temperature enhancement at the
position of the ring (Fig. 7) is consistent with the calculated
model (as is the slight temperature reduction inward of the shock).
Although the temperature evidence is not strong, the remark-
ably spherical appearance of this feature is compelling evidence
that it is a weak shock driven by the AGN. This description for

fig.4afig.4bFig. 4.—Chandra image (0.5–2.5 keV) processed as described in the text to remove the large-scale radial surface brightness gradient. Many faint features are
seen, including, (1) the bifurcation of the eastern and southwestern arms, (2) the brightening at the eastern and southwestern arms, (3) the 14 kpc (30) ring, (4) the
17 kpc (3A75) arc, and (5) the faint southern 37 kpc (80) arc. The features are labeled in the color image. The 14 kpc ring and 17 kpc arc are labeled at their outer
extents. Labels identify the extensions of the eastern (E1, E2) and southwestern (S1, S2) arms after each has divided. The uplifted gas core (white in the color image)
that lies at the end of the eastern arm at the (projected) center of the radio torus is labeled. Note that several cavities are seen at the base of the eastern arm. In
addition to the bud and the cocoon, there is a cavity at R.A. = 12h30m54.s6 decl. = +12

�
2301500 ( labeled in Fig. 1c) and several to its south. Coordinates are epoch

J2000.

Fig. 4a Fig. 4b
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fig.5afig.5bFig. 5.—(a) ROSAT HRI and (b) XMM-Newton MOS1 + MOS2 images processed to remove the steep radial surface brightness gradient. Both figures show
asymmetric emission on large scales (beyond the outer radio lobes). The diffuse emission (labeled ‘‘Excess’’ in the ROSAT HRI image) is bright both to the east of
the southern radio lobe and to the north of the northern lobe. Asymmetric gas distributions at radii of �50 kpc may be evidence for older (>108 yr) outbursts, as are
the outer radio lobes. The extended emission from NGC 4478 (labeled in the ROSAT HRI image) and the southern 37 kpc arc ( just outside the outer contour of the
southern radio lobe) are seen in both the ROSAT HRI and XMM-Newton images. Contours at 2 ; 10�4, 2 ; 10�3, 4 ;10�3, 4 ;10�2, and 2 ; 10�1 Jy per 1B5 ; 1B5 pixel
from the 90 cm radio map (Owen et al. 2000) are shown. Coordinates are epoch J2000.

Fig. 5a

Fig. 5b
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Fig. 6.—XMM-Newton temperature map generated according to the method described by Churazov et al. (1996) and summarized in the text. The eastern and
southwestern arms are cooler than the ambient gas (as already discussed in earlier XMM-Newton analyses, e.g., Belsole et al. 2001 and Molendi 2002). The tem-
perature map is adaptively smoothed to reduce the noise, and hence small scale features are necessarily broadened. Contours from the 90 cm image from Owen
et al. are superposed (0.25, 2.5, 25, and 250 ; 10�3 Jy per 1B5 ; 1B5 pixel).

fig.7afig.7bfig.7cFig. 7.—(a) Radial electron density profile shows the 14 kpc (30) ring. (b) Deprojected gas temperature. (c) Model compared to the observed surface brightness
profile. The deprojected gas density and temperature are derived by fitting the outermost bin and then using the fit results, weighted by the projected emissivity of the
outermost ring, as one component of the fit for the next inner ring. Repeating this process inward yields the deprojected temperature and density profile. We use the
deprojected values of gas density and temperature to calculate gas pressures.

Fig. 7a Fig. 7b Fig. 7c
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the formation of the 14 kpc ring is similar to that of Ruszkowski
et al. (2004), in which impulsive energy injection generates
weak shocks as the injected energy forms a cocoon in the galaxy
atmosphere in the Virgo core. We note that the time estimate,
1:1 ;107 yr, for the onset of the activity that gave rise to the
14 kpc ring is robust, and the simple model gives this age to an
accuracy of about 10%.

A second partial ring is seen to the west at a radius of
17 kpc (3A75) extending over�60

�
in the azimuth (see Fig. 4c).

