
Reflections on Architectural Connection:
Seven Issues on Aspects and ADLs

 Thaís Batista1 Christina Chavez2 Alessandro Garcia3

 Cláudio Sant’Anna4 Uirá Kulesza4 Awais Rashid3 Fernando Castor Filho5

1Computer Science Department, Federal University of Rio Grande do Norte – UFRN, Brazil
2Computer Science Department, Federal University of Bahia – UFBA, Brazil

3Computing Department, Lancaster University, United Kingdom
4Computer Science Department, Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Brazil

5Institute of Computing, University of Campinas – UNICAMP, Brazil
thais@ufrnet.br, flach@ufba.br, {garciaa, marash}@comp.lancs.ac.uk

{claudios, uira}@inf.puc-rio.br, fernando@ic.unicamp.br

ABSTRACT
Abstractions to express architectural connection play a central
role in architecture design, especially in Architecture Description
Languages (ADLs). With the emergence of aspect-oriented
software development (AOSD), there is a need to understand the
adequacy of ADLs’ conventional connection abstractions to
capture the crosscutting nature of architectural concerns. This
paper reflects on seven issues pertaining to the interplay of
crosscutting concerns and architectural connection abstractions.
We review and assess the design of existing aspect-oriented (AO)
and non-AO ADLs with respect to these issues. A case study is
used to illustrate our viewpoints, claims, and proposals.

Categories and Subject Descriptors
D.2.11 Software Architectures: Languages (e.g., description,
interconnection, definition)

General Terms
Design, Languages

Keywords
Software Architecture, Architecture Description Languages,
Aspect-Oriented Software Development.

1. INTRODUCTION
Software Architecture Description Languages (ADLs) have been
recognized as an important tool for supporting the systematic
reasoning about system components and the connections between
them early in the development process. Architectural connection
comprises the elements involved in component interactions, such

as interfaces, connectors, and architectural configurations. The
goal is to provide software architects with means to express a
plethora of heterogeneous, complex interconnection styles in a
way that is agnostic to underlying composition implementation
mechanisms, such as inheritance, method calls, and so forth.
With the emergence of AOSD [6], there is a need to reflect
whether fundamental architectural connection abstractions
provide the necessary means to modularize crosscutting concerns
[16] ,[3]. A crosscutting concern at the architecture design level
could be any concern that cannot be effectively modularized using
the given abstractions of an ADL, leading to increased
maintenance overhead, reduced reuse capability and generally
resulting in architectural erosion over the lifetime of a system
[19], [3]. Therefore, we need to understand to what extent
software architects are able to modularly specify crosscutting
concerns and their inter-connection with other architectural
elements.
In order to support modularization of crosscutting concerns, some
AO ADLs [13], [15] have been proposed, either as extensions of
existing ADLs or developed from scratch employing AO
abstractions such as, aspects, joinpoints, pointcuts, advice, and
inter-type declarations, commonly adopted in programming
frameworks and languages (e.g., [2]). Though these AO ADLs are
interesting first contributions and viewpoints in the field, there is
little consensus on how AOSD and ADLs should be integrated,
especially with respect to the interplay of aspects and architectural
connection abstractions. There is little reflection, to date, on how
and why extensions are required to traditional notions of
interconnection ADL elements, such as interfaces, connectors, and
architectural configurations.
This paper presents our viewpoint on seven critical issues relating
to the integration of AOSD and ADLs. Our goal here is not to
come up with an entirely new ADL. Instead, we reflect on
whether the presence of crosscutting concerns requires extensions
to conventional architectural abstractions. For each issue, we
sketch a proposed solution whenever existing AO and non-AO
ADLs do not provide an adequate solution. We illustrate our
arguments with a tourist guide system.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EA’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

3

The remainder of this paper is organized as follows. Section 2
overviews a widely-accepted conceptual framework for ADLs,
and existing non-AO and AO ADLs. Section 3 presents our
reflections on the seven chosen issues related to aspects and
architectural connection. Section 4 presents the final remarks.

2. Architecture Description Languages
In this section we present the basic concepts of Architectural
Description Languages (ADLs) stated on the Medvidovic and
Taylor [11] framework and introduce ACME, a well-known ADL
that we will be used in our example. We also present some AO
ADLs in order to discuss how they support AOSD concepts.

