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Abstract
The purpose of the present article is to take stock of a recent exchange in Organizational Research
Methods between critics and proponents of partial least squares path modeling (PLS-PM). The two
target articles were centered around six principal issues, namely whether PLS-PM: (a) can be truly
characterized as a technique for structural equation modeling (SEM), (b) is able to correct for
measurement error, (c) can be used to validate measurement models, (d) accommodates small
sample sizes, (e) is able to provide null hypothesis tests for path coefficients, and (f) can be
employed in an exploratory, model-building fashion. We summarize and elaborate further on the
key arguments underlying the exchange, drawing from the broader methodological and statistical
literature to offer additional thoughts concerning the utility of PLS-PM and ways in which the tech-
nique might be improved. We conclude with recommendations as to whether and how PLS-PM
serves as a viable contender to SEM approaches for estimating and evaluating theoretical models.
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Partial least squares path modeling (PLS-PM) has begun to achieve widespread usage among

applied researchers. Starting with the initial work by H. Wold (1966, 1973, 1975), the application

of PLS-PM has been stimulated by comprehensive expositions and computer implementations by

Lohmöller (1984, 1988, 1989), Chin (1998, 2003), and others (for detailed historical reviews of the

development of PLS-PM, see Mateos-Aparicio, 2011; Trujillo, 2009). PLS-PM has also received

thorough treatment in a number of textbooks (Abdi, Chin, Esposito Vinzi, Russolillo, & Trinchera,

2013; Esposito Vinzi, Chin, Henseler, & Wang, 2010; Hair, Hult, Ringle, & Sarstedt, 2014), and

both proprietary and open-source software packages for conducting PLS-PM are now widely
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available (Addinsoft, 2013; Chin, 2003; Kock, 2013; Monecke, 2013; Ringle, Wende, & Will, 2005;

Rönkkö, 2013; Sanchez & Trinchera, 2013). PLS-PM is gaining a particularly strong foothold in

fields such as marketing and information systems research, as evidenced by three special journal

issues during the past 3 years: one in the Journal of Marketing Theory and Practice (Hair, Ringle,

& Sarstedt, 2011) and two in Long Range Planning (Hair, Ringle, & Sarstedt, 2012, 2013a). PLS-

PM has also spread to the organizational sciences (Antonakis, Bastardoz, Liu, & Schriesheim, 2014;

Hulland, 1999; Rönkkö & Evermann, 2013), and its momentum appears to be on the rise.

PLS-PM has garnered a wide following largely due to beliefs by its users that it has important

advantages over other analytical techniques, such as regression analysis, structural equation model-

ing (SEM), and simultaneous equation estimators (e.g., two-stage and three-stage least squares).

However, methodological discussions of PLS-PM have raised questions about its statistical under-

pinnings and its viability as an estimation procedure. For instance, a number of reviewers have found

that PLS-PM practitioners do not fully acknowledge its various pitfalls and have offered detailed

methodological guidelines intended to remedy or avoid these pitfalls (e.g., Hair, Ringle, & Sarstedt,

2013b; Hair, Sarstedt, Pieper, & Ringle, 2012; Hair, Sarstedt, Ringle, & Mena, 2012; Henseler,

Ringle, & Sinkovics, 2009; Marcoulides & Chin, 2013; Marcoulides & Saunders, 2006; Peng & Lai,

2012; Ringle, Sarstedt, & Straub, 2012). Other critics go further, maintaining that regardless of how

rigorously PLS-PM is applied, it suffers from intractable statistical flaws that warrant a drastic

reduction of its use (Goodhue, Thompson, & Lewis, 2013), or even its complete abandonment

(e.g., Antonakis, Bendahan, Jacquart, & Lalive, 2010; Rönkkö, 2014; Rönkkö & Evermann,

2013; Rönkkö & Ylitalo, 2010). A common theme of these critiques is that the availability of proven,

powerful, and versatile modeling techniques, such as SEM, can preclude the use of PLS-PM alto-

gether. In response to these mounting concerns, some proponents of PLS-PM have devised innova-

tive statistical approaches to improve its performance in both model estimation and testing (e.g.,

Dijkstra, 2010, in press; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press).

Whereas the preliminary theoretical and empirical evidence for these new strategies appears promis-

ing, these methods are still in their infancy and have yet to be fully evaluated through a comprehen-

sive program of simulation research.

A recent manifestation of the tensions between the critics and proponents of PLS-PM has

appeared in two articles published in Organizational Research Methods. From the critical per-

spective, Rönkkö and Evermann (2013) used a series of conceptual arguments and empirical

demonstrations in an attempt to show that several commonly held beliefs about particular prop-

erties and capabilities of PLS-PM—namely, that it is in fact an SEM technique, is able to cor-

rect for measurement error, can validate measurement models, works well in small samples, is

able to provide null hypothesis tests on path coefficients, and can be used in an exploratory,

model-building fashion—are ‘‘methodological myths and urban legends’’ (p. 426). In response,

Henseler et al. (2014) provided a point-by-point rebuttal to each of Rönkkö and Evermann’s

critiques, maintaining that most of their arguments are based on narrowly conceived simula-

tions and fundamental misconceptions about the purposes and capabilities of PLS-PM. Whereas

the exchange presented by these articles raises issues that are timely and important, the poten-

tial usefulness of this debate for guiding future work on PLS-PM is hampered by the fact that

the issues raised were left largely unresolved. Moreover, the exchange did not capture some

additional issues that are relevant to the potential utility of PLS-PM, which draw from the

broader literature on multivariate data analysis.

The purpose of the present article is to (a) summarize and reflect on the key issues that underlie

the exchange between Rönkkö and Evermann and Henseler et al., (b) attempt to resolve these issues

in an even-handed manner, and (c) draw from other areas of statistical theory and practice (e.g., psy-

chometrics, econometrics, SEM, causal graphs) to offer additional thoughts concerning the utility of

PLS-PM and ways in which the PLS-PM estimator might be improved. We hope to provide food for
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thought that will interest both critics and proponents of PLS-PM, with the intent of challenging

both sides to seek common ground concerning the overriding goal of applied statistical modeling,

which is to provide unbiased and efficient estimates of model parameters that allow meaningful

tests of theories that embody important substantive phenomena. We conclude with recommenda-

tions as to whether and how PLS-PM serves as a viable contender to SEM approaches in model

estimation and evaluation. Table 1 summarizes the positions on PLS-PM across all three articles,

with respect to each of the six core issues and an overall judgment on whether PLS-PM should be

abandoned as a statistical tool for applied research.

Can PLS-PM Be Characterized as an SEM Method?

Rönkkö and Evermann began their critique by questioning the treatment of PLS-PM as a method of

SEM, based on two arguments. First, PLS-PM estimates path models not with latent variables, but

with weighted linear composites of observed variables. Second, rather than using path analysis with

simultaneous equations, PLS uses separate ordinary least squares (OLS) regressions that estimate

relationships between the composites. For these reasons, Rönkkö and Evermann asserted that

PLS-PM is more akin to OLS regressions on summed scales or factor scores than to covariance

structure analysis. The authors subsequently moderated their position, however, saying that

‘‘although PLS can technically be argued to be an SEM estimator, so can OLS regression with

summed scales or factor scores: Both fit the definition of the term estimator (emphasis in original)

(Lehmann & Casella, 1998, p. 4) because they provide some estimates of model parameters’’

(p. 433). Nonetheless, Rönkkö and Evermann continued by criticizing the quality of PLS-PM esti-

mates, noting that they are biased and inconsistent, and further added that ‘‘the lack of an overiden-

tification test is another disadvantage of PLS over SEM’’ (p. 433).

Henseler et al. countered by citing previous researchers, including Wold, who have characterized

PLS-PM as a method of SEM. Henseler et al. also argued that PLS-PM falls well within various

descriptions of SEM, which generally refer to statistical techniques that examine relationships

between independent and dependent variables within a presumed causal structure (e.g., Byrne,

1998; Ullman & Bentler, 2003). In addition, they maintained that the core underlying statistical

framework for PLS-PM is the ‘‘composite factor model,’’ a more general case of the common factor

model that is the foundation of SEM. Moreover, Henseler et al. criticized SEM for its reliance on the

common factor model, arguing that this model ‘‘rarely holds in applied research’’ (emphasis in orig-

inal) and that other models should be considered, particularly the composite factor model ascribed to

PLS-PM. Henseler et al. noted that, because this model places no restrictions on the covariances

among the items assigned to a factor, it will generally yield better fit than the common factor model.

Furthermore, they pointed out that PLS-PM estimates are biased and inconsistent only if they are

viewed as estimates of common rather than composite factor model parameters. Given that the two

models are conceptually and statistically distinct, the estimates need to be interpreted differently.

Finally, Henseler et al. noted that a global overidentification test can be used in PLS-PM to verify

the causal specification of the model, just as in the SEM context.

In our view, arguing whether PLS-PM should be called a SEM method obscures the primary

substance of the debate. The more important issues concern the type of modeling approach repre-

sented by PLS-PM and its adequacy for estimating and testing hypothesized causal structures,

regardless of whether this approach is characterized as SEM. Therefore, we focus on the metho-

dological specifics of the approach and set aside the controversy regarding the labeling of PLS-PM

as a SEM method.

First, we note that Henseler et al.’s formal statistical distinction between the composite and com-

mon factor models stands in stark contrast to the traditional PLS-PM canon. PLS-PM was originally

developed as a less computationally demanding alternative to maximum likelihood-based SEM for
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estimating the associations among latent variables (e.g., Jöreskog & Wold, 1982; H. Wold, 1982,

1985), not as a method for estimating structural relations among composite variables. Because the

composites in PLS-PM contain measurement error, the technique has historically been treated as

simply a convenient and rough approximation of the common factor model, only capable of pro-

ducing consistent estimates of factor loadings and intercorrelations as both the sample size (N) and

number of observed indicators (p) increase without bound (i.e., consistency at large; Haenlein &

Kaplan, 2004). However, it seems that Henseler et al. are aligned with Rigdon’s (2012) recent rec-

ommendations to free PLS-PM from its original grounding in common factor-based SEM and

develop it further as a purely composite-based modeling approach, thereby precluding any undue

comparisons with true latent variable models.