To form this surface brightness enhancement, a disturbance
traveling at the sound speed would have originated approxi-
mately 4 ; 106 yr before the event that created the 14 kpc ring.
The amplitude of the 17 kpc ring is comparable to that of the
14 kpc ring and therefore would require a similar amount of
injected energy. The timescale between the two events lies well
within the range, 105–108 yr, expected for repetitive AGN
outbursts.

In our shock model for the 14 and 17 kpc rings, one or both
may be associated with the inflation of the inner cocoon. This is
consistent with radio source models in which the radio outburst
commences with rapid expansion, driving a shock. As the ex-
pansion slows, the shock separates from the driver, weakens,
and becomes more spherical (the ‘‘sonic boom phase’’ in Reynolds
et al. 2001). The current energy input by the jet is estimated to
be 1044 ergs s�1 by Bicknell & Begelman (1996). Owen et al.
(2000) used the radio observations to derive a minimum value
of the instantaneous energy input by the jet of a few ; 1044 ergs
s�1. The energy input is more than sufficient to power the lobes
and generate a roughly spherical pulse.

The spherical shock model provides an estimate of the to-
tal energy in the outburst. This energy is significantly greater
(a factor of 3 or more) than the enthalpy of the cavities also
created by the AGNoutburst (see x 5.2). This suggests that shocks
may be the most significant channel of AGN energy input into
cooling-flow atmospheres in early-type galaxies, groups, and
galaxy clusters. Fabian et al. (2003) find similar shocks and
‘‘edges’’ around NGC 1275 in the Perseus Cluster. They also ar-
gue that the energy deposited as these features dissipate can
compensate for the energy radiated by the cooling gas in the
inner 50 kpc core. For M87, the mean power of the shock out-
burst averaged over the past 107 yr is 2:4 ; 1043 ergs s�1. Within
70 kpc, the radiative loss from the cooling flow is�1043 ergs s�1

(corresponding to 10 M� yr�1; Stewart et al. 1984). Thus, one
such outburst every 3 ;107 yr is sufficient to quench the cool-
ing flow in the absence of any other heat source. In addition to
the energy input from the outburst we have modeled, energy is
also being supplied by the buoyantly rising features seen in the
radio maps (Churazov et al. 2002).

5.3.2. Southern 37 kpc (80) Arc

South of the nucleus at a radius of 37 kpc (80), a surface
brightness enhancement appears as an arc or partial ring in
observations by Chandra, ROSAT HRI, and XMM-Newton (see
Figs. 4 and 5). This partial ring extends over an azimuth of at
least 45

�
. Statistically, its significance is shown in the radial

profile in Figure 8 made from the Chandra image. As Figure 5
shows, the southern 37 kpc arc lies just outside the large-scale
radio lobes characterized by Owen et al. (2000) as the oldest
(108 yr) structures in M87. In the model by Churazov et al.
(2001), these radio lobes were originally buoyant bubbles that
have risen in the gaseous atmosphere surrounding M87 and
are now thin disks (‘‘pancakes’’) seen in projection. Each 108 yr
old bubble is partially surrounded by gas that has been dis-
placed by the bubble’s rise. This gas could be material piled up

on the edge of the bubble during its expansion or alternatively,
gas that was uplifted by the bubble and is draining off the bub-
ble along its sides. The XMM-Newton spectra show that the
gas associated with this feature has a similar temperature (kT �
2:5 keV) but high abundance (1:2 � 0:3 of solar for an APEC
model) compared to other gas at the same radius (0.4–0.5 of
solar).
Rims of cool gas are a common feature of cavities created by

radio lobes (e.g., Finoguenov & Jones 2001; McNamara et al.
2000; Fabian et al. 2002; Blanton et al. 2001). In M87 we see
rims most clearly in the bright edge of the counterjet cavity, the
southeastern ‘‘bud,’’ and the southern edge of the outer radio
lobes. The presence of bright rims over such a wide range of
scales illustrates the ability of the radio plasma to exclude hot
gas and attests to their surprising stability (Nulsen et al. 2002).
At the western end of the 37 kpc arc, a brightness enhance-

ment is seen in both the XMM-Newton and ROSAT HRI images
(Fig. 5). This feature is extended from northwest to southeast
(3000, 2.3 kpc, in length) and is likely associated with a Virgo
Cluster member, the E2 galaxy NGC 4478 (R.A. = 12h30m17.s4,
decl. = +12

�
1904300), which is coincident with the X-ray feature.