2.1 Non-AO ADLs
According to the classification framework proposed by
Medvidovic and Taylor, the building blocks of an architectural
description are components, connectors, and architectural
configurations. Components and connectors may have associated
interfaces, types, semantics and constraints, but only explicit
component interfaces are a required feature for ADLs. A
component’s interface is a set of interaction points between it and
the external world. It specifies the services (messages, operations,
and variables) a component provides and also the services it
requires of other components. Connectors model interactions
among components and specify rules that govern those
interactions. A connector’s interface specifies the interaction
points between the connector and the components and other
connectors attached to it. It enables proper connectivity of
components by exporting as its interface those services it expects
of its attached components. Configurations define architectural
structure and how components and connectors are connected.
ACME [8] is a general purpose ADL whose goal is to support
the interchange of architectural descriptions. It was designed to
consider the essential concepts common to different ADLs as well
as to allow extensions to include other elements. The basic
elements of ACME are components, connectors and attachments.
Components are the computational elements whose interface is
represented by ports. Connectors model interactions among
components and have a set of interfaces named roles. The
configuration of a system is defined by listing a set of attachments
that bind component ports to connector roles. ACME elements
may also be annotated with additional properties.
2.2 AO ADLs
Most AO ADLs are motivated by the integration of existing ADL
concepts (such as, components, interfaces, connectors and
configurations) with new AO abstractions (such as, aspects,
joinpoints, pointcuts and advices) in order to address the
modeling of crosscutting concerns in architecture.
Pinto et al [15] propose DAOP-ADL with components and
aspects as first-order elements. Aspects can affect the
components’ interfaces by means of: (i) an evaluated interface
which defines the messages that aspects are able to intercept; and
(ii) a target events interface responsible for describing the events
that an aspect can capture. The composition between components
and aspects is supported by a set of aspect evaluation rules. They
define when and how the aspect behavior is executed.
In the Prisma approach [13], aspects are new ADL abstractions
used to define the structure or behavior of architectural elements
(component and connectors), according to specific system

viewpoints. Components and connectors include a weaving
specification that defines the execution of an aspect and contains
weaving operators to describe the temporal order of the weaving
process (after, before, around, and others).
Pessemier et al [14] extend the Fractal ADL with Aspect
Components (ACs). ACs are responsible for specifying existing
crosscutting concerns in software architecture [4]. Each AC can
affect components by means of a special interception interface.
Two kinds of bindings between components and ACs are offered:
(i) a direct crosscut binding by declaring the component
references and (ii) a crosscut binding using pointcut expressions
based on component names, interface names and service names.
Navasa et al [12] define a set of requirements which current ADLs
need to address to allow the management of crosscutting concerns
using architectural connection abstractions. The requirements are:
(i) definition of primitives to specify joinpoints in functional
components; (ii) definition of the aspect abstraction as a special
kind of component; and (iii) specification of connectors between
joinpoints and aspects. The authors suggest the use of existing
coordination models to specify the connectors between functional
components and aspects.
The above discussion shows that there is a diversity of viewpoints
on how aspects (and generally concerns) should be modeled in
ADLs. However, so far, the introduction of AO concepts into
ADLs has been experimental in that researchers have been trying
to incorporate mainstream AOP concepts into ADLs. Though this
provides interesting insights into the problem of modeling
crosscutting concerns at the architecture level, first and foremost
we need to understand the various issues pertaining to such
modeling. Any adaptation of existing ADLs or engineering of new
ADLs needs to be based on a clear understanding of new
challenges aspects pose at the architecture level that cannot be
handled with existing ADL abstractions. In the following, we
highlight seven issues as a roadmap for integration of AO
concepts into ADLs.

3. Seven Issues on Aspects and Architectural
Connection
We focus on seven key issues that arise when relating crosscutting
concerns and ADL abstractions. Of course, there are other issues
that need to be studied and analyzed. However, we have chosen to
focus on these seven because (i) they involve elements (e.g.,
module interfaces), that have been discussed in AO
implementation approaches (such as [1],[17]), which are also
architecturally relevant, (ii) they have recurrently been a hotspot
or point of controversy in the existing AO architectural solutions.
We also concentrate on revisiting traditional definitions of
architectural connection abstractions in the presence of
crosscutting concerns. The first issue (Section 3.1) is dedicated to
discussing which interconnection elements in an architectural
description are typically affected by a crosscutting concern. This
discussion provides the foundation for the following six issues
(Sections 3.2 – 3.7), which examine the adequacy of using
conventional notions of connection abstractions in the presence of
crosscutting concerns. The last issue is concerned with the need of
new abstractions for aspects at the architectural level.
All the last six debated topics follow a similar structure: (i) they
revisit the well-known definition of the abstraction being
discussed according to Medvidovic and Taylor’s framework, (ii)