Although we see some merit in this perspective, Henseler et al.’s presentation of the ‘‘composite

factor model’’ is problematic in several respects. In particular, the path diagram that Henseler et al.

use to illustrate their composite factor model is actually a common factor model containing within-

factor correlated measurement errors. As presented, the model is not identified, meaning that no

unique solution exists for the parameters (Davis, 1993). Although this identification problem

could be resolved by imposing additional parameter constraints (e.g., setting the measurement

error correlations to be equal) or using informative Bayesian prior distributions (S.-Y. Lee &

Song, 2012; McIntosh, 2013; B. Muthén & Asparouhov, 2012), a more serious issue is that the

model’s causal structure and parameterization are fundamentally inconsistent with the model that

PLS-PM (and other component-based approaches) actually estimates. To illustrate, we contrast

Henseler et al.’s representation of the composite factor model with a more accurate depiction

of a composite-based measurement model in Figure 1, where (a) the measurement-level pathways

lead from the indicators to the composites, consistent with the manner in which composite vari-

ables are formed in PLS-PM models; (b) the indicators are specified as having no measurement

error; (c) the composites also have no error, meaning that they are exact weighted linear combina-

tions of their indicators; (d) all within-block correlations among the composite indicators are left

free, representing unmodeled common causes; and (e) all between-block indicator correlations

are assumed to be channeled solely through the correlation between the composites, which is

estimated in the final stage of PLS-PM (Bollen, 2011; Bollen & Bauldry, 2011; Esposito Vinzi,

Trinchera, & Amato, 2010; Grace & Bollen, 2008; Kline, 2013b). This composite measurement

model can be estimated using PLS-PM, other component-based modeling techniques (e.g.,

Hwang, 2008, 2009; Hwang & Takane, 2004; A. Tenenhaus, 2013; A. Tenenhaus & Tenenhaus,

2011), or even SEM provided that modified parameterizations are used (Bollen, 2011; Bollen &

Bauldry, 2011; Bollen & Davis, 2009; Dolan, 1996; Dolan, Bechger, & Molenaar, 1999; McDonald,

1996; Treiblmaier, Bentler, & Mair, 2011). Note that when using a single-step, covariance-based

Figure 1. Composite factor model.
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maximum likelihood approach to estimate the model in Figure 1, it is necessary to free the between-

block indicator correlations to permit the composites to intercorrelate (MacCallum & Browne, 1993).

Given these marked differences between the two models, Henseler et al.’s characterization of

the composite factor model as a more general case of the common factor model is not tenable. For

this nesting relation to hold, the more restricted model must be derivable from the less restricted

model by imposing constraints on parameters (e.g., fixing parameters to some constant, such as

zero, or setting parameters equal to one another; Steiger, Shapiro, & Browne, 1985). In other

words, the constraints in the less restricted model must be a strict subset of those in the more

restricted model. However, one cannot generate a common factor model simply by fixing para-

meters in the composite factor model displayed in our Figure 1, as the direction of causality in the

measurement model is reversed (i.e., indicator ! construct, rather than construct ! indicator),

and measurement error variances and covariances do not exist in the composite case. Thus,

Henseler et al.’s exposition would have been better served by focusing on PLS-PM as a technique

for estimating strictly component-based path models (M. Tenenhaus, 2008), rather than trying to

recast PLS-PM in terms of the common factor model.

Despite Henseler et al.’s critique of the common factor model, a broader survey of the literature

reveals that PLS-PM proponents have not fully declared independence from the factor-analytic

tradition. For instance, a method called consistent PLS (PLSc) has been devised that allows

PLS-PM to recover common factor model parameters in finite samples (Dijkstra, 2010, in press;

Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press). Briefly, PLSc compen-

sates for the absence of a true measurement model by using a rescaling method to disattenuate fac-

tor loadings and intercorrelations for measurement error. Dijkstra (in press) argues that PLSc

allows PLS-PM to accommodate both composite and common factor models, noting that an exclu-

sive focus on composite-based modeling would substantially limit the usefulness of the technique.

Although PLSc is an impressive development, it is questionable whether PLSc adds any value over

common factor-based SEM’s more versatile and powerful estimation and testing procedures, an

issue we later address in greater detail.

Turning now to model testing, we agree with Henseler et al. that the recent development of a

global chi-square fit statistic for PLS-PM represents an important theoretical and empirical

advance (Dijkstra, 2010, in press; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-

Engel, in press). Prior to this development, the evaluation of PLS-PM models consisted of exam-

ining measures of explained variance, which shed little light on the tenability of a causal model

(Henseler & Sarstedt, 2013). To be sure, explained variance is an important element of model

quality, as it quantifies the strength of hypothesized relationships and the potential impact of inter-

ventions. However, because the accuracy of parameter estimates hinges on achieving acceptable

fit, measures of variance explained are subordinate to tests of fit (Antonakis et al., 2010; Hayduk,

Pazderka-Robinson, Cummings, Levers, & Beres, 2005; McIntosh, 2007). Thus, model fit should

be established prior to evaluating model parameters, including measures of explained variance.

Several additional issues relevant to testing PLS-PM models merit attention. First, a global chi-

square statistic merely provides an omnibus test of all constrained parameters (e.g., hypothesized

null pathways) in the target model (Jöreskog, 1969). Therefore, a significant chi-square statistic

does not identify which particular aspects of the model are at odds with the observed data. For this

reason, omnibus tests of model fit should be supplemented with local tests of fit on individual con-

straints to identify the specific sources of model misspecification (Bera & Bilias, 2001; Saris,

Satorra, & van der Veld, 2009), as well as an assessment of which estimated pathways are most

affected by the misspecifications (Kolenikov, 2011; Yuan, Kouros, & Kelley, 2008; Yuan, Marshall,

& Bentler, 2003). Such procedures are currently available when using maximum likelihood-based

techniques. However, PLS-PM lags far behind in this area of model evaluation, thus limiting the

extent to which the researcher can verify fit and ensure the interpretability of parameter estimates.
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Indeed, there are many ways in which a PLS-PM model could show lack of fit. For instance, typi-

cally not all of the composites in a given model will be linked by direct causal pathways, such that

some of the inner relations will be indirect. Furthermore, because all of the between-block infor-

mation is assumed to be conveyed by the composites, observed variables from one block are

assumed to have no direct connections with those from other blocks.

One approach that can be used to conduct local tests of PLS-PM models involves the vanishing

partial correlations implied by the model (Elwert, 2013; Hayduk et al., 2003; Pearl, 2009; Shipley,

2000, 2003). To illustrate, consider the basic mediational model, A! B! C, which implies that

A and C are conditionally independent given B; more formally, A ⊥ C | B. For this model, a test of

the partial correlation rAC.B indicates whether full mediation (i.e., a zero direct effect of A on C)

holds, a procedure known in econometrics as a Hausman test (Hausman, 1978, 1983; see also

Abrevaya, Hausman, & Khan, 2010; Antonakis et al., 2010; Antonakis, Bendahan, Jacquart, &

Lalive, 2014). This method is feasible for PLS-PM models, because it merely requires the correla-

tion matrix of the composites and observed variables from an unrestricted measurement model and

the relevant partial correlations implied by the model, with inferences performed using bootstrap-

ping techniques. Because identifying all implied conditional independencies can be tedious and

prone to error, software for causal graphs should be used for this purpose (Kyono, 2010; Marchetti,

Drton, & Sadeghi, 2013; Textor, 2013).

In addition to fixed zero parameters in PLS-PM models, equality constraints on certain free

parameters may be required to evaluate hypothesized differences in the magnitudes of effects. For

example, a researcher using PLS-PM could have a theory predicting that the structural pathways

from two explanatory composite variables to a composite outcome variable are of different

strengths. In addition, one might want to determine whether the measurement-level relationships

between individual indicators and composite variables are invariant across certain types of popula-

tion subgroupings (e.g., gender, ethnicity). If chi-square difference tests show that model fit signif-

icantly deteriorates following the imposition of an equality constraint, then there is evidence that the

parameters in question are reliably different from each other (Steiger et al., 1985; Yuan & Bentler,

2004). Unfortunately, PLS-PM software does not currently allow for the imposition of equality con-

straints (M. Tenenhaus, 2008; M. Tenenhaus, Mauger, & Guinot, 2010). However, an alternative

option is to use SEM software to mimic the PLS-PM parameterization (e.g., McDonald, 1996),

thereby permitting the use of equality constraints within a composite-based path model and conven-

tional chi-square difference tests for evaluating the tenability of the constraints.

Second, Henseler et al.’s response to the Rönkkö and Evermann critique did not explicitly address

the concerns regarding endogeneity, which refers to a violation of the key causal modeling assump-

tion that the independent variables in an equation are uncorrelated with the error term, that is, rx,e¼ 0

for all x (Antonakis, Bendahan, et al., 2014; Antonakis et al., 2010; Bollen, 2012; McIntosh, 2014;

Semadeni, Withers, & Certo, 2013). Unfortunately, endogeneity tends to be the rule rather than the

exception in applications of multiple regression and related methods when using observational

rather than experimental data. This problem can stem from various factors, such as omitted vari-

ables, unmodeled measurement error, selection bias, common method effects, and nonrecursive

pathways among constructs (e.g., feedback loops). Given that endogeneity causes parameter esti-

mates to be inconsistent, corrective procedures are needed. In econometrics and other areas of

applied research, the technique of choice for dealing with endogeneity is instrumental variable

estimation (IVE; Angrist & Krueger, 2001; Greenland, 2000). To counteract problems created

by endogeneity, instrumental variables must be (a) strongly correlated with the independent vari-

ables and (b) independent of the error terms. IVE is typically implemented using two-stage least

squares (2SLS), with the first stage involving the regression of an independent variable x on an

instrument z, followed by computing the predicted values from this equation, as follows:
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x ¼ g0 þ g1zþ m ð1Þ

x̂ ¼ ĝ0 þ ĝ1z ð2Þ

In the second stage, the predicted values are substituted for the original independent variable in

the focal explanatory equation:

y ¼ b0 þ b1x̂þ e ð3Þ

Because z is exogenous, rx̂,e ¼ 0, and b1 can be estimated consistently. Additional tests are

then conducted to verify that the 2SLS estimates differ from those obtained under the conven-

tional OLS approach (Abrevaya et al., 2010), and that the instruments are uncorrelated with the

error term (Baum, Schaffer, & Stillman, 2003, 2007; Semykina, 2012). For the latter type of

test to be viable, the model must be overidentified, that is, the number of instruments must

be greater than the number of endogenous predictors. Furthermore, 2SLS is not the only

approach for implementing IVE, as one can also use simultaneous equation methods such as

ML (Antonakis, et al., 2010; Baum et al., 2003, 2007) and three-stage least squares (3SLS)

regression (Belsley, 1992; Johnson, Ayinde, & Oyejola, 2010; Kontoghiorghes & Dinenis,

1997).

