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on His Birth Centenary

Krishnaswami Alladi and Steven Krantz, Coordinating Editors

This is Part I of a two-part feature on Paul Erdős following his centennial. There are eleven
articles by leading experts who have reflected on the remarkable life, contributions, and
influence of this towering figure of twentieth century mathematics. Here in Part I we have
contributions from Krishnaswami Alladi and Steven Krantz, László Lovász and Vera T.
Sós, Ronald Graham and Joel Spencer, Jean-Pierre Kahane, and Mel Nathanson.
Part II will contain articles by Noga Alon, Dan Goldston, András Sárközy, József Szabados,
Gérald Tenenbaum, and Stephan Garcia and Amy Shoemaker.
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One of the Most Influential Mathematicians

of Our Time

The 100th birth anniversary of the great Hun-
garian mathematician Paul Erdős was celebrated
in Budapest in July 2013 with an international
conference that attracted about 750 participants.
Erdős was one of the most influential mathemati-
cians of the twentieth century for a variety of
reasons. He made fundamental and pioneering
contributions in several fields of mathematics, such
as number theory, combinatorics, graph theory,
analysis, geometry, and set theory. He was perhaps
the most prolific mathematician in history after
Euler, with more than 1,500 papers, but what was
most interesting about this was that more than
half of these were joint papers and many of his
collaborators were very young. Thus through the
fundamental ideas in his papers and through these
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Paul Erdős working in his office at the Hungarian

Academy of Sciences, Budapest.

collaborations, he influenced several generations
of mathematicians and molded the careers of many.
He was the greatest problem proposer in history,
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An emblem of Erdős made for the Erdős

Memorial Conference in Budapest, Hungary, July

1999.

and for many of his problems he offered prize
money depending on their difficulty. These prob-
lems have shaped the development of several areas,
and most have remained unsolved. The lectures
at the Erdős Centennial Conference demonstrated
that the influence of Paul Erdős on the growth of
mathematics remains strong. Here we have gath-
ered eleven articles by leading mathematicians on
various aspects of Erdős’s work and his influence
on current research. In our article we make some
personal reflections, touch upon some of Erdős’s
work in number theory, and describe ways in which
his legacy has been honored.

Like all great geniuses, Erdős had his idiosyn-
crasies. But even in a mathematical world used
to the peculiarities of its luminaries, Erdős was a
most unusual phenomenon. There are hundreds
of Erdős stories that are fondly recalled at various
mathematical gatherings, and this feature has a
good sampling of such recollections.

Like many of the greatest mathematicians in
history, Erdős made his entry into the world of
research very early in his life and in a grand manner.
His very first paper [4] was a proof of Bertrand’s
postulate, which states that for any n ≥ 1, there
is always a prime number in the interval [n,2n].
The Russian mathematician Chebychev was the
first to prove this, but Erdős’s proof utilizing the
study of the prime factors of the middle binomial
coefficient is so elegant and clever that it is this
proof that is given in all textbooks on number
theory. News of Erdős’s proof spread like wildfire
and was accompanied by a rhyme:“Chebychev said
it and I say it again, there is always a prime between
n and 2n.” During many of his lectures, and in
particular in an article entitled “Ramanujan and I”
[7], published on the occasion of the Ramanujan
Centennial, Erdős has pointed out that there
are similarities between his proof of Bertrand’s
postulate and Ramanujan’s, but he was not aware

of Ramanujan’s proof when he wrote his first paper
in 1932.

Erdős has often jokingly said that God has a
book of the most beautiful proofs of the most
important theorems. His desire was to glance
through this book of God (after death)! It should be
pointed out that Erdős was an atheist and referred
to God as the Supreme Fascist. But in the case
of the proofs, he admitted that God possessed
this wonderful Book. Martin Aigner and Gunter
Ziegler have brought out a publication [1] entitled
Proofs from The Book containing the most beautiful
proofs of important theorems in various branches
of mathematics. There are several proofs of Erdős
in this book, since his proofs are extremely clever,
elegant, and elementary.

A famous problem of Erdős which is still
unsolved and for which he has offered US$3,000 is
the following: If {an} is a sequence of increasing
positive integers such that

∑ 1
an

is divergent, then

prove that the sequence {an} contains arbitrarily
long arithmetic progressions. An important special
case of this problem when the {an} is the sequence
of primes has been settled, and this is the celebrated
Green-Tao theorem [11]. In 1936 Erdős and Turán
conjectured that if {an} has upper positive density,
then {an} contains arbitrarily long arithmetic
progressions. Erdős offered US$1,000 for the
resolution of this conjecture, which was proved by
Szemerédi [20].