4

they present our position and arguments on whether extensions or
redefinitions of conventional concepts are needed due to the
presence of crosscutting concerns, (iii) they illustrate our
viewpoint using the running example to be presented below, (iv)
they analyze solutions adopted by existing ADLs, and (v) they
present a preliminary proposal whenever existing AO and non-AO
ADLs do not provide an adequate solution according to our
perspective. We have decided to use ACME as our base ADL due
to its generality.
Figure 1 introduces the example of a context sensitive tourist
guide that we will be using throughout our discussions. The
tourist guide is available on a handheld device.

Fig. 1. Tourist Information Guide (TIG)

The visitor uses a Navigator to create a customized tour, to
navigate through a tour and to update information about the
navigation preferences. The Navigator component contacts the
InformationRetrieval component to retrieve information from the
system. The LocationManager component provides the
identification of the current location of a visitor. This
identification is used by InformationRetrieval to provide tourist
information according to his/her current location.

The TouristInfoManager component allows the tourist centre to
update information in the system. Availability is a crosscutting
concern as it affects these four components. In order to support
availability it is necessary to replicate components and to make
the replicas consistent. ReplicationManager implements these
tasks. It implements a synchronization protocol that synchronizes
the primary component with its replica. The makeConsistent port
applies this protocol.
 Figure 2 illustrates the ACME description of the example. Note
that ACME, as a lot of non-AO ADLs, does not provide support
to avoid the duplication of the architectural connections in the
specification. This problem affects the readability and
comprehension of the architectural description. Furthermore, it
also lacks primitives for describing temporal issues such as when
a composition must be applied.

3.1 Issue 1: Which ADL elements can have
crosscutting concerns?
ADL elements support the explicit specification (and possibly
modularization) of some architectural concerns through the use of
different categories of architectural elements such as components,
connectors and architectural configurations. According to
Medvidovic and Taylor framework, components, connectors,
configurations and component interfaces constitute a minimum set
of required features for ADLs (Section 2.1). Therefore, we adopt
them as candidate ADL elements that can be affected by
architectural crosscutting concerns at well-defined points. In order
to discuss our viewpoint, we will resort to the description for the
Tourist Information Guide (TIG) system (Figure 2).

Component Navigator = {
 Port provideNavigation
 Port getInfo }

Component InformationRetrieval = {
 Port provideInfo
 Port getLocation }

Component LocationManager ={
 Port provideLocation }

Component TouristInfoManager = {
 Port provideTouristInfo }

Component ReplicationManager= {
 Port makeConsistent }

Connector Type RemoteInvocation =
 { Roles caller, callee }

Connector Info, Location: RemoteInvocation = new RemoteInvocation;
Connector C1, C2, C3, C4: RemoteInvocation = new RemoteInvocation;
Attachments {
 Info.caller to Navigator.getInfo
 InfoRetrieval.provideInfo to Info.callee
 InfoRetrieval.getLocation to Location.caller
 LocationManager.provideLocation to Location.callee

 ReplicationManager.makeConsistent to C1.callee
 Navigator.provideNavigation to C1.caller
 ReplicationManager.makeConsistent to C2.callee
 InformationRetrieval.provideInfo to C2.caller

 ReplicationManager.makeConsistent to C3.callee
 LocationManager.provideLocation to C3.caller

 ReplicationManager.makeConsistent to C4.callee
 TouristInfoManager.provideTouristInfo to C4.caller }