To our knowledge, however, only two studies have explicitly addressed endogeneity in com-

posite predictors of PLS-PM models (Lovaglio & Vittadini, 2013; Vittadini, Minotti, Fattore, &

Lovaglio, 2007). In these studies, Vittadini and his colleagues pointed out that correlations

between predictors and outcomes in the explanatory equations of the PLS-PM inner model can

be influenced by unmodeled components in the predictor blocks, that is, systematic variation that

is orthogonal to the composites of primary theoretical interest. By extracting these extra compo-

nents from the predictor blocks and explicitly including them in the model, endogeneity bias can

be removed (Lovaglio & Vittadini, 2013; Vittadini et al., 2007). However, this approach relies on

information that is already available in the predictor blocks and therefore cannot adjust for

endogeneity stemming from omitted variables or selection bias. The PLSc approach is similarly

limited, as it merely applies a rescaling correction for measurement error to obtain consistent esti-

mates of common factor model parameters (Dijkstra, 2010, in press; Dijkstra & Henseler, 2012,

2013; Dijkstra & Schermelleh-Engel, in press). Therefore, the more comprehensive IVE approach

is required to cover the potential causes of endogeneity bias in real applications.

It is noteworthy that IVE has been gaining prominence in the SEM domain, due mainly to the

work of Bollen and his colleagues (Bollen & Bauer, 2004; Bollen, Kirby, Curran, Paxton, & Chen,

2007; Bollen & Maydeu-Olivares, 2007; Kirby & Bollen, 2009; see also Nestler, 2013a, 2013b).

Given the promising results of this work, the potential transportability of IVE methods to the PLS-PM

context should be examined in future research. Indeed, given that a 2SLS approach that does not

involve instruments is already used in PLSc (Dijkstra, 2010, in press; Dijkstra & Henseler, 2012,

2013; Dijkstra & Schermelleh-Engel, in press), a logical next step is to include instruments to

counteract the bias created by endogeneity.

Third, neither Rönkkö and Evermann nor Henseler et al. addressed the issue of correlated

errors in the regression equations of the inner model and how these correlations might impact

parameter estimates and model fit. In the OLS context, a large body of theoretical and empirical

work has addressed seemingly unrelated regression equations (SURE; Zellner, 1963), in which

a set of regression equations estimated separately are interrelated via their error terms (Beasley,

2008; Foschi, Belsley, & Kontoghiorghes, 2003; Kubáček, 2013). More generally, when using

systemwide estimators (e.g., ML or 3SLS) with simultaneous equation models, error terms
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should be allowed to correlate given the possibility of omitted causes. To illustrate, assume the

following true causal model:

y ¼ b0 þ b1xþ b2qþ e ð4Þ

x ¼ g0 þ g1z1 þ g2z2 þ g3qþ m ð5Þ

Now, suppose that q is omitted, and the model that is actually estimated is

y ¼ d0 þ d1xþ y ð6Þ

x ¼ l0 þ l1z1 þ l2z2 þ c ð7Þ

Because omitting q means that Equations 6 and 7 are misspecified, the parameters differ from

those in Equations 4 and 5. The absence of q can be accounted for by including ry,c in the model

(Antonakis et al., 2010), after which the true parameter values can then be recovered (i.e., d1¼ b1,

etc.). Thus, if errors are not permitted to correlate when they should (cf. Cole, Ciesla, & Steiger,

2007; Reddy, 1992), overidentification tests will fail and coefficient estimates will be inconsistent.

Currently, PLS-PM models do not conventionally allow the error terms of the inner model to be

intercorrelated, as each equation is estimated independently, typically using the OLS procedure.

This problem likely gives rise to additional inconsistency in the coefficients and could be resolved

by estimating the entire set of inner relations using systemwide estimators like ML or 3SLS regres-

sion (Johnson et al., 2010), which would explicitly take the error correlations into account while

also allowing the use of instruments.

Can PLS-PM Reduce the Impact of Measurement Error?

Rönkkö and Evermann questioned the notion that PLS-PM reduces the effects of measurement

error. Their arguments focused on the comparison of the weighted composites involved in PLS-PM

with the unweighted sums of items used in OLS regression, noting that any advantage of PLS-PM

must derive from the weights assigned to the indicators, which is essentially the only feature that

sets PLS-PM apart from OLS regression. Rönkkö and Evermann also showed analytically that

the relationships between composites estimated in PLS-PM are influenced not only by the indica-

tor weights, but also by correlations between the measurement errors of the indicators, which are

likely to be nonzero in empirical research (see also Rönkkö, 2014). They supplemented these ana-

lytical results with a small simulation that demonstrated the deleterious effects of correlated mea-

surement errors on PLS-PM estimates. Comparatively, both SEM and path analysis with summed

scales provided unbiased estimates in the presence of correlated measurement errors.

Henseler et al. acknowledged that PLS-PM does not eliminate the effects of measurement

error. Nonetheless, they pointed out that forming composites with multiple indicators provides

some adjustment for unreliability and also argued that PLS-PM further reduces measurement

error by assigning larger weights to more reliable indicators, which they regarded as indicators

that enhance the ‘‘predictive relevance’’ of the composite. Henseler et al. criticized the Rönkkö

and Evermann simulation due to the small number of conditions it comprised and reported a

simulation that contained a larger number of conditions deemed to be more representative of

situations involved in empirical research. Based on this simulation, Henseler et al. concluded

that composites derived using PLS-PM Mode A generally yield higher reliabilities than

unweighted composites and the best single indicator used to form a composite (i.e., the indica-

tor with the highest loading) and also produced much higher reliabilities than PLS-PM Mode B.

The apparent disagreements between Rönkkö and Evermann and Henseler et al. arose largely

because they emphasized different sets of issues. With regard to the simulations, Rönkkö and

220 Organizational Research Methods 17(2)



Evermann focused on the effects of correlated measurement errors on reliabilities and path esti-

mates in PLS models. In contrast, Henseler et al. addressed differences in reliabilities yielded

by PLS-PM, unweighted composites and the best single indicator, making no mention of corre-

lated measurement errors. Thus, the Henseler et al. simulation was not equipped to challenge the

conclusions of Rönkkö and Evermann regarding the effects of correlated measurement errors, and

the Rönkkö and Evermann simulation did not contradict the results of Henseler et al., given that

the conditions of the Rönkkö and Evermann simulation that were included in the Henseler et al.

simulation yielded essentially the same results. Thus, the conflicting views of Rönkkö and Evermann

and Henseler et al. primarily involve the conditions that should be included in their respective

simulations, as opposed to the conclusions of the simulations themselves.

Turning to the results of the simulations, Henseler et al. concluded that ‘‘PLS mode A clearly

outperforms sum scores’’ (emphasis in original) when indicator loadings vary widely, when the

composite variables in the model are at least moderately related (i.e., b ¼ 0.5), and when sample

sizes are relatively large (i.e., 500 vs. 100), representing conditions not included in the Rönkkö and

Evermann simulation. However, differences in average reliabilities yielded by these conditions were

very small in absolute terms, ranging from 0.004 to 0.005. These differences are small enough to ques-

tion whether the superiority of PLS Mode A over summed scores is substantively important. In the

remaining conditions, reliabilities were higher for summed scores than for PLS Mode A, but again the

differences were rather small, with values of 0.004, 0.019, and 0.145. More to the point, the results of

both simulations were evaluated by subjectively comparing reliabilities across conditions, which raises

questions as to whether the observed differences are meaningful. The results of the simulations would

be more conclusive if confidence intervals were constructed around the reliabilities to more clearly

evaluate their differences (Kelley & Cheng, 2012; Maydeu-Olivares, Coffman, Garcı́a-Forero, &

Gallardo-Pujol, 2010; Padilla & Divers, 2013), and if the effects of the different reliabilities on model

parameters were statistically compared (Yetkiner & Thompson, 2010).

Another limitation of the Rönkkö and Evermann simulation is that the true population model

used to generate the data did not contain correlated measurement errors. Rather, the simulation

was only equipped to study the effects of nonzero measurement error correlations that arise by

chance due to sampling variability (see also Rönkkö, 2014). The negative effects of these mea-

surement error correlations should vanish as the sample size becomes larger for both PLS-PM and

SEM. Thus, the results obtained by Rönkkö and Evermann might be attributed more to the small

sample size (N ¼ 100) used in their simulation rather than the relative ability of the different

approaches to handle measurement errors that are correlated in the population. When correlations

among measurement errors exist in the population and are ignored, larger sample sizes only mag-

nify the ability of overidentification tests, such as the chi-square, to detect the misspecification,

and parameter estimates and standard errors will likely be biased. Indeed, in most simulation stud-

ies examining the effects of correlated measurement errors, the true population model explicitly

contains nonzero error correlations (e.g., Cole et al., 2007; Reddy, 1992; Saris & Aalberts,

2003; Westfall, Henning, & Howell, 2012). Thus, if Rönkkö and Evermann had adopted this

approach, the results of their simulation would have been more informative.

As a further observation regarding the Henseler et al. simulation, we see little need to demonstrate

that reliability is generally higher for a composite than for a single indicator. This point is well

established in the psychometric literature (e.g., Nunnally, 1978; Nunnally & Bernstein, 1994), and

it follows from formulas used to compute reliability estimates, such as Cronbach’s alpha. For

instance, when indicators are standardized, alpha can be computed as follows,

a ¼ k�rij

1þ ðk � 1Þ�rij

ð8Þ
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where k is the number of items and �rij is the average interitem correlation. Table 1 applies this for-

mula with k ranging from 2 to 10 and �rij ranging from .10 to .90 in increments of .10. To illustrate the

comparison of the reliability of a composite with that of a single indicator, consider a scale with

three items and an average interitem correlation of .50. As shown in Table 2, this scale has a relia-

bility of .75. If the items had equal loadings, then each loading would equal the square root of the

average interitem correlation, or .501/2 ¼ .71, and the reliability of each item would equal the

square of its loading, or .712 ¼ .50. If the items had different loadings, then an item with a loading

of .87 would have a reliability of .75, the same as that of the scale, although the loadings of the

remaining items would have to be lower to maintain the average interitem correlation of .50 (one

possible pattern of loadings is .87, .62, and .62). Thus, the fact that composites tend to have higher

reliabilities than individual items can be taken as a foregone conclusion.

We should also note that all of the reliabilities reported in the two simulations are based on the

common factor model, not composite factor model (Nunnally, 1978; Nunnally & Bernstein, 1994).

Elsewhere in their rebuttal, Henseler et al. critiqued Rönkkö and Evermann for relying on the

common factor model, pointing out that the results of common factor models (SEM) and compo-

site factor models (PLS-PM) cannot be directly compared, given that they estimate different

underlying population parameters. Despite these admonitions, Henseler et al. invoked the com-

mon factor model to estimate reliability associated with PLS-PM. Thus, their simulation does not

address how measurement error is actually represented in the composite model of PLS-PM.