The X-ray luminosity of the galaxy is 7 ;1038 ergs s�1, and its
optical absolute magnitude is MB ¼ �18:8 (for a distance of
16 Mpc). The X-ray and optical luminosities are consistent with
the LX �MB correlation for the emission from hot gas in early-
type galaxies (e.g., Forman et al. 1985). David et al. (1991)
showed that early-type galaxies withMB ¼ �19 would be tran-
sitioning from atmospheres with partial to total subsonic winds,
assuming a supernova rate of 0.15 SN Ia per 1010 L� per century
(van den Bergh et al. 1987). If the supernova rate in NGC 4478
is slightly less than this assumed value or if some fraction of
the supernova energy is not transferred to the hot atmosphere,
then NGC 4478 could maintain a barely stable atmosphere.
Such an atmosphere could be ram pressure stripped in the dense
Virgo core, producing the extended X-ray emission seen in the
ROSAT HRI and XMM-Newton images. Thus, most likely we
are observing the gaseous halo of an elliptical galaxy being

Fig. 8.—Radial profile extracted from the merged Chandra image (0.5–
2.5 keV) showing the excess emission 37 kpc from the nucleus of M87. The
profile was extracted over an azimuth of 30

�
.
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stripped by the atmosphere aroundM87, and the feature is prob-
ably not associated directly with the southern arc.

5.3.3. Large-Scale Surface Brightness Asymmetries

On the largest scales, the XMM-Newton and ROSAT images
(Fig. 5) show surface brightness enhancements and depressions
outside the outer radio lobes and beyond the 37 kpc arc. As a
particular example of the magnitude of these variations, in 30

�

wide sectors at a radius of 50 � 5 kpc (110), the surface bright-
ness in the ROSAT HRI has a maximum 18% above the mean
in the northwest and a minimum 10% below the mean in the
southwest. At somewhat smaller radii, Figure 5 shows higher
surface brightness to the southeast, just beyond the outer radio
lobe.

Some of these asymmetries could arise from an elliptical
gravitational potential, or they could result from subtracting an
azimuthally symmetric model for the surface brightness from an
elliptical distribution. Alternatively, such an asymmetrical dis-
tribution could arise from ‘‘ghost cavities’’ (e.g., Ensslin 1999)
of relativistic plasma, produced by earlier epochs of AGN activ-
ity but no longer emitting at observable radio frequencies. The
outer radio lobes are approximately 108 yr old, and as Owen
et al. (2000) argued, their detection requires ongoing energy in-
jection. Any older cavities, at larger radii, may no longer have a
connection to the nucleus and, hence, would no longer be detect-
able at radio wavelengths.

5.4. A Budding Bubble

In most systems, X-ray cavities or radio plasma bubbles gen-
erally are consistent with having been directly filled by an ac-
tive jet and are aligned with the jet axis or lie on opposite sides
of the active nucleus. Clear examples of such alignments in-
clude a wide variety of systems ranging from galaxies with very
modest gaseous atmospheres, such as Cen A (Kraft et al. 2003)
and M84 (Finoguenov & Jones 2001), to those with rich lu-
minous clusters, including Hydra A (McNamara et al. 2000;
David et al. 2001; Nulsen et al. 2002) and Perseus (Böhringer
et al. 1993; Fabian et al. 2002).

While many of the inner X-ray structures in M87 are clearly
aligned along the direction of the M87 jet axis, the southeastern
bubble (extending from 3000 to 4500 from the M87 nucleus) is an
exception (see Fig. 1). This bubble corresponds precisely to a
radio feature and appears as a ‘‘bud’’ emanating from the south-
east of the bright radio core. Figure 1b shows the X-ray image
with the 6 cm radio contours superposed (Hines et al. 1989).
The surrounding X-ray emission traces the outline of the outer
radio contour and shows that the X-ray cavity is filled with
radio-emitting plasma.

The bud emanates from the inner radio cocoon ( just south
of the cavity corresponding to the counterjet), almost per-
pendicular to the axis defined by the jet. While its origin is
likely associated with an outburst from the active nucleus and
an episode of energy injection into the inner cocoon, the lo-
cation of the bubble may mark a magnetically weak region of
the inner cocoon (the counterjet cavity) with buoyancy forces
driving the bubble perpendicular to the dominant axis of recent
activity.