Fig. 2. ACME Description

The specification of an architectural configuration for the TIG
system, expressed in ACME (Figure 2), includes the definition of
components and their ports connected by different connector
instances, the definition of a connector type and a listing of
attachments that bind component ports to connector roles.
ReplicationManager (RM) is defined as an ACME component
with one port (makeConsistent). These ADL elements provide
good support for the separation of some architectural concerns.
The connector type RemoteInvocation localizes the
communication protocol among the primary components and their
distributed replicas, promoting reuse and enhancing
comprehension. RM, for instance, includes a synchronization
protocol that could be separated and modularized by a new
connector type.
However, there are some situations that suggest that different
ADL elements may be the subject of tangling and scattering of
concerns and therefore crosscutting concerns may potentially exist
and affect them. Suppose that all the information transmitted
between the replica and the replicated using RemoveInvocation
connectors must be compressed. This requirement would demand
the composition of connectors, a feature that is not supported by

TIM_Replica

TouristInfo
Manager

Nav_Replica

IR_Replica

LM_Replica

Information
RetrievalgetLocation

Location
Manager

provideLocation

provideTouristInfo

Navigator

provideNavigation

makeConsistent

provideInfo

getInfo
Info

Location

C1
C2

C3
C4

Connector

Component
Provided Port
Required Port

Key:

Replication
Manager

5

most ADLs. The designer could refine the RemoteInvocation
connector type, keeping its roles but modifying its glue
specification, so that the outgoing information is compressed
before it calls RM and decompressed before being delivered. This
requirement is an example of an architectural concern that may
cut across one or more connector elements. Additionally, a new
requirement may demand that several ADL elements are subject to
new constraints. These constraints may be scattered and tangled
up within components and connectors. Finally, since architectural
configurations can be regarded as composite components, they
may also be affected by crosscutting concerns.
Existing AO ADLs vary on the decision about the kinds of ADL
elements that can be affected by crosscutting concerns. A related
issue that must be considered is the coverage of these ADLs. Lack
of coverage means that only a subset of the required features are
considered by the ADL for explicit architectural description.
DAOP-ADL does not consider connectors and configurations as
building blocks, only components. The Aspect Components
approach supports components and configurations, but not
connectors; crosscutting concerns may affect components. Prisma
covers components, connectors, and systems. Crosscutting
concerns can affect components and connectors. Table 1, at the
end of the paper, summarizes these decisions.

3.2 Issue 2: Composition
In software architecture there is a consensus that a software
connector is the element that mediates interactions between
components. By providing distinct architectural abstractions to
specify computation and interconnection between components,
software architecture descriptions promote the idea of separating
concerns (SoC). The integration of software architecture and
AOSD may take advantage of this SoC approach and use
connectors to model interaction between two parts, regardless of
the nature of the two parts involved: two traditional components
or a traditional component and a component that represent a
crosscutting concern. Connectors can model simple or complex
interaction protocols and they are used in various contexts.
Based on the wide use of connectors for different interconnection
purposes, we propose a connection-based approach in order to
model the composition between “regular” components and
“aspectual” components. In this approach connectors and
configuration explicitly support the compositional model.
In ADLs valid configurations are those that connect provided and
required services or event announcer and event receiver. As a
crosscutting concern is represented by a provided service of an
“aspectual” component (in our example the makeConsistent port
is a provided port) and as it can affect provided services of other
components (in our example the provided ports of the components
are affected by the makeConsistent port), the traditional semantics
of architectural connection cannot be applied in this case. In Fig.
2 these connections were represented because ACME does not
distinguish provided and required ports. But most ADLs make
this distinction and it is impossible to represent such kind of
connection.
Our proposal is to extend the connector interface in order to
specify a base role and a crosscutting role and also to define a
glue clause to specify details about the connection such as the
place where the advice must affect the “regular” component –
after, before, or around. The base role may be connected to the