Furthermore, debating whether PLS-PM or summed scales yield higher reliabilities seems

rather superfluous in the common factor context, because neither of these approaches avoids the

effects of measurement error. PLS-PM and summed scales both involve composites containing the

measurement error carried by the indicators, which is not somehow purged when the composite is

formed. Certainly, forming composites provides some relief from the effects of measurement

error, given that reliability increases as the number of items in a composite increases, as shown

in Table 2. However, this increase in reliability occurs at a decreasing rate, and error is never com-

pletely eliminated, regardless of the number of items or the magnitude of the average interitem

correlation. Indeed, Rönkkö and Evermann conclude their discussion of reliability by noting that:

‘‘The options available for reducing the effect of measurement error with composite variables are

limited because any linear composite of indicators that contain error will also be contaminated

with error’’ (p. 436). In a similar vein, Henseler et al. acknowledge that ‘‘PLS does not completely

eliminate the effects of measurement error,’’ and although they claim that PLS reduces these

Table 2. Reliability as a Function of the Average Interitem Correlation and the Number of Items That
Constitute a Scale.

Average Interitem Correlation

No. of Items .10 .20 .30 .40 .50 .60 .70 .80 .90

2 .18 .33 .46 .57 .67 .75 .82 .89 .95
3 .25 .43 .56 .67 .75 .82 .88 .92 .96
4 .31 .50 .63 .73 .80 .86 .90 .94 .97
5 .36 .56 .68 .77 .83 .88 .92 .95 .98
6 .40 .60 .72 .80 .86 .90 .93 .96 .98
7 .44 .64 .75 .82 .88 .91 .94 .97 .98
8 .47 .67 .77 .84 .89 .92 .95 .97 .99
9 .50 .69 .79 .86 .90 .93 .96 .97 .99
10 .53 .71 .81 .87 .91 .94 .96 .98 .99

Note: Table entries are Cronbach’s alphas for standardized items.
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effects substantially, these benefits depend entirely on the number of indicators and their intercor-

relations, as made obvious by Table 2. Thus, we conclude that Rönkkö and Evermann and Hen-

seler et al. generally agree that PLS-PM does not eliminate the effects of measurement error, a

point we think is beyond dispute. Although the amount of measurement error is a matter of degree,

it necessarily hampers the ability of PLS-PM to accurately estimate the parameters of common

factor models. Moreover, an imperfectly measured composite in a model necessarily propagates

bias to other composites, even if perfectly measured, via the relationships among the composites,

thereby undermining all structural model estimates (Antonakis et al., 2010).

Stepping back from the details of the two simulations, we believe the results of both simulations

would have been more useful if they had explicitly addressed the distinctions between the composite

and common factor models (Goodhue, Lewis, & Thompson, 2012a; Marcoulides & Chin, 2013).

Under the common factor model, the best approach is SEM with latent variables, which is undeni-

ably superior to PLS-PM and summed scales. This superiority arises from the fact that SEM includes

parameters that segregate measurement error from the model that relates the latent factors, whereas

PLS-PM currently does not have this capability. In addition, correlated measurement errors can be

incorporated into SEM, thereby allowing researchers to explicitly compensate for the types of

effects demonstrated in the Rönkkö and Evermann simulation (see also Rönkkö, 2014). It must

be stressed, however, that the addition of correlated errors to common factor models should be

accompanied by an explicit theoretical and/or methodological rationale, rather than done in an uncri-

tical manner simply to improve statistical fit (Boomsma, 2000; Cote & Greenberg, 1990; Gerbing &

Anderson, 1984; Saris & Aalberts, 2003). Although the new PLSc method improves the correspon-

dence between SEM and PLS-PM estimates when estimating common factor models (Dijkstra,

2010, in press; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press), it cannot

accommodate correlated measurement errors, which frequently arise in application (Cole et al.,

2007; Y.-T. Lee & Antonakis, 2014; Reddy, 1992; Saris & Aalberts, 2003; Westfall et al., 2012).

Therefore, there seems to be little point in continuing to pit SEM and PLS-PM against each other

when evaluating common factor models. Rather, it seems most prudent to just leave common factor

model territory solely to SEM.

If the composite factor model is assumed (Bentler & Huang, in press; Rigdon, 2012), then it can

indeed be useful to compare PLS-PM, and possibly other component-based modeling techniques,

to SEMs parameterized to incorporate composite variables (e.g., Dolan, 1996; Dolan et al., 1999;

McDonald, 1996; Treiblmaier et al., 2011). In this manner, the underlying model would be the

same for both methods, which would allow meaningful comparisons of their relative performance.

Naturally, when comparing the approaches within a composite-based modeling scheme, unrelia-

bility and measurement error should not be evaluated and compared using procedures rooted in the

common factor model (Rigdon, 2012). Although there is a current paucity of reliability indices

appropriate for composite-based modeling, methods have recently been devised to adjust for irre-

levant variation in composite predictors and thereby improve explanatory power in the PLS-PM

context. More specifically, the OnPLS approach partitions the total variability into three compo-

nents: (a) a global component shared among all theoretically connected blocks of observed vari-

ables, which is essentially the structural model of theoretical interest; (b) a locally joint component

that represents variability shared between some but not all of the blocks; and (c) a unique compo-

nent that reflects variance specific to a single block (Löfstedt, Eriksson, Wormbs, & Trygg, 2012;

Löfstedt, Hanafi, & Trygg, 2013; Löfstedt, Hoffman, & Trygg, 2013; Löfstedt & Trygg, 2011).

Although this approach does not completely purge measurement error from each construct, as

accomplished with the common factor model, it disattenuates the estimates of the core hypothe-

sized relationships by removing all variation that is irrelevant to prediction, which is a major

advance in the component-based modeling domain. The OnPLS strategy could be further strength-

ened by using the IVE approaches discussed in the previous section, which can improve the
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consistency of estimation in the presence of measurement error (Abarin & Wang, 2012; Hardin &

Carroll, 2003). In addition, combining the OnPLS method with existing SEM strategies for incor-

porating composites (e.g., Dolan, 1996; Dolan et al., 1999; McDonald, 1996; Treiblmaier et al.,

2011) could generate a powerful and versatile component-based modeling technique, which would

provide the benefits of SEM’s more well-developed arsenal of estimation and testing routines.

Further empirical evaluation and comparison of SEM, PLS-PM, and other approaches to estimate

component-based path models are essential to verify these possibilities.

Is PLS-PM Capable of Validating Measurement Models?

Rönkkö and Evermann questioned the utility of PLS-PM for validating measurement models.

Their critique focused on the criteria commonly employed by studies that examine measurement

models using PLS-PM, such as the composite reliability (CR) and the average variance extracted

(AVE), as well as other criteria used less frequently, such as the relative goodness-of-fit (GoF)

index and the standardized root mean square residual (SRMR). Rönkkö and Evermann cited

research that they claim debunks the use of the CR, AVE (Aguirre-Urreta, Marakas, & Ellis,

2013), and GoF indices (Henseler & Sarstedt, 2013) for PLS-PM models. To bolster these claims,

Rönkkö and Evermann conducted a simulation to evaluate the ability of the CR, AVE, AVE-

highest squared correlation (i.e., the maximum rather than AVE for a set of indicators), the relative

GoF, and the SRMR to detect various types of model misspecifications. Rönkkö and Evermann

found that none of the criteria they examined dependably identified measurement models that

were incorrectly specified. From these results, Rönkkö and Evermann concluded that ‘‘the mea-

surement model should never be evaluated based on the composite loadings produced by PLS

or any statistic derived from these [sic]’’ (p. 438), encouraging researchers to instead rely on

established alternatives, such as chi-square tests of exact fit and common factor analysis (e.g.,

Nunnally, 1978).

Henseler et al. countered by arguing that the Rönkkö and Evermann simulation was replete

with errors, ranging from mistakenly equating PLS-PM with the common factor model to mis-

calculating the CR, AVE, and SRMR and misreporting their results. They also criticized Rönkkö

and Evermann for not explicitly comparing PLS-PM and covariance-based SEM as methods for

validating measurement models. Henseler et al. conducted a simulation intended to address these

errors and omissions and included additional evaluation criteria, such as chi-square tests of exact

fit. From the results of their simulation, Henseler et al. concurred with Rönkkö and Evermann

regarding the shortcomings of the CR, AVE, and relative GoF for detecting measurement model

misspecifications. In contrast, the tests of exact fit and the SRMR performed well, with somewhat

better performance for covariance-based SEM than for PLS-PM. Henseler et al. discounted the

apparent superiority of covariance-based SEM because it suffered from nonconvergence and

improper solutions (i.e., Heywood cases), whereas PLS-PM did not. In the end, Henseler et al. rec-

ommended the chi-square test of exact fit and SRMR yielded by PLS-PM for detecting measure-

ment model misspecification.

We cannot adjudicate the accuracy of the simulations reported by Rönkkö and Evermann

and Henseler et al., because doing so would require access to the raw output of the simulations.

Nevertheless, we can assess what the criteria examined in the simulations are equipped to detect

and whether they should, in principle, uncover the types of model misspecifications included in

the simulations. To frame this assessment, we first distinguish between two distinct properties

of a measurement model: (a) the magnitudes of the estimated parameters in the model and (b) the

degree to which the model fits the data. The first property influences the CR, the AVE, and the

relative GoF, which are essentially different ways of summarizing explained variation in the
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indicators. For example, assume a single-factor model with the variance of the factor fixed to

unity. With this specification, the formula for the CR is as follows (Jöreskog, 1971),

CR ¼

Pp
i¼1

li

� �2

Pp
i¼1

li

� �2

þ
Pp
i¼1

ydii

ð9Þ

where p is the number of observed indicators (i ¼ 1 though p), the li are the indicator loadings, and

the ydii are the measurement error variances. The formula for the AVE draws from the same model

parameters (Fornell & Larcker, 1981):

AVE ¼

Pp
i¼1

l2
i

Pp
i¼1

l2
i þ

Pp
i¼1

ydii

ð10Þ

Application of these formulas for the CR and AVE in PLS-PM requires certain modifications, as

outlined by Aguirre-Urreta et al. (2013). The GoF and relative GoF, which were designed specifi-

cally for PLS-PM, are functions of the item loadings and the variance explained by the structural

equations in a model (Henseler & Sarstedt, 2013). Thus, all four of these measures are determined

by the magnitudes of the parameter estimates for a model and are insensitive to how well the model

fits the sample data.