Prime numbers were among Erdős’s favorite
topics of investigation. The prime number theorem,
which states that the number of primes up to x
is asymptotic to x/ log x, implies that the average
gap between the nth prime pn and the next one is
asymptotic to logn. Two questions immediately
arise: (i) Can the ratio rn = (pn+1 − pn)/ logn be
arbitrarily large? (ii) How small can this ratio
be infinitely often? The unsolved prime twins
conjecture is the extreme solution to (ii). The
recent sensational result of Zhang [23] on bounded
gaps between primes shows that the ratio is
O(1/ logn) infinitely often (there is more about
this in Goldston’s article in Part II of this feature.
See also Note Added in Proof to this article). The
famous US$10,000 problem of Erdős concerns (i).
Westzynthius [22] in 1931 showed that the ratio rn
can be arbitrarily large. Subsequently, the Scottish
mathematician Rankin [17] was able to show more
precisely that there exists a constant c such that

rn >
c. log logn. log log log logn

(log log logn)2
infinitely often.

Back in 1936, Erdős [5] had established a similar
result but without the loglogloglogn factor in the
numerator. The Erdős US$10,000 problem is to
prove or disprove that the constant c can be
chosen arbitrarily large. See "Note Added in Proof"
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in this article. Ron Graham, who was the financial
caretaker of Erdős for many years, has a pot of
money left over to give out the prizes when the
problems are solved.

Among Erdős’s many fundamental contributions
it is universally agreed that the two most important
are (i) his joint paper with Mark Kac [9], which
ushered in the subject of probabilistic number
theory, and (ii) his elementary proof of the prime
number theorem along with Atle Selberg.

The first proof of the prime number theorem
was given toward the end of the nineteenth century
simultaneously by Hadamard and de la Vallee
Poussin by utilizing the properties of the zeta
function ζ(s) as a function of the complex variable
s as envisioned by Riemann. The method of this
proof shows that the prime number theorem is
equivalent to the assertion that ζ(1+ it) 6= 0 for
real t . This led to the belief that any proof of the
prime number theorem had to rely on the theory
of functions of a complex variable. The noted
British mathematician G. H. Hardy challenged the
world to produce an “elementary” proof of the
prime number theorem, namely, a proof that uses
only properties of real numbers. He proclaimed
that if such an elementary proof is found, then
the books would have to be rewritten, since it
would change our view of how the subject hangs
together. In 1949 Erdős and Selberg created a
sensation by producing such an elementary proof.
The elementary proof was actually found by them
jointly by starting with a fundamental lemma of
Selberg, but for various reasons (that we shall not
get into here) they had a misunderstanding and
decided to write separate papers. Selberg’s paper
[19] appeared in the Annals of Mathematics; Erdős
published his paper [6] in the Proceedings of the
National Academy of Sciences.

In contrast, the Erdős-Kac collaboration [9] was
a happy story. To understand this in context,
we mention that in 1917 Hardy and Ramanujan
[13], who did the first serious investigation of
ν(n), the number of prime factors of n, showed
that the average order of ν(n) is asymptotically
log logn. They noted that ν(n) also has normal
order log logn. This means that, for every ǫ > 0,
ν(n)/ log logn is almost always between 1− ǫ and
1+ǫ. They also showed that it makes no difference
whether the prime factors of n are counted
distinctly or with multiplicity. In 1934, Paul Turán,
another great Hungarian mathematician who was
Erdős’s close friend, gave a simpler proof [21]
of the Hardy-Ramanujan results by computing
an upper bound for the second moment of ν(n)
with mean log logn and noted that a similar
second moment estimate could be given for certain
additive functions, namely, functions f (n) which
like ν(n) satisfy f (mn) = f (m) + f (n) when m
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Paul Erdős and Ernst Straus on the campus of UC

Santa Barbara during the West Coast Number

Theory Conference, December 1978.

and n are relatively prime. The Hardy-Ramanujan
and Turán results gave a hint of probabilistic
underpinnings, but this became clear only later. In
1939 the great probabilist Mark Kac was giving a
lecture at Princeton outlining various applications
of probability. He constructed a model for the study
of additive functions and conjectured that the
distribution of a wide class of additive functions
about their average order and with an appropriately
defined variance would be Gaussian. Erdős, who
was in the audience, perked up. He realized that
Kac’s conjecture could be proved using the Brun
sieve, a topic in which Erdős was a master. He
spoke to Kac after the lecture and they proved
the conjecture together. To quote Erdős (see [7]):
“Neither of us completely understood what the
other was doing, but we realized that our joint
effort will give the theorem, and to be a little
impudent and conceited, probabilistic number
theory was born! This collaboration is a good
example to show that two brains can be better than
one, since neither of us could have done the work
alone.” Subsequently Kubilius [15] extended the
ideas and methods of Turán and of Erdős-Kac to
treat the non-Gaussian cases as well. The subject of
probabilistic number theory, ushered in by Erdős
and Kac, is an active field of research today (see
the two-volume book of Elliott [3]).