port of a component and the crosscutting role may be connected
to a port of an “aspectual” component. The distinction between
base and crosscutting roles addresses the constraint typically
imposed by many ADLs about the valid configurations between
provided and required ports. The base-crosscutting roles
dichotomy does not impose such semantic constraint. A
crosscutting role defines the place at which an “aspectual”
component joins a connector to affect a component. This
connector with extension to support composition of “regular”
components and “aspectual” components is called aspectual
connector. As the same crosscutting concern can affect several
elements in a different way, an aspectual connector can have a
crosscutting role and multiple base roles.
The configuration also has an important function in our
compositional model. It defines the connection between
components, connectors and “aspectual” components. Thus, at the
configuration description are defined the join points at which an
“aspectual” component acts. The join points are specified in the
definition of the association between the baseRole of a connector
with a given element of the component interface. This element of
the component interface is the join point where the advice acts. In
fact, the concept of configuration already defines the point where
a component joins a connector. In our approach we are just taking
advantage of this concept to identify the join points affected by a
crosscutting concern.
For instance, Figure 3 illustrates the composition of
ReplicationManager (RM) with other components. The
Synchronizer connector is defined to mediate the interactions
between the “aspectual” component - RM - and the other
components. It defines a base role and a crosscutting role and the
glue that specifies where the “aspectual” component will affect
the join points (around). The attachments section defines that the
base role of Synchronizer is linked to all components with a port
whose name begins with provide. This means that the
synchronization protocol implemented by RM (via its
makeConsistent port) is applied during the invocation of these
ports in order to synchronize the components and their replicas.
Component ReplicationManager =
{Port makeConsistent}
Connector Synchronizer =
{ baseRole sink
 crosscuttingRole source
 glue around}
Attachments {
 ReplicationManager.makeConsistent to Synchronizer.source
 Synchronizer..sink to *.provide* }

Fig. 3. ACME Description of the Composition

Although there is no consensus about how to model the aspectual
composition, there are some works that also advocate the use of
connectors [9] for this purpose. Fractal is a component model
with an XML-based ADL that models binding between
components and aspects in the same way two components are
bound. Navasa et al. also advocate the use of connectors for
composition purposes. However, they propose the definition of
primitives to specify join points in functional components. In
contrast, we argue that the configuration part already supports the
definition of join points. Thus, no new primitive is needed for
this task. DAOP-ADL defines a new XML element - a set of

6

aspect evaluation rules - where the composition is defined. In
contrast, we argue that existing SA abstractions are enough to
model the composition. In PRISMA the composition of aspects is
defined inside components or connectors, in the weaving
specification. We consider that this approach adds complexity to
the architectural description by scattering the weaving information
inside the architectural elements that the aspect affects. This
approach contrasts with our proposal that follows the traditional
way of modeling composition in ADLs: using connectors and
configuration description.

3.3 Issue 3: Quantification
In order to avoid the need to refer to each join point explicitly in
an architectural description, it is necessary to use a quantification
mechanism [7] that provides a single statement to reach several
join points. As the configuration part is the place where static
structural join points are identified, the quantification mechanism
is defined in this part. Some means to support quantification must
be defined including wildcards and logical expressions. The
quantification must be used in the connection of the base role with
the target component. In Figure 3 the connection between the
Synchronizer connector uses wildcards (*) to specify that the sink
role is linked to all components that offer a port whose name
begins with provide.
In Fractal ADL with Aspect Components, pointcut expressions
may use component names, interface names and method names.
Navasa states that the quantification depends on the coordination
model adopted by the ADL. Prisma and DAOP-ADL do not
address quantification.

3.4 Issue 4: Aspect Interfaces
Is the traditional notion of interfaces used in ADLs appropriate to
represent the “contract” between an “aspectual” component and
the affected ones? Hence the question is whether (i) the
connection-based extensions, as discussed in the Sections 3.2 and
3.3, are enough to properly capture the crosscutting connection, or
(ii) interfaces of “aspectual” components also need to expose
extra information relative to their crosscutting nature and, as a
consequence, need to be extended.
This question is of paramount importance because interfaces play
a central role in architectural modular reasoning. A component's
interface is a set of interaction points. An interface thus defines
computational commitments a component can make and
constraints on its usage (Section 2). Modular reasoning [10] about
an architectural component X means being able to make decisions
about X while looking only at its interfaces, and the description of
connectors and architectural configurations that describe the
association of X with other components..
In this context, our position is that the notion of architectural
interfaces should not be changed to express the boundaries of an
“aspectual” component. From our point of view, the contract of an
architectural component with its surrounding environment,
independently from the nature of the concerns it addresses, should
not be impacted by the way it collaborates with the rest of the
architecture. At the architectural level, we already have suitable
connection abstractions for specifying such a collaboration
protocol. The computational commitments expressed by an
interface should not specify "how" and "with whom" the
associated component should be connected to. It is the interaction