The second property of a measurement model, which concerns model fit, is captured by the chi-

square test of exact fit and the SRMR. These and other global fit statistics provide summaries of how

well the model structure—that is, the number of constructs and the pattern of free and constrained

parameters—reproduces the relationships among the observed variables, irrespective of the strength

of those relationships (Marsh, Hau, & Grayson, 2005). To illustrate further, the conventional ML

chi-square statistic in SEM is computed as (N – 1)FML, where FML is the minimum value of the following

discrepancy function that is used to guide the estimation of model parameters (Bollen, 1989; Hayduk,

1987):

FML ¼ logjSj � logjSj þ trace ðSS�1Þ � p: ð11Þ

In this equation, S andS are, respectively, the observed and model-implied covariance matrices of the

observed variables, | . | denotes the matrix determinant, trace is an operator that sums the diagonal

elements of a matrix, and p is the number of observed variables. If the model is properly specified and

additional supporting assumptions are met (i.e., a large sample size and multivariate normality), then

S and S will be equivalent (within sampling variability), the log|S| and log|S| terms will cancel each

other out, and the product of SS-1 will be an identity matrix with trace¼ p; the quantity (N – 1)FML

will be distributed as a central w2 variate on p – q degrees of freedom, where q is the number of esti-

mated parameters in the model. Therefore, the chi-square statistic provides a sharp test of whether

the data conform to the structure of the hypothesized model (a comparable chi-square statistic has

been developed for PLS-PM; see Dijkstra, 2010, in press; Dijkstra & Henseler, 2012, 2013; Dijkstra

& Schermelleh-Engel, in press). Like the chi-square, the SRMR provides an overall summary of the

discrepancies between S and S (in standardized form), as follows (Wang & Wang, 2012),

SRMR ¼
X

j

X
k

r2
jk

 !�
p�

 !1=2

; ð12Þ
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where rjk is the difference in the corresponding elements of the sample and model-implied corre-

lation matrices, and p* is the number of nonredundant elements in each matrix (p* ¼ p(p þ 1)/2).

Note, however, that the SRMR is only a descriptive GoF index rather than a test of causal speci-

fication (Schermelleh-Engel, Moosbrugger, & Müller, 2003).

Unfortunately, the simulations conducted by Rönkkö and Evermann and Henseler et al. did not

respect the distinction between the magnitudes of model parameters and the overall model fit.

Rather, both simulations manipulated only the model structure, not the sizes of the parameters in

the model, such that a population measurement model was estimated as specified and with various

types of misspecifications (i.e., modifying the numbers of constructs and/or the pattern of free and

constrained parameters). As such, it can be assumed a priori that the simulation results would point

to the test of exact fit and the SRMR as the optimal indicators of specification error, given that these

criteria are designed to detect precisely what the simulations manipulated. Measures that reflect the

magnitudes of model parameters, such as the CR, AVE, GoF, and relative GoF, are incapable of

reflecting how well the model reproduces the data. To be sure, parameter estimates can be indirectly

affected by whether a model is correctly specified, given that parameter estimates in misspecified

models are often distorted (Hayduk et al., 2005; Kolenikov, 2011; McIntosh, 2007; Saris et al.,

2009; Yuan et al., 2003), but the direction of this distortion can be either upward or downward.

Therefore, researchers should not interpret measures based on parameter magnitude as indicating

model fit, which is the province of the chi-square test and SRMR. Similarly, parameter magnitude

should not be taken as implying model misspecification, as a measurement model could adequately

reproduce the observed covariances, yielding a nonsignificant chi-square statistic, but have para-

meters that are large or small in magnitude. This point is illustrated by a single-factor model with

three indicators, which is saturated (i.e., has zero degrees of freedom) and therefore fits any covar-

iance matrix perfectly, regardless of the magnitudes of the covariances and the associated item load-

ings and measurement error variances. In sum, global fit statistics and measures that reflect the

magnitudes of loadings and other model parameters should always be employed in a complementary

fashion when assessing measurement models, and only for their intended purposes.

With respect to using PLS-PM or covariance-based SEM to detect model misspecification,

Henseler et al. argued in favor of PLS-PM due to the high proportion of nonconvergent runs and

improper solutions (i.e., Heywood cases) obtained when SEM was used. However, Henseler et al.

set the sample size for their simulations at 100 cases. Previous research has shown that noncon-

vergence and improper solutions are more common when SEM is applied to small samples, such

as those analyzed by Henseler et al., due to the effects of sampling error (Dillon, Kumar, & Mulani,

1987; X. Fan, Thompson, & Wang, 1999; MacCallum, Widaman, Zhang, & Hong, 1999). These prob-

lems tend to decrease as sample size increases, which would likely eliminate any apparent benefit of

PLS-PM over SEM. Indeed, it strikes us as odd that Henseler et al. did not vary sample size in their

simulations that addressed measurement model validation, given that they emphasized sample size as

‘‘one of the most important variables in a simulation’’ (Paxton, Curran, Bollen, Kirby, & Chen, 2001,

p. 294) in their discussion of the reliability of PLS-PM composites relative to summed scores.

It is also possible to interpret Henseler et al.’s comparative results on convergence behavior and

solution propriety as more strongly supporting the ability of ML-based SEM to detect model mis-

specifications. In the SEM context, nonconvergence of the ML estimator is viewed as a first sign

of model misspecification (Boomsma & Hoogland, 2001), as are Heywood cases (Chen, Bollen,

Paxton, Curran, & Kirby, 2001; Kolenikov & Bollen, 2012). To be sure, nonconvergence and impro-

per solutions can arise even for properly specified models, but the Henseler et al. simulation clearly

demonstrates the combined effects of misspecification and small sample size. In particular, the num-

ber of nonconvergent runs increased from 3.6% for the true model (Model 1, Figure 4) to 11.4%
(Model 2, Figure 4), 13.6% (Model 3, Figure 4), and 16.8% (Model 4, Figure 4) when various mis-

specifications were introduced. Furthermore, when considering only the convergent runs, no
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inadmissible ML solutions were reported under the true model or Model 2, whereas Heywood cases

occurred in more than 60% of the solutions obtained for Model 3; for Model 4, up to 100% depend-

ing on the particular statistical package used. In addition, the Type II error rates for the SEM versus

PLS-PM w2 statistics were 93.2% versus 99.8% (Model 2), 0.0% versus 19.9% (Model 3), and 0.0%
versus 4.1% (Model 4). Altogether, these findings demonstrate that ML-based SEM did a better

job of signaling model misspecification than PLS-PM, which ‘‘always converged’’ and yielded

proper solutions, as well as more frequently accepted the misspecified models.

Stepping back from the particular evaluation criteria considered by Rönkkö and Evermann and

Henseler et al., we have some reservations about the meaning and interpretation of measurement

models in PLS-PM, particularly given the frequent and inappropriate borrowing of concepts from

the common factor analysis framework. Composite-based models do not address the relationships

between measures and constructs as these terms are usually conceived (Bentler, 1982; Borsboom,

Mellenbergh, & Van Heerden, 2003; Edwards & Bagozzi, 2000), because the ‘‘latent’’ variables in

PLS-PM are not latent in the sense of being unobserved, but instead are weighted composites of

observed indicators. Note that this operational definition of the constructs in PLS-PM holds even

when using Mode A estimation (i.e., ‘‘reflective measurement’’), which is an attempt to more

closely mimic the common factor model (cf. Fattore, Pelagatti, & Vittadini, 2012; Rigdon, 2012).

Therefore, each indicator ‘‘loading’’ in a PLS-PM measurement model represents a part–whole rela-

tionship, because the indicator is part of the composite itself. More specifically, when using Mode A

estimation, the loadings are akin to item–total correlations (Nunnally, 1978); under Mode B estimation

(i.e., ‘‘formative measurement’’), the loadings are based on the multiple regression of the composite

variables on their indicators (Esposito Vinzi, Trinchera, et al., 2010; Hanafi, 2007; M. Tenenhaus,

Esposito, Chatelin, & Lauro, 2005). As such, measurement models in PLS-PM essentially involve

relationships between one type of manifest variable (i.e., individual indicators) and another type of

manifest variable (i.e., weighted composites of indicators). Researchers interested in examining

relationships between measures and unobserved constructs are better served by SEM, in which

latent variables cannot be reduced to weighted composites of observed variables (Bentler, 1982).

Thus, it seems misguided to view composite-based models through a common factor lens, a problem

that characterizes the bulk of the methodological and applied literature on PLS-PM. For PLS-PM to

serve the purposes of composite-based modeling, an essential requirement is ‘‘a complete and consis-

tent approach to measurement which is factor-free’’ (Rigdon, 2012, p. 355).

Finally, when validating measurement models, researchers should consider evidence that goes

beyond the general assessment criteria considered by Rönkkö and Evermann and Henseler et al.

For example, in both PLS-PM and SEM applications, global fit tests should always be accompa-

nied by local tests (Bera & Bilias, 2001; Grace et al., 2012; Saris et al., 2009; Yuan et al., 2008)

and additional diagnostics such as fitted residuals (i.e., the differences between the elements of

the sample and model-reproduced covariance matrices). Other essential features of measurement

models include the validity of individual items and the convergent and discriminant validity of

the factors that constitute measurement models. Under the common factor model, this information

can be obtained by thoroughly examining item loadings, measurement error variances, and factor

correlations, which should all be routinely considered in studies intended to validate measures

(Jackson, Gillaspy, & Purc-Stephenson, 2009). Further recommendations for evaluating common

factor models are available elsewhere (Bagozzi & Phillips, 1991; Bollen, 1989; Brown, 2006;

Harrington, 2009; Kline, 2013b; Raykov & Marcoulides, 2010; Schumacker & Lomax, 2010). For

composite factor models, corresponding guidelines are in short supply due to the fundamental

differences between the two measurement frameworks. In fact, it has been suggested that conven-

tional notions of validity might not even be relevant for composite constructs, because composite

indicators need not always have ‘‘conceptual unity’’ (Bollen, 2011, p. 372; see also Bollen & Bauldry,

2011). As a recourse, PLS-PM practitioners could recast the assessment of measurement quality in
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terms of the model’s predictive ability, concentrating on examining the predictive utility of the

composite variables (cf. Rigdon, 2012). However, the interpretation of the composites themselves

would remain problematic, particularly when they combine indicators that are conceptually heteroge-

neous (Edwards, 2011; Hardin & Chang, 2013; Hattie, 1985; Howell, Breivik, & Wilcox, 2013).

Shifting focus to prediction comes with its own challenges. First, the specification of the model

(i.e., the number of constructs and the pattern of free and fixed parameters) would still need to be

verified through global and local fit tests before any predictions can be trusted (Antonakis et al.,

2010; Grace et al., 2012; Hayduk, Cummings, Boadu, Pazderka-Robinson, & Boulianne, 2007;

Hayduk et al., 2005; McIntosh, 2007). Second, composite-based models will be particularly sus-

ceptible to overfitting (Hawkins, 2004; Hegdé, 2010; Marewski & Olsson, 2009). Because the

estimates of structural parameters in these models capture both the theoretical process of interest

and sampling variability in the particular data used for analysis, the model will generally achieve

better within-sample prediction (i.e., predictive ability within the data set used to estimate the

parameters) than out-of-sample prediction (i.e., predictive ability in data not used in estimation).