If we assume that the rise of the budding bubble (radius
r ¼ 1100, 0.85 kpc) is governed by buoyancy and limited by the
drag of M87’s hot gaseous atmosphere, we can estimate the
formation time, �bubble, as the time for the bubble to rise through
its own diameter, since the bubble ‘‘originates’’ at the edge of
the cocoon. If R is the distance from the cluster center to the

current position of the bubble and M(R) is the total gravitating
mass within R, then

�bubble ’ 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CW r

GM Rð Þ

s

’ 4 ; 106 yr; ð1Þ

where we have used R ¼ 3400 (2.6 kpc), the projected distance
from the cluster center, and M (R) ¼ 1:4 ; 1011 M� (Coté et al.
2001). The drag coefficient for a roughly spherical bubble is
CW � 0:5. If the bubble lies out of the plane of the sky, then
both R and M(R) are larger, and hence the actual rise time is
larger than 4 ; 106 yr. Furthermore, with a rise time of 4 ; 106 yr
through a distance of 2r ¼ 2 ;0:85 kpc, the calculated speed
of the bubble, �400 km s�1, exceeds half of the sound speed.
Since buoyant velocities cannot be a large fraction of the sound
speed, the velocity derived from 1 is likely to be an overesti-
mate, and hence the rise time is an underestimate, even if the
budding bubble lies in the plane of the sky.

During its rapid initial expansion, the boundary of the bubble
will generally be stable. As a result, the motion of the bubble
boundary generally needs to be subsonic before a bubble even
starts to form. This adds a further delay to �bubble after the out-
burst but before the bubble is formed. If we do associate the
budding bubble with an energetic nuclear event, then the con-
straints on its formation timescale make it quite reasonable to
associate it with the current outburst (associated with the jet)
that commenced about 107 years ago.

5.5. Buoyant Bubbles and the Structure of the Eastern
and Southwestern Arms

The most striking X-ray features in M87 are the two arms
that extend east and southwest from the inner lobe region. These
also are seen in the 90 cm image (see Fig. 11 for a composite
X-ray–radio view of M87). Previous spectroscopic studies of
the arms have used the XMM-Newton observations (Belsole
et al. 2001; Molendi 2002). They find that the arms are cool and
portions are poorly fit by single-temperature components. Our
Chandra results agree with these previous analyses, as does our
XMM-Newton temperature map (Fig. 6). We find that the arms
require at least two components (with variable abundances,
VMEKAL or VAPEC) with the low- and high-temperature com-
ponents in the ranges 1–1.5 and 2–2.7 keV, respectively. Al-
though the two arms are likely related to the same outburst, we
discuss each separately.

5.5.1. Eastern Arm

The eastern X-ray and radio arm begins at the eastern edge
of the inner radio cocoon, but its appearance is much more
amorphous than that of the southwestern arm (see Figs. 1, 3, and
4). At the base of the filament (Figs. 1 and 2) are at least four
bubbles with sizes comparable to that of the ‘‘bud’’ discussed
above and streamers of gas bounding these buoyantly rising bub-
bles. Typical bubble sizes are �1000 (0.8 kpc) in radius and are
reminiscent of the ‘‘effervescent’’ heating described byBegelman
(2004). Figure 9 shows a projection across one of these effer-
vescent bubbles 1A25 (5.8 kpc) east of the M87 nucleus ( labeled
‘‘Bubble’’ in Fig. 1c).

The temperature structure (Fig. 6) of the eastern arm shows
X-ray features that are consistent with cool material uplifted
by a rising torus, as originally suggested by Churazov et al.
(2001). First, the largest concentration of the coolest gas lies
midway along the eastern arm (10–20 fromM87’s nucleus). Sec-
ond, the cool gas column in the eastern arm narrows at the edge
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of the radio torus closest to the M87 nucleus and then broad-
ens within the torus ( labeled ‘‘Uplifted Gas’’ in Fig. 4b), just as
one might expect for gas uplifted by a buoyant toroidal plasma
bubble (see Fig. 11 and Figs. 3 and 4 in Churazov et al. 2001). In
a detailed XMM-Newton analysis, Molendi (2002) performed
two-temperature fits to the XMM-Newton spectra and found that
the temperature of the cool phase does not change much as the
radius increases. It was also pointed out that the entropy of the
cool phase is lower than the entropy of the hot phase. These
results might hint toward a more complicated picture than de-
scribed by the simple simulations in Churazov et al. (2001), in
which the cool phase is associated with adiabatic expansion
of the hot gas entrained by the rising bubbles. For instance, rel-
atively cool and low entropy gas may already be present close
to the nucleus, while the interplay between cooling, mixing, and
dissipation of kinetic energy, during the bubble’s rise, might
lead to departures from adiabaticity. More detailed models are
clearly needed to test the detailed properties derived from XMM-
Newton and Chandra observations.