of a component with others, in the specific context of a system,
that typically determines the "crosscuttingness" of a given
concern. A certain concern can be crosscutting according to its
involved interconnections for some systems' architectural
specifications, but may be not in others.
In our case study, there is a unique “aspectual” component in
charge of managing the creation and synchronization of the
replicas (i.e. the crosscutting concern). There is no need for
having extra information in the new component's interface for the
sake of expressing its commitments with the external world:
provided services express the creation and synchronization
capabilities, constraints can be used to define a limit on the
number of replicas, events could depict certain relevant state
transitions in the replication process, and so forth.
Concluding, the presence of crosscutting concerns in an
architecture design leads to new aspectual connectors, but
interfaces and components remain the same. And, once the design
of the aspectual connectors is known, the component interfaces
can be identified, and, modular architectural reasoning is
achieved. In our opinion, this perspective meets the underlying
principles of software architecture and is simpler than some more
radical proposals. As discussed in Section 2.2, DAOP-ADL and
Fractal adopt a different notion of interfaces. Also, in our previous
work [5], we have defined a UML-based architectural
specification language for representing architectural aspects. The
language included the concept of crosscutting interfaces [5] as a
means to capture the crosscutting influence of certain
components. However, this new notion of interfaces emerged
from the fact that UML 1.4 provided no abstractions (e.g.
connectors), to support the proper representation of crosscutting
collaborations, as commonly supported by existing ADLs.

3.5 Issue 5: Join Point Exposition
As previously mentioned, architectural crosscutting concerns are
represented by components. We claim that the notion of ADLs’
interface is rich enough and does not need to be changed in order
to expose the crosscutting nature of the component. An “aspectual
component”, which represents a crosscutting concern, affects
other components by means of connectors. In this context, the
issue is whether interfaces of the affected components need to
expose extra information to allow the connection with “aspectual
components” and, as a consequence, the traditional concept of
interfaces in ADLs needs to be extended. In other words, is the
traditional notion of interface appropriate to expose the join
points in the affected components where the “aspectual
components” will be connected?
In order to discuss this issue, we will revisit well-known works
[1], [17] related to the exposition of component/module join
points in the context of aspect-oriented programming (AOP).
Some approaches [1], [17] criticize the obliviousness property
[6] and propose the preparation of the base code for the
application of aspects. Sullivan et al [17] propose the definition of
interfaces between aspects and advised code. These interfaces are
based on design rules, which govern how base code has to be
written to reveal specified join points and how aspects can use
these interfaces. Aldrich [1] proposes Open Modules, as modules
whose interfaces, besides exporting data structures and functions,
also export join points denoting internal semantic events.
Following this idea, we claim that, at the architectural level, the
architect should prepare the component to be affected by

7

“aspectual components” by exposing in the components’ interface
the information necessary for composing an “affected component”
with other components representing an architectural crosscutting
concern. Hence, the ADLs should support the exposition of join
points in the component interfaces.
According Medvidovic and Taylor’s framework, a component’s
interface specifies the services a component provides. ADLs may
also provide facilities for specifying component needs as required
interfaces. Navasa et al claim that, to expose join points in
components, ADLs should provide new primitives. However, we
advocate that the concept of interfaces, as defined by Medvidovic
and Taylor and supported by existing ADLs, already provides an
expressive way to externalize join points, because it supports the
exposition of a component’s internal events. Thus, the concept of
interface does not need to be extended.
Suppose that in our case study, the “aspectual component”
ReplicationManager (RM) needs to synchronize the replica of the
LocationManager (LM) component in order to maintain the
consistency of the information about the localization of the
tourists. In this way, the architect should create a port in LM that
exposes the event of changing the location of the tourists. RM will
be connected to this port to observe the occurrence of this event.
Whenever the location of a tourist is changed in LM, RM listens
the event and synchronizes the replicas.
To the best of our knowledge, existing ADLs do not propose
extensions of the interface concept in order to expose component
join points. DAOP-ADL exposes a component’s join points by
means of its required interfaces. This kind of interface specifies
the output messages and events that a component is able to
produce. In Fractal ADL aspects advise method calls and method
execution in the interfaces. Therefore, the interfaces used in these
two ADLs are complaint with Medvidovic and Taylor’s concept
of interface. In Prisma, aspects are used to define completely the
structure or behavior of architectural elements. The Prisma
approach differs from ours because their aspects have direct
access to all properties of a component or connector in order to
allow the behavior definition of that element.