Another significant example of a paper of Erdős
that led to a major field of study is his work with
Rényi on random graphs [10]. There are numerous
other ideas of Erdős that have had, and continue
to have, widespread influence. The articles that
follow describe many developments whose origins
can be traced back to Erdős.

Many great mathematicians have written papers
that have influenced the development of the
subject and created new fields of study. What
sets Erdős apart from all these luminaries is the
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Paul Erdős lecturing at the Institute of

Mathematical Sciences in Madras, India, in

January 1984. Krishna Alladi is in the audience

in the first row.

manner in which he collaborated with hundreds of
mathematicians junior and senior and profoundly
influenced them. It was his life’s mission to seek out
talented youngsters and mentor them in the study
of mathematics. He jokingly said that he sought
young collaborators, because he believed that he
would be alive if at least half his collaborators
were alive! The two of us will briefly share our
experience in collaborating with Erdős.

Alladi’s First Meeting and Collaboration with
Erdős

As an undergraduate student in Madras, India,
I was working on number theory on my own
and read several introductory books. I noticed
that there was practically nothing in these books
on the sum of the prime factors of an integer.
So I defined A(n) to be the sum of the prime
factors of an integer (summed with multiplicity)
and observed it had two very nice properties: (i)
A(mn) = A(m) + A(n), for all m,n, and (ii) the
number of solutions to A(n) =m is the number of
partitions of m into primes. Thus I was convinced
that A(n) was worthy of a closer study, and I
investigated many of its properties. I was advised
that I should contact Erdős to evaluate this work.
Thus I sent a letter to the Hungarian Academy
of Sciences, requesting that it be forwarded to
Erdős. Within three weeks I received a response
from him saying that soon he would be at the
Indian Statistical Institute in Calcutta in December
1974 to speak at a conference for the 100th birth
anniversary of its founder, Professor Mahalanobis.
He enquired whether I could come to Calcutta. I
responded saying that my paper on this topic was
accepted for presentation at that conference, but I
could not go due to my university exams. I said
that my father, who will be giving one of the main
lectures on probability at that conference, will be

presenting my work in a special session talk. Erdős
attended my father’s presentation of my work. He
went up to him and said, “While I am pleased to
meet you, I would be happier to meet your son.”
He then told my father that he was scheduled to
fly to Sydney from Calcutta a week later, but he
was willing to reroute his journey, fly via Madras
to Sydney to meet me. This gesture by a great
mathematician to journey out of the way to meet a
student speaks volumes about his passion to spot
and encourage young mathematicians.

I went to the Madras airport to meet Erdős.
Needless to say I was very nervous. He put me at
ease by saying hello and immediately afterward the
following: “Do you know my poem about Madras:

This to the city of Madras
the home of the curry and the dhal,
where Iyers speak only to Iyengars,
and Iyengars speak only to God”?

I said I did not know this poem. He said this is
modeled along a similar well-known poem about
Boston:

This to the city of Boston
the home of the bean and the cod,
where Lowells speak only to Cabots,
and Cabots speak only to God.

The Iyers and Iyengars are two Brahmin castes
of the Hindu religion. The great Nobel laureate
physicist Sir C. V. Raman was an Iyer, and Srinivasa
Ramanujan was an Iyengar.

He spent three days in Madras, and I was with him
all the time. When I told him that I had calculated
the average order of A(n) to be asymptotically
π2n/6 logn but could not determine its normal
order, he said thatA(n)will not have a normal order
because A(n) is dominated by P1(n), the largest
prime factor of n, and P1(n) does not have a normal
order. Then I asked him if P1(n) is subtracted from
A(n), would the remaining sum be dominated by
P2(n), the second largest prime factor on n, and
so on? He said that this is very likely and that my
question was very nice. So this led to our very first
paper [2], in which we showed among other things
that if Pk(n) denotes the kth largest prime factor
of n, then A(n)− P1(n)− · · · − Pk−1(n) and Pk(n)
have the same average (asymptotically), namely,
ckn

1/k/logkn, where ck is a rational multiple of
ζ(1+ 1/k). All in all, I wrote five joint papers with
him.