A projection along the arm, Figure 10, shows a 25%
brightening at the radial distance of the 14 kpc ring. A similar
brightening occurs at about the same angular distance on the
southwestern arm. While the feature in the southwestern arm is
partially obscured by the change from the ACIS-S3 to S2 chip
in the Chandra image, it is clearly seen in both the ROSAT HRI
and XMM-Newton images (Fig. 5). If this brightening is asso-
ciated with the passage of the same shock that produced the
ring, then this arm (and the southwestern arm as well) must lie
close to the plane of the sky.

If this brightening does arise from the passage of the shock,
it is likely that the so-called radio ear, the vortex-like struc-
ture that forms the end of the bright eastern radio filament (see
Fig. 11), falls between the shocks associated with the 14 and
17 kpc rings. This could explain the flat, ringlike appearance
of this radio feature, since passage of a shock through a bubble
of relativistic plasma embedded in a background of cold ther-
mal material will induce strong vorticity in the plasma, turning
it into a ringlike structure (Ensslin & Bruggen 2002). Combined
with the effect of vorticity creation in buoyantly rising bubbles
described by Churazov et al. (2001), this could account for the
filamentary appearance of this feature.

At the end of the eastern arm (�30 east of the M87 nu-
cleus), theX-ray image (Fig. 4) shows an almost circular enhance-
ment (radius of 10 centered at R.A. = 12h31m05.s397, decl. =

+12
�
25010B01) extending to the north (beyond the northern ‘‘ear’’

of the radio-emitting torus). This circular feature is bounded on
three sides by X-ray enhancements (see Fig. 4) that originate
at the eastern arm, and it is bounded to the northwest by a pair of
radio arcs (best seen in the 90 cm image; see Fig. 11). The X-ray
temperature of this circular region is intermediate in temperature
(1.8–1.9 keV), as seen in Figure 6, and is comparable to that of
the end of the southeastern arm (as it swings to the east). The two
enhancements, labeled E1 and E2 in Fig. 4b, which bound the
circular region, appear similar to the two filaments into which the
southwestern arm divides (see below). We suggest that the outer
portions of the eastern arm are similar to the southwestern arm,
but seen from a different orientation.
There is an unusual ionized gas cloud (R.A. = 12h31m02.s14,

decl. = 12
�
24011B0), found by Gavazzi et al. (2000), at large radii,

3A16, from the center of M87, which lies in the enhancement E1
(see Fig. 4). Gavazzi et al. argue that the line diagnostics from
their spectra are best described by an intermediate-velocity
shock. The shock interpretation for the excitation of this cloud
is consistent with its radial distance between the 14 and 17 kpc
X-ray arcs, which we interpret as shocks.

5.5.2. Southwestern Arm

The southwestern X-ray arm originates (see Figs. 1 and 2) as
a narrow filament of width approximately 1000 (0.8 kpc) at its
narrowest, when it exits from the bright inner core (at a distance
of 5000, 3.9 kpc from the nucleus). The filament extends in an
almost straight line to the southwest for �20 (9.3 kpc). As seen
in Figure 11, over this distance it appears uncorrelated with the
radio filament that extends in approximately the same direction.
At a distance of about 3A4 (15.8 kpc), the X-ray filament bi-
furcates (the two sections are labeled S1 and S2 in Fig. 4c), and
the correspondence between the radio plasma and X-ray gas
becomes more direct. The brightest radio emission lies between
the two X-ray arms as they both rotate clockwise in the plane of
the sky and eventually turn due east.
Young et al. (2002) suggested that the arms are over-

pressurized. Assuming the southwestern arm is a cylinder lying
in the plane of the sky, we find that the pressure in the arm is
roughly twice that of the hotter ambient gas. We found no el-
emental abundance differences that could explain the surface
brightness enhancement in the arms. However, the pressure
difference seems unphysical, since the time for the pressure to
come to equilibrium (the sound crossing time of the arm) is