3.6 Issue 6: Interface Enhancements
Some AO implementation approaches, such as AspectJ [2], also
assign to the aspect the ability of changing the type and interface
of the modules through the so-called inter-type declarations.
From an architectural perspective, this would mean that
“aspectual” components may enhance the component interfaces
with new elements, such as services and attributes. Our viewpoint
is that such a feature is not necessary to capture crosscutting
concerns at architectural specifications. If a service or attribute
relative to a concern is tangled with other services and attributes
in a given component interface, we can easily rely on our notion
of aspectual connector to express it in a more modular way.
From the approaches investigated, only Prisma proposes a model
which seems to be related to the use of aspect introduction at the
architecture level. It allows the refinement of the component and
connector properties through the use of an aspect abstraction.

3.7 Issue 7: How to Represent Aspects?
Most AO ADLs and architecture modeling approaches propose
the introduction of a new abstraction to represent aspects at the

architecture level. The key question is whether the introduction of
a new abstraction is essential given the fact that aspects are after
all not that different from other components in the system. The
key distinction between aspects and regular components is in the
way aspects compose with the rest of the system – the scope of the
composition is broad and affects multiple architectural elements.
Do we really need to introduce yet another abstraction at the
architecture level resulting in the need to train architects in the
syntax and semantics of such an abstraction?
Aspect compositions can be modeled by means of connectors,
crosscutting roles and base roles, without introducing new
abstractions. In fact, our proposal is not out of sync with current
trends in AOSD. Approaches such as JBoss and AspectWerkz
represent aspects as classes with advice as methods in those
classes. A composition specification (often in XML) captures how
the “aspect classes” compose with other classes in the system. No
new abstractions are introduced as is, for instance, the case for
AspectJ. We can also observe a similar notion in DAOP-ADL.
Though DAOP-ADL has an explicit abstraction as an aspect, at a
conceptual level it is not different from the regular component
abstraction apart from how aspects are composed. In fact,
components and aspects extend the same abstract class in the
DAOP-ADL model, hence indicating that components and aspects
are substitutable wherever a component of their super-type is
required. GluonJ [17] uses a unified abstraction to represent both
classes and aspects. One might argue that an aspect abstraction is
needed for typing purposes. We are of the opinion that such
typing constraints are best captured in connectors and roles.
Treating aspects the same as other components in the architecture
also provides a uniform approach which is much closer to the
notion of a multi-dimensional separation of concerns [19]. Such a
multi-dimensional separation allows architects to undertake
analysis of architectural trade-offs from multiple perspectives
hence facilitating more informed architectural decisions to guide
the design.

4. FINAL REMARKS
In this paper we discussed seven key issues about the integration
of AOSD and ADLs. Our proposal advocates that no new
architectural abstractions are needed to represent aspects. Regular
components are used for this purpose. In addition, we have argued
that no changes are required in components interfaces. Our
proposal defines a composition model that takes advantage of
existing architectural connection abstractions – connectors and
configuration – and extends them to support the definition of
some composition facilities such as a quantification mechanism.
In this way, it avoids introducing complexity in the architectural
description and comparing with the existing solutions (Table 1),
we identified a reduced set of required extensions to deal with
architectural crosscutting concerns. As a result the architects can
model crosscutting concerns using the same abstractions, with
minor adaptations, used in the conventional ADL description. As
such our proposal is based on enriching the composition
semantics supported by architectural connectors instead of
introducing new abstractions that elevate programming language
concepts to the architecture level. Our proposal, therefore,
supports effective modeling of crosscutting concerns without
introducing additional complexity into the architecture
specification.

8

ISSUE >>

ADL

Issue 1

Crosscutting
Concerns

Issue 2

Composition

Issue 3

Quantification

Issue 4

Aspect
Interface

Issue 5

Join Point
Exposition

Issue 6

Interface
Enhancements

Issue 7

Aspects in
ADLs

Our
proposal

Can be found in
components,
connectors and
configurations

Modeled by
connectors with
base and
crosscutting roles
and by
configurations

Supported by
wildcards and logical
operators defined at
the configuration
section

No extension
required

Components and
connectors can
expose their
internal events

Not supported Aspects are
modeled by
means of
connectors and
aspectual and
base roles.

Prisma Can be found in
components,
connectors and
configurations

Components,
connectors and
configurations are
defined in terms of
aspects.

Not addressed Not addressed Aspects have
direct access to all
properties of a
component or
connector.