Given that the latter is the most important indicator of a model’s predictive utility (Meese &

Rogoff, 1983), cross-validation should be used to assess the extent to which modeling results gen-

eralize to independent data sets (cf. Arlot & Celisse, 2010; Chin, 2010). In addition, the OnPLS

(Löfstedt, Hanafi, et al., 2013) and IVE methods (Abarin & Wang, 2012; Hardin & Carroll,

2003) can be used to help compensate for the impacts of measurement error on overfitting. Such

approaches are particularly important given that high-dimensional, low sample size data sets often

used to justify PLS-PM are particularly prone to overfitting and accompanying Type I error infla-

tion (J. Fan, Guo, & Hao, 2012; Forstmeier & Schielzeth, 2011; Subramanian & Simon, 2013).

Does PLS-PM Provide Valid Inference on Path Coefficients?

Rönkkö and Evermann critiqued the use of bootstrapped tests of significance for PLS-PM path

coefficients on two grounds: (a) the critical ratios (i.e., parameter estimates divided by their

bootstrap standard errors) are referred to the t distribution even when parameter estimates are not

normally distributed and (b) the bootstrap distribution of the parameter estimates deviates from the

corresponding analytical sampling distribution. Rönkkö and Evermann conducted a simulation

revealing that the accuracy of inferences in PLS-PM may be compromised in certain situations.

Using a two-construct population model with no structural relationship (i.e., b ¼ 0.0), Rönkkö

and Evermann found a bimodal (i.e., two-peaked) distribution for the path coefficient at a sample

size of 100. Moreover, the bootstrapped distribution of the PLS-PM path coefficient was markedly

different from the original sampling distribution obtained from the Monte Carlo replications.

These demonstrations suggested that PLS-PM tests of inference can be biased and inconsistent.

Henseler et al. responded by replicating and extending the simulations conducted by Rönkkö

and Evermann. As before, the sampling distributions of path coefficients of both b ¼ 0.0 and

b ¼ 0.3 in the same two-construct path model were bimodal at a sample size of 100. However,

modifying certain aspects of the simulation design used by Rönkkö and Evermann produced sam-

pling distributions that were unimodal. Specifically, when holding the effect size constant at b ¼
0.3, unimodality was achieved by (a) increasing the sample size to 500, (b) making the loadings

more heterogeneous, or (c) adding two constructs to the model. In addition, altering the original

simulation by simply increasing the effect size to b ¼ 0.5 also yielded a unimodal distribution.

Furthermore, Henseler et al. found that three different strategies for constructing bootstrap-

based confidence intervals (i.e., normal bootstrap, percentile confidence intervals, and bias-

corrected and accelerated confidence intervals) provided impressive overall Type I and Type II

error control, even at N ¼ 100.
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We agree with Henseler et al. that coefficient distributions for PLS-PM are not necessarily

bimodal. However, because parameter distributions can deviate from normality under certain con-

ditions, the routine use of the t distribution to test parameters is questionable. Furthermore, the

Henseler et al. simulation did not disprove Rönkkö and Evermann’s core finding, which is that

parameter distributions are bimodal under the null hypothesis, such that b ¼ 0.0. Under this con-

dition, the Henseler et al. simulation replicated the results of Rönkkö and Evermann. The remain-

ing conditions examined by Henseler et al. specified nonzero effect sizes in the population, which

consistently generated parameter distributions that were unimodal. These results suggest that

PLS-PM inference might be well served by adopting an alternative hypothesis significance testing

(AHST) framework, in which bootstrap resampling would be performed with respect to values

other than the conventional null hypothesis (cf. Rodgers & Beasley, 2013). However, in cases

where the researcher lacks the requisite theory or prior empirical evidence to postulate nonnull

hypotheses, it may be most prudent to invoke the null. Therefore, additional work is needed to

more fully determine the behavior of PLS-PM path coefficients under the null to delineate the

specific conditions for which inference using the usual null hypothesis-based t distribution can

be justified.

If the researcher does not wish to presume normality in a given application, nonparametric

methods of hypothesis testing are available that make no distributional assumptions. For instance,

permutation (or randomization) tests have already been introduced into PLS-PM to compare para-

meter estimates across multiple groups (e.g., Chin & Dibbern, 2010; Crisci & D’Ambra, 2012).

This approach is a promising alternative to the usual bootstrap procedure. Nonetheless, the boot-

strapped confidence intervals demonstrated by Henseler et al. appear reasonably robust to viola-

tions of normality and divergence between analytical and bootstrap sampling distributions, at least

for the relatively simple models examined by Henseler et al. Future simulation work is needed that

considers more complex models, different sample sizes, and additional violations of assumptions

to determine when this approach might break down.

Moreover, significance tests are meaningful only if the estimates can be trusted to be consistent,

regardless of the robustness of the inference procedure (Freedman, 2006; King & Roberts, 2013).

As discussed earlier, the consistency of parameter estimates depends on whether a model is cor-

rectly specified, as evidenced by passing global and local tests of parameter constraints, as well as

adjusting for endogeneity of predictors. Clearly, bootstrapping an inconsistent estimate will not

make inferential tests consistent.

Beyond these issues, it is important to point out another common modeling situation in which

bootstrapped (and permutation-based) inference in PLS-PM is likely to deteriorate, and for which

no remedy has yet been devised in the PLS-PM context: analysis of data from a complex survey

design. Complex survey designs are used to collect data in situations where simple random sam-

pling, which is the ideal for conventional statistical inference, is not feasible for practical or ethical

reasons (de Leeuw, Hox, & Dillman, 2008; Heeringa, West, & Berglund, 2010; Lehtonen &

Pahkinen, 2004). Complex survey designs typically have two main features: stratification and

clustering. Stratification involves partitioning the sample into independent groups and then sam-

pling within each group. This strategy helps ensure that groups on which information is desired

are adequately sampled. For instance, if a survey focuses on the attitudes and perceptions of

managers at different levels of an organization, managers could be grouped according to level

prior to drawing the sample. Whereas this procedure renders the sampling process more efficient

than simple random sampling, not every member of the population has an equal chance of being

sampled, thereby violating the assumption that observations are identically distributed and leading

to biased parameter estimates (Raghav & Barreto, 2011). In contrast to stratification, clustering

refers to naturally occurring groupings of lower-order sampling units within higher-order units

(e.g., employees within organizations, students within schools, patients within hospitals). Given
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that responses within clusters tend to be intercorrelated, the assumption that observations are inde-

pendent is compromised, resulting in underestimation of standard errors and inflated Type I error

rates (Barreto & Raghav, 2013; McCoach & Adelson, 2010).

The problems arising from stratification and clustering can be addressed in various ways (Hahs-

Vaughn, McWayne, Bulotsky-Shearer, Wen, & Faria, 2011; Lumley, 2011; Osborne, 2011). For

instance, observations can be weighted according to their selection probabilities to obtain accurate

parameter estimates (Pfeffermann, 1993, 1996). The calculation of sampling weights need not fall

on the analyst, because these weights are typically computed by survey methodologists and sup-

plied with the data set. Furthermore, appropriate standard errors can be derived using resampling

techniques, such as the bootstrap or jackknife (Kolenikov, 2010), or by applying postestimation

corrections (Cameron, Gelbach, & Miller, 2011; Hedges, 2007, 2009; Thompson, 2011). Alterna-

tively, researchers can use statistical modeling techniques that directly incorporate features of the

survey design as components of the analysis (i.e., strata, clusters) to ensure that estimation and

inference are not compromised. For example, multilevel modeling (MLM) allows coefficients

to potentially vary randomly across the clusters (Goldstein, 2011; Hox & Roberts, 2010; Snijders

& Bosker, 2012) and can also compute standard errors that are robust to common violations of

modeling assumptions (e.g., normality of level 2 errors and homogeneity of variance across clus-

ters; Hox & Roberts, 2010; Maas & Hox, 2004a, 2004b). Combining MLM with bootstrap resam-

pling has been shown to further improve the accuracy of inference (Kovacevic, Rong, & You,

2006; Pierre & Saidi, 2008; Roberts & Fan, 2004; Seco, Garcı́a, Garcı́a, & Rojas, 2013; van der

Leeden, Meijer, & Busing, 2008).

Implementing these methods would address some of the shortcomings of current applications

of PLS-PM. The fact that resampling is already the method of choice for PLS inference should

facilitate the use of the adjustments described here. However, the resampling procedures available

in PLS-PM software assume that the data are collected via simple random sampling, such that

observations are both independent and identically distributed (e.g., Kock, 2013; Ringle et al.,

2005; Sanchez & Trinchera, 2013). When complex survey data are involved, the resampling strat-

egy must mimic the original sampling scheme (Aidara, 2013; Antal & Tillé, 2011; Pal, 2009;

Preston, 2009), and PLS resampling routines should be modified accordingly. Similarly, the new

permutation approach to PLS-PM inference (cf. Chin & Dibbern, 2010; Crisci & D’Ambra, 2012)

would also need to be adjusted for complex survey data (Pesarin & Salmaso, 2010). Guidance for

incorporating MLM and design-based resampling techniques into PLS-PM can be found in the

SEM field, which has made considerable advances in both of these areas (e.g., Bai & Poon,

2009; Hox, 2013; Kaplan, Kim, & Kim, 2009; Oberski, in press; Rabe-Hesketh, Skrondal, &

Zheng, 2007; Stapleton, 2008; Wu & Kwok, 2012).

Is PLS-PM Advantageous at Small Sample Sizes?

Rönkkö and Evermann reviewed and evaluated previous studies addressing the performance of

PLS-PM with small sample sizes on various criteria (e.g., convergence, bias, efficiency, and

power). They argued that the apparent advantages of PLS-PM with small sample sizes can be

attributed to (a) ignoring the effects of chance correlations among measurement errors, which

inflates parameter estimates and (b) the use of a t distribution for null hypothesis statistical testing

when the coefficient distributions are not normal, which leads to increased Type I error rates. To

bolster this argument, Rönkkö and Evermann reported a small simulation that compared the per-

formance of PLS-PM, SEM, and path analysis with summed scales across sample sizes of 25, 50,

and 100. They found that, when the population effect size was zero, PLS-PM produced bimodal

parameter estimates with modes that were positive and negative, whereas SEM and the summed

scale approach yielded estimates centered at zero. When the population effect was positive,
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PLS-PM generated estimates that progressively exceeded the population effect as sample size

decreased, whereas SEM produced estimates centered at the population value, and summed scales

yielded estimates slightly below the population value. Based on these results and related empirical

evidence from the literature (Chin & Newsted, 1999), Rönkkö and Evermann concluded that

PLS-PM has no advantages when applied to small samples and recommended that researchers

should maximize sample size. If this is not possible, they suggested making use of specialized

small sample estimation techniques developed in the SEM context or parceling indicators to

reduce the overall number of observed variables in the model.