Fig. 9.—Projection across one of the effervescent bubbles at the base of the
eastern arm from the merged Chandra data. This particular bubble is centered
1A25 (5.8 kpc) east of the M87 nucleus (and is labeled ‘‘Bubble’’ in Fig. 1c).
The width of the projection is the bubble diameter, 2000 (1.6 kpc).

Fig. 10.—Projection along the eastern arm shows the sharp surface bright-
ness enhancement at a radius of �30, comparable to that of the 14 kpc ring. A
similar brightening is seen at approximately the same distance from the M87
nucleus along the southwestern arm (see Fig. 4).
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Fig. 11.—X-ray image (red ) from Fig. 4 combined with the 90 cm radio map (light blue) of Owen et al. (2000) and emphasizing both the similarities and
differences between the X-ray and radio emission. In the eastern arm, the X-ray and radio appear nearly coincident, as one might expect for a cool, dense X-ray
column generated by buoyant bubbles. The end of the radio arm shows the clear toroidal shape expected from a large buoyant bubble. To the southwest, the radio
emission appears to spiral around the narrow X-ray filament until the X-ray filament divides and bends to the east. The scale of the figure is given by the dimensions
of the detector of 80 ; 160.



short compared to the sound travel time along the length of the
narrow arm. Therefore, the axis of the arm would need to make
a sufficiently small angle with our line of sight (roughly 15

�
) to

make its projected path length about 4 times its width, in order
to account for its high emission measure. This seems unlikely,
given that the brightening along the arm is at a comparable
radius to that of the eastern arm and both are at a radius similar
to that of the 14 kpc (30) ring. However, in computing the over-
pressure of the arm, we did not include any contribution to the
external pressure from nonthermal particles or from a magnetic
field, which could contribute to the confinement. Magnetic ten-
sion could also serve to confine the gas in the southwestern
arm, since the radio emission from the southwestern arm appears
to spiral around the X-ray gas (see Fig. 11). Alternatively, the
southwestern arm may not be formed by rising bubbles, as seen
in the eastern arm, but could be a thin sheath of gas exterior to a
large plasma bubble related to the southwestern radio arm. This
is consistent with a roughly 20% increase in surface brightness
from west to east across the arm.

6. CONCLUSIONS

We have presented a discussion of several of the remarkable
structures seen in theChandra, XMM-Newton, and ROSATHRI
observations of M87. Many of these, particularly the bubbles
emanating from the central region, the nearly circular rings of
enhanced emission at 14 and 17 kpc, and the brightening of the
X-ray arms at these radii, can be attributed to AGN outbursts.
The 14 and 17 kpc rings, similar to the ‘‘ripples’’ seen in the
Perseus Cluster (Fabian et al. 2003), can be interpreted as shock

waves driven by the current outburst that began about 107 yr
ago. The outburst also inflated the inner radio lobes (and co-
coon). Outbursts such as those that produced these shocks can
quench the M87 cooling flow, if they occur approximately every
3 ;107 yr. Since the enthalpy associated with the inner cavities,
produced by the outburst, is only 30% of the energy of the out-
burst, shock heating is probably the dominant heating mecha-
nism for the gas in the inner regions of cooling-flow systems.
At larger radii, we see highly enriched gas along the outer

edge of the southern radio lobe (the 37 kpc arc). Asymmetric
gas distributions at radii of �50 kpc may be evidence for older
(>108 yr) outbursts, as are the outer radio lobes.
The hot X-ray–emitting gas contains reflections of previous

episodes of AGN activity in the form of bubbles and their bright
rims, shocks, and buoyantly uplifted gas structures. With the de-
tailed observations at X-ray and radio wavelengths of M87, we
can probe the interaction between the central AGN, the relativ-
istic plasma, and the X-ray gas. We are beginning to understand
the cyclic heating of the X-ray gas and the energy transfer mech-
anisms between the central supermassive black hole and the hot
gaseous atmosphere that surrounds central cluster galaxies.
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