Aspects allow
the refinement of
component and
connector props.

Aspects define
the semantic of
components and
connectors.

Fractal Can be found only in
components

Supports direct
crosscut binding
and crosscut
binding using
pointcuts.

Pointcut expression
can be expressed in
terms of component ,
interface and method
names.

Interception
interface allows
binding between
aspects and
components.

Outgoing and
incoming
component calls
can be exposed

Not supported Aspect
Components
specify the
crosscutting
concerns.

DAOP-
ADL

Can be found only
in components

Supported by a set
of aspect
evaluation rules

Not supported Evaluation
interfaces Target
events interfaces.

No extension
required, interface
components can
expose join points

Not supported A separated
specification with
a evaluation
interface

Navasa
Proposal

Can be found only in
components.

Uses connectors
between join points
and aspects.

Depends on the
coordination model
adopted.

Only fix that
aspects must have
semantics
different from
components.

Creates new
primitives to
specify component
join points.

Not supported. Aspect is a new
component with
a different
semantic.

Table 1. ADL Support for Aspect-Oriented Architectural Elements

5. REFERENCES
[1] Aldrich, J. Open modules: Modular reasoning about advice.

In Proc. of the European Conf. on Object-Oriented
Programming (ECOOP’05), 144-168, July 2005.

[2] AspectJ Team. The AspectJ Programming Guide.
http://eclipse.org/aspectj/.

[3] Baniassad, E. et al. Discovering Early Aspects, IEEE
Software, 2006.

[4] Bass, L., Clements, P., Kazman, R., Software Architecture in
Practice: Addison-Wesley, 1998.

[5] Chavez, C. et al. Taming Heterogeneous Aspects with
Crosscutting Interfaces. Journal of the Brazilian Computer
Society, SBC, Jan 2006.

[6] Filman, R., Elrad, T.., Clarke, S., Aksit, M. Aspect-Oriented
Software Development. Addison-Wesley, 2005.

[7] Filman, R. and Friedman, D. Aspect-oriented programming
is quantification and obliviousness. In OOPSLA Workshop
on Advanced Separation of Concerns, Minneapolis, 2000.

[8] Garlan, D. et al. ACME: An Architecture Description
Interchange Language,º Proc. CASCON'97, Nov. 1997.

[9] Kandé, M. Strohmeier, A. Modeling Crosscutting Concerns
using Software Connectors. ASoC3. Florida, 2001

[10] Kiczales, G., Mezini, M. Aspect-Oriented Programming and
Modular Reasoning. In Proceedings of ICSE'05, 2005.

[11] Medvidovic, N., Taylor, R. A Classification and Comparison
Framework for Software Architecture Description
Languages. IEEE Trans. Soft. Eng., 26(1):70-93, Jan 2000.

[12] Navasa, A. et al. Aspect Oriented Software Architecture: a
Structural Perspective. Workshop on Early Aspects,
AOSD’2002, April 2002.

[13] Pérez, J., Ramos, I., Jaén, J., Letelier, P., Navarro, E.
PRISMA: Towards Quality, Aspect-Oriented and Dynamic
Software Architectures. In Proc. of 3rd IEEE Intl Conf. on
Quality Software - QSIC 2003, Dallas, November (2003).

[14] Pessemier, N., Seinturier, L., Duchien, L. Components, ADL
and AOP: Towards a Common Approach. In Workshop
ECOOP Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE04), June 2004.

[15] Pinto, M., Fuentes, L., Troya, J., A Dynamic Component and
Aspect Platform, The Computer Journal, 401-420, 2005.

[16] Quintero, C., et al. Architectural Aspects of Architectural
Aspects. Proc. of European Workshop on Software
Architecture (EWSA)- Pisa, Italy, June 2005, LNCS 3527.

[17] Rajan, H. and Sullivan, K., Classpects: Unifying Aspect- and
Object-Oriented Language Design, In Proc. of ICSE 2005,
2005, USA

[18] Sullivan, K.., Griswold, W., Song, Y. Cai, Y., Shonle, M.
Tewari, N., Rajan, H. Information hiding interfaces for
aspect-oriented design. In Proceedings of ESEC/FSE 2005,
September 2005.

[19] Tarr, P. et al. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. Proc. ICSE’99, May 1999, 107-119.

9