Henseler et al. agreed with Rönkkö and Evermann’s observation that many researchers appar-

ently assume that PLS-PM is amenable to small sample sizes. They then compared PLS-PM to SEM

with regard to both statistical power and convergence. They cited evidence from the literature indi-

cating that, in small samples, SEM tends to produce smaller standard errors than those yielded by

PLS-PM and argued that any conflicting findings in this regard are statistical artifacts stemming

from fundamental differences between composite and common factor model parameters. Further-

more, Henseler et al. reiterated their earlier simulation findings on the high frequency of nonconver-

gence and improper solutions in SEM under misspecified measurement models and a sample size of

100. From these observations, Henseler et al. concluded that, with small samples, PLS-PM can be

successfully applied when other methods fail, referring particularly to SEM.

The different conclusions drawn by Rönkkö and Evermann and Henseler et al. seem to result

from the different weights they place on the criteria typically used to evaluate the performance of

analytical techniques with small samples. Foremost among these criteria are convergence, bias, effi-

ciency, and statistical power. Certainly, an analytical approach that frequently fails to converge to a

solution is problematic. However, as we previously discussed, Henseler et al.’s particular results on

the small-sample convergence behavior of ML-based SEM actually demonstrated its superiority

over PLS-PM in signaling misspecified measurement models. Furthermore, there are various ways

to address convergence issues in SEM, such as choosing better starting values, increasing the num-

ber of iterations, and modifying convergence criteria (defaults for these factors differ across

packages and need not be accepted without question). For example, the Stata program has recently

introduced an advanced SEM module which has various maximization options to help increase con-

vergence rates when using ML (StataCorp, 2013). In addition, the Mplus package for SEM offers

sophisticated optimization routines for ML such as numerical and Monte Carlo integration (L. K.

Muthén & Muthén, 1998-2013), which facilitate the estimation of complex models. Future compar-

isons between PLS-PM and SEM should consider these newly developed algorithms, as past reliance

on software defaults may have painted an overly negative picture of ML’s small sample convergence

behavior with properly specified models. Although one could argue that the various convergence

enhancements might potentially reduce ML’s first line of defense against misspecified models, the

judicious use of global and local fit tests should help offset this problem.

Regarding the effects of sample size on bias, efficiency, and power, existing simulation studies

have not yielded consistent results. Some studies suggest few appreciable differences between

SEM and PLS-PM (e.g., Goodhue, Lewis, & Thompson, 2012b), whereas other studies indicate

that SEM outperforms PLS-PM (Chumney, 2013; Hulland, Ryan, & Rayner, 2010). Further evi-

dence suggests that the small sample performance of both SEM and PLS-PM depends on which

specific aspects of the model are considered. For example, some findings indicate that PLS-PM

surpasses SEM at recovering estimates and standard errors within the structural (inner) portion

of the model, whereas ML performs better in this regard within the measurement (outer) aspect

of the model (Sharma & Kim, 2013; Vilares, Almeida, & Coelho, 2010; Vilares & Coelho, 2013).

We agree with Henseler et al. that much of the relevant literature comparing the finite sample behavior

of PLS-PM and SEM is inconclusive due to naı̈ve comparisons of composite and common factor

models (see also Marcoulides & Chin, 2013; Marcoulides, Chin, & Saunders, 2012; Rai, Goodhue,

McIntosh et al. 231



Henseler, & Thompson, 2013). Treiblmaier et al. (2011) show how to properly parameterize SEM

approaches to allow unconfounded head-to-head comparisons with PLS-PM in the composite-

based structural model case.

Another major limitation of existing studies comparing PLS-PM and SEM is that they have not

considered advances in SEM estimation and testing procedures designed to compensate for small

sample size. As Rönkkö and Evermann note, this is an active area of research. For example, several

Bartlett-type (1954) corrections to the conventional ML chi-square statistic have been developed to

control Type I error rates when the sample size is low relative to the number of parameters in the

model (Herzog & Boomsma, 2009; Herzog, Boomsma, & Reinecke, 2007). Among these proce-

dures, the Swain (1975) correction has been shown to perform particularly well (Antonakis & Bas-

tardoz, 2013; Bastardoz & Antonakis, 2013; Herzog & Boomsma, 2009; Herzog et al., 2007;

Jackson, Voth, & Frey, 2013; Wolf, Harrington, Clark, & Miller, 2013). In addition, ridge-type cor-

rections for SEM yield consistent estimates, accurate tests of model fit, and high convergence rates

in small samples (Bentler & Yuan, 2011; Jung, 2013; Yuan & Chan, 2008; Yuan, Wu, & Bentler,

2010). Furthermore, robust approaches have been developed for dealing with other suboptimal data

conditions that tend to exacerbate the impact of small sample size on SEM, such as missing data

(Enders, 2006, 2011; Raykov, 2012; Savalei, 2010a, 2010b; Savalei & Yuan, 2009; Yuan & Zhang,

2012) and nonnormality (Lei & Wu, 2012; Savalei, 2010a, 2010b, in press; Savalei & Falk, in press).

Despite the availability of these advancements, the standard practice in comparisons of PLS-PM and

SEM is to implement the latter using classical ML estimation, which does not reflect SEM’s current

capabilities. Therefore, future comparative studies on PLS-PM and SEM should be expanded to

include the above-mentioned innovations to obtain more current and conclusive results about small

sample performance.

One of Rönkkö and Evermann’s suggestions for handling small sample size in SEM that war-

rants further comment involves the use of parcels. Briefly, parceling involves reducing the size of

a model by aggregating (i.e., summing or averaging) subsets of observed variables and then using

the aggregates as indicators. Research on the advantages and disadvantages of parceling is

ongoing (e.g., Little, Rhemtulla, Gibson, & Schoemann, 2013; Marsh, Lüdtke, Nagengast, Morin,

& Von Davier, 2013; Rocha & Chelladurai, 2012). One of the primary concerns with parceling is

that collapsing indicators into aggregates can conceal misspecification in the measurement portion

of the model, leading to overly optimistic fit statistics and inflated estimates of structural para-

meters. Even in the ideal case where the scales are undimensional (i.e., no correlated measurement

errors or cross-loadings), the model is correctly specified, and the observed variables are multi-

variate normally distributed, SEM fit statistics and parameter estimates have been shown to be

vary depending on how indicators are allocated to parcels (Sterba, 2011; Sterba & MacCallum,

2010). Therefore, parceling should used cautiously, and researchers should report the variability

of fit statistics and parameter estimates across different allocations of indicators to parcels. Soft-

ware modules are available to facilitate the construction and display of parcel-allocation distribu-

tions (Sterba, 2011; Sterba & MacCallum, 2010).

Can PLS-PM Be Used for Exploratory Modeling?

Rönkkö and Evermann pointed out that, despite the frequent descriptions of PLS-PM as an explora-

tory approach to model building, most applications are actually just as confirmatory as SEM studies,

such that researchers use theory to specify both the constructs and system of causal pathways a

priori, followed by parameter estimation and model evaluation. Rönkkö and Evermann claimed that

the seminal work on PLS-PM did not emphasize its exploratory potential, deeming it unsuitable for

both model discovery (i.e., learning a model in a data-driven fashion when the lack of a guiding the-

ory prevents a complete a priori specification of relationships) and model modification (i.e., revising

232 Organizational Research Methods 17(2)



an initially postulated model a posteriori to achieve better representation of the sample data).

Regarding model discovery, Rönkkö and Evermann asserted that PLS-PM cannot extract patterns

from data because the model must be fully specified for analysis, with each indicator assigned to

one and only composite variable in the outer aspect of the model and the relations among the com-

posites posited for the inner aspect of the model. Concerning model modification, Rönkkö and Ever-

mann voiced concerns over PLS-PM because it does not provide overidentification tests and

modification indices to detect incorrect parameter restrictions. They also pointed out that both model

discovery and model modification techniques already exist in SEM, and if an hypothesized model is

in doubt, limited information estimators for SEM (e.g., 2SLS) are available that are less prone to

propagating the impact of specification errors throughout the model.

Henseler et al. responded by criticizing Rönkkö and Evermann’s representation of the early lit-

erature on PLS-PM, citing quotes from Wold that explicitly promoted an exploratory paradigm for

the method. However, Henseler et al. noted that very few researchers (about 14%) who use PLS-PM

have adopted an exploratory perspective. Nevertheless, Henseler et al. asserted that applications of

SEM—ubiquitously touted as a confirmatory technique—also frequently involve a substantial dose

of exploration to improve model fit. Furthermore, they claimed that PLS-PM still enables explora-

tory modeling because (a) the researcher can always start with a saturated inner model (i.e., all pos-

sible composite-level paths are included a priori) and then remove any nonsignificant relationships a

posteriori), (b) chi-square tests and other fit indices (e.g., SRMR) can be used to assess whether the

model is underparameterized, and (c) cases where the common factor model does not hold support

the use of PLS-PM to explore whether the composite factor model is more appropriate. Henseler

et al. also countered Rönkkö and Evermann’s support of SEM-based modification indices and lim-

ited information estimators (e.g., 2SLS) by noting that the former have proven unreliable, and that

PLS-PM is similar to limited information estimators in terms of dampening the impact of specifica-

tion errors, given that the regression equations in PLS-PM are estimated separately.

Our reflections on this exchange concentrate on the fundamental methodological issue raised,

that is, the current and potential capabilities of PLS-PM for exploratory model building. First, as

to modifying an hypothesized model that does not adequately fit to the data, we concur with

Henseler et al. that many SEM applications end up being partially exploratory, and that conventional

SEM modification indices (MIs) show suboptimal performance. More specifically, MIs (a) assume

that the rest of the model is fully correct when considering the tenability of freeing a specific restric-

tion (i.e., estimating the expected change in both the global chi-square statistic and parameter esti-

mates) and (b) are prone to capitalization on chance if corrective procedures are not used (Green,

Thompson, & Babyak, 1998; Green, Thompson, & Poirer, 1999, 2001; Hancock, 1999). Therefore,

post hoc model modification can actually increase rather than reduce specification errors (W. Fan,

2010). However, local specification checks (e.g., tests of vanishing partial correlations, IVE) can

help overcome some of these limitations in both SEM and PLS-PM applications, as they evaluate

each constraint independently without assuming the remaining constraints are correct (Kirby &

Bollen, 2009; Shipley, 2000, 2003).

Concerning Henseler et al.’s claim that PLS-PM is an exploratory alternative to SEM when the

common factor model is untenable, we maintain that researchers need to make an a priori choice

between the common factor and composite factor model. This decision should be based on careful

consideration of whether the observed variables are reflective or formative indicators of the the-

oretical constructs (Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; MacKenzie, Podsakoff, &

Jarvis, 2005). If the theoretical constructs can be viewed as common underlying causes of their

respective indicators, then a reflective (i.e., common factor) measurement model is the obvious

choice. Reflective measurement models are particularly well suited to multi-item instruments that

assess unobservable psychological constructs (e.g., anxiety, self-esteem, affect, quality of life,

etc.; Fayers & Hand, 1997, 2002; Nunnally & Bernstein, 1994; Raykov & Marcoulides, 2010).
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In cases where the indicators do not reflect the theoretical constructs but rather combine to pro-

duce them, a formative (i.e., composite) measurement model is appropriate (Diamantopoulos &

Temme, 2013; Kline, 2013b). For instance, socioeconomic status is typically conceived of as a

formative construct, generated by a weighted linear combination of indicators such as income,

educational attainment, occupational prestige, and neighborhood (Bollen & Lennox, 1991;

National Center for Education Statistics, 2012). Formative models can be implemented using

PLS-PM, other varieties of composite-based path modeling (Hwang, 2008, 2009; Hwang &

Takane, 2004; A. Tenenhaus, 2013; A. Tenenhaus & Tenenhaus, 2011), reparameterizations of

SEM for handling composites (Dolan, 1996; Dolan et al., 1999; McDonald, 1996), or modified

versions of reflective factor models (e.g., Edwards, 2011; Treiblmaier et al., 2011). The latter two

options are the most advantageous, as they allow the use of (a) established methods of parameter

estimation and fit assessment and (b) a combination of common factors and composites within the

same path model, if required.

We should add that applying limited information estimators, as recommended by both Rönkkö

and Evermann and Henseler et al., could lull practitioners into a false sense of security regarding

the usefulness of their models, particularly when the model is grossly misspecified. In such cases,

there is little point in interpreting parameter estimates, particularly when the researcher does not

know the location and magnitude of the specification errors. Again, we emphasize that local tests

should be used to help ferret out the specific sources of misspecification in a model.

When a researcher has no guiding theory, such that the goal is model discovery, we concur with

Rönkkö and Evermann that exploratory methods with strong analytical foundations are more widely

available in SEM than in PLS-PM. The particular brand of exploratory SEM (Asparouhov &

Muthén, 2009) referenced by Rönkkö and Evermann is rather limited, however, as it focuses spe-

cifically on adding cross-loadings into CFA and SEM measurement models. Beyond this proce-

dure, there are numerous automated search algorithms that can determine the optimal number

of latent variables and system of relations between them (e.g., Landsheer, 2010; Marcoulides &

Ing, 2012; Shimizu et al., 2011; Spirtes, Glymour, Scheines, & Tillman, 2010; Tu & Xu, 2011;

Xu, 2010, 2012; Zheng & Pavlou, 2010). These techniques will almost invariably return several

models that provide a good fit to the data. Subject matter expertise can then be used to help select

the most plausible of the discovered models, which can be subjected to cross-validation using

independent data. Although certainly not guaranteed to reveal the ‘‘truth’’ about the causal

data-generating process in any given application, these exploratory SEM procedures can poten-

tially discover meaningful and useful models that might not have been conceived in advance.

Concerning model discovery strategies for PLS-PM, we disagree with Henseler et al.’s suggestion

to begin with a fully saturated inner model and then delete nonsignificant paths. This approach is

suboptimal, as it fails to recognize that the correct model might not result by simply restricting non-

significant pathways in the estimated model. Rather, the true model could differ markedly from the

estimated model in terms of the number of composite variables, the pattern of free and fixed para-

meters, and the causal flow of the model. Therefore, when PLS-PM practitioners do not have a guiding

theory, a more rigorous and sophisticated approach is needed to reveal plausible model structures

Presently, we are aware of only one technique for model discovery in the PLS-PM context, namely

universal structure modeling (USM; Buckler & Hennig-Thurau, 2008; Turkyilmaz, Oztekin, Zaim, &

Demirel, 2013), which is implemented in the Neusrel software package (http://www.neusrel.com/wel-

come/). Briefly, USM proceeds in two steps: (a) the use of PLS-based exploratory algorithms to assign

observed variables to a user-specified number of composites and (b) application of neural networks to

discover the optimal system of linear, nonlinear, and interactive pathways among the composites.

Unfortunately, there is a dearth of published empirical research comparing USM to extant SEM

and PLS-PM exploratory modeling procedures. Further work should be aimed at filling this gap,

as well drawing from the vast data mining literature to construct automated model search
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algorithms suitable for PLS-PM (Chakrabarti et al., 2009; Gaber, 2010; Kargupta, Han, Yu, Mot-

wani, & Kuma, 2009; Lin, Xie, Wasilewska, & Liau, 2008; Ratner, 2012). Indeed, PLS regression

is often used for data mining (Allen, Peterson, Vannucci, & Maletić-Savatić, 2013; Vidaurre, van

Gerven, Bielza, Larrañaga, & Heskes, 2013; S. Wold, Eriksson, & Kettaneh, 2010), and potential

extensions of this approach should be examined. Given that sharply defined, a priori conceptual

frameworks are often lacking in applied research, such as when data are collected to simply

describe populations or meet program reporting requirements (Boslaugh, 2007; Brady, Grand,

Powell, & Schink, 2001; Trzesniewski, Donnellan, & Lucas, 2011; Vartanian, 2011), it is crucial

that the methodological toolboxes of both PLS-PM and SEM practitioners contain viable

approaches for exploratory modeling.

Conclusion

The present commentary has taken stock of the recent exchange between Rönkkö and Evermann

and Henseler et al. on the properties and capabilities of PLS-PM. For each point of the exchange,

we have summarized and critically evaluated the core arguments in light of the broader methodo-

logical and statistical literature (e.g., psychometrics, econometrics, SEM, and causal analysis). At

the same time, we also offered specific recommendations for improving the ability of PLS-PM to

estimate and test theoretical models. Many of these recommendations extend to other approaches

for path modeling with composite variables (Hwang, 2008, 2009; Hwang & Takane, 2004; A.

Tenenhaus, 2013; A. Tenenhaus & Tenenhaus, 2011), which have limitations similar to those

of PLS-PM in terms of their ability to validate causal structures. Therefore, it is our hope that

PLS-PM specialists and other methodologists will take the initiative to further develop and exam-

ine the viability of our ideas in future theoretical and empirical work, which may help to ultimately

resolve the growing impasse between proponents and critics of PLS-PM. It should become

increasingly feasible to implement and test our suggestions, given the ongoing development of

open-source software for custom statistical programming (e.g., R Core Team, 2013), including

modules for conducting PLS-PM (Monecke, 2013; Rönkkö, 2013; Sanchez & Trinchera, 2013)

and similar composite-based modeling approaches (A. Tenenhaus, 2013).

Looking ahead, we maintain that PLS-PM developers and practitioners should take heed of

two key considerations that arose from our coverage of the two target articles and other relevant

literature. First, we believe that much of the controversy surrounding the viability of PLS-PM as a

statistical method can be attributed to its original development and ongoing application as a tech-

nique that attempts to imitate common factor-based SEM. As Rigdon (2012) aptly points out,

‘‘Both the method’s originators and its critics have tended to evaluate PLS path modeling in terms

of what it is not’’ (p. 342). Moreover, the purported advantages of PLS-PM relative to SEM (e.g.,

reduced computational demands and superior convergence behavior, robustness to small sample

size, tolerance of badly behaved distributions, exploratory capabilities in the absence of theory,

etc.) also exist in the SEM domain, owing to recent theoretical and technical innovations (see

Hoyle, 2012; Kaplan, 2009; Kline, 2013a; Skrondal & Rabe-Hesketh, 2004). Even the new PLSc

technique does not seem capable of completely matching SEM’s estimation and testing capabil-

ities for common factor-based modeling (e.g., Dijkstra, 2010, in press; Dijkstra & Henseler, 2012,

2013; Dijkstra & Schermelleh-Engel, in press) because it is not equipped to deal with the ubiqui-

tous problem of correlated measurement errors (e.g., Cole et al., 2007; Reddy, 1992; Rönkkö,

2014; Saris & Aalberts, 2003; Westfall et al., 2012). Therefore, we fully support Rigdon’s

(2012) recommendation for PLS-PM to divorce itself completely from the factor-analytic tradition

and concentrate on developing itself further as a purely composite-based statistical methodology.

We also contend that this paradigm shift should be respected when using other strategies for

composite-based structural modeling (Hwang, 2008, 2009; Hwang & Takane, 2004; A. Tenenhaus,
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2013; A. Tenenhaus & Tenenhaus, 2011). Anything else would appear to invite stalemate and

stagnation, outcomes that we would certainly like to see avoided.

Second, even within a solely composite-focused modeling league, PLS-PM and related meth-

ods will still face tough competition from SEM, which can be reparameterized in different ways to

handle composite variables (Bollen, 2011; Bollen & Bauldry, 2011; Bollen & Davis, 2009; Dolan,

1996; Dolan et al., 1999; McDonald, 1996; Treiblmaier et al., 2011). Given the versatile and pow-

erful array of model estimation and testing routines available in SEM, we are frankly skeptical at

this time that either PLS-PM or any of its sister techniques could be shown to be superior in the

composite case. If not, the recent calls for discontinuing the use of PLS-PM might be justified

(Antonakis et al., 2010; Rönkkö, 2014; Rönkkö & Evermann, 2013; Rönkkö & Ylitalo, 2010.

However, any firm judgments in this regard should rest on a comprehensive, rigorous program

of comparative research incorporating our recommendations for improving PLS-PM and similar

approaches to path modeling with composite variables.
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Allen, G. I., Peterson, C., Vannucci, M., & Maletić-Savatić, M. (2013). Regularized partial least squares with an

application to NMR spectroscopy. Statistical Analysis and Data Mining, 6(4), 302-314. doi:10.1002/sam.

11169

Angrist, J. D, & Krueger, A. B. (2001). Instrumental variables and the search for identification: From sup-

ply and demand to natural experiments. Journal of Economic Perspectives, 15(4), 69-85. doi:10.1257/

jep.15.4.69
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