In December 1974 I had applied for admission
to graduate schools in America. Erdős said he
would write exactly one letter for me regarding
my graduate admission. So while in Madras, he
wrote a letter to Ernst Straus, his long-time friend
at UCLA. By the end of January 1975, I received
a Chancellors Fellowship from UCLA for my PhD,
and I went there to work under Straus. Thus
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my contact with Erdős profoundly influenced my
career. He corresponded with me from 1975 until
his death in 1996 and supported my mathematical
and professional progress. Over the years my
family and I had the pleasure of hosting him in
India, Florida, and in almost every place where I
went for an extended visit.

Krantz’s Collaboration with Erdős

In the early 1980s I had a big fight with my
colleague Tory Parsons. We were very fond of
each other and did not really want to fight, so
we ended up kissing and making up. We did so
by talking about mathematics. And we ended up
writing a little paper about a covering lemma. The
following summer, Tory gave a talk on our paper
at a conference in Europe. In the middle of the
talk Erdős jumped up and shouted, “But don’t you
realize that your result will allow us to prove the
following theorems?” And Chris Godsil jumped
up and said, “And you can also prove these other
theorems.” Next thing we knew we had a four-way
paper going [8], and three of us earned an Erdős
number of one. This just goes to show that even
fighting can have fruitful results.

Honoring the Legacy of Erdős

In the last quarter-century, books and movies on the
remarkable life of Paul Erdős have been produced.
The most well-known book is by Paul Hoffman,
entitled The Man Who Loved Only Numbers [14],
and it appeared in 1998 after Erdős passed away.
The equally charming book entitled My Brain Is
Open by Bruce Schechter [18] also appeared in
1998. Erdős loved to discuss mathematics with
almost anyone, and whenever he was ready for
discussion, he would say, “Go ahead, my brain is
open.” Hence the title of the second book. The
story of Erdős rerouting his travel to meet Alladi
is described in this book in the opening chapter,
entitled “Traveling”, thanks to Ron Graham, who
drew the attention of the author, Bruce Schechter,
to this story. Both of these books are for the
general public and convey the greatness of Erdős
as a man and as a mathematician.

To complement these books is a nice documen-
tary film called n Is a Number by Paul Csicsery,
which has been shown at several major confer-
ences. Many top mathematicians who worked
closely with Erdős and collaborated with him are
interviewed, and there are many lovely clips of
Erdős in discussion with mathematicians around
the world.

For Erdős’s seventieth birth anniversary, Com-
binatorica, a journal he founded, brought out a
special volume in his honor. Three years after Erdős
passed away, a conference entitled “Paul Erdős

and his mathematics” was held at the Hungarian
Academy of Sciences, Budapest, from July 4 to 11,
1999. A two-volume book [12] under the same title
was published comprised of mathematical papers
and reminiscences by several of the main speakers
at that conference. More than five hundred mathe-
maticians attended that conference, and some of
them contributed papers to the memorial volume
of Combinatorica.

In 1999 the American Mathematical Society
started the Erdős Memorial Lectures with support
from a fund created by Mr. Beal, a Dallas banker and
mathematics enthusiast. This lecture is delivered
annually at one of its meetings. A year earlier, in
1998, at the University of Florida, where Erdős
visited every spring, the annual Erdős Colloquium
was launched during Alladi’s term as chair. Ron
Graham gave the first Erdős Colloquium in Florida
as well as the first Erdős Memorial Lecture for
the AMS. One year earlier, in 1997, Memphis State
University (where Erdős was an adjunct professor
since 1975) launched the Erdős Memorial Lectures,
the first of which was delivered by Vera T. Sós.

Erdős, like Ramanujan, was such an unusual
personality that articles about him have appeared
in magazines such as the New Yorker, Discover,
and the like. When he died, both the New York
Times and the London Times published substantial
obituaries.

Awards and Distinctions

Erdős received many prizes and much recognition
for his monumental contributions. We mention
just a few. He was awarded the 1951 Cole Prize
of the AMS for his many fundamental papers and
specifically for his “Elementary proof of the prime
number theorem”. In 1983 he was the recipient of
the Wolf Prize for his lifelong contributions. He was
also given an Honorary Doctorate by Cambridge
University in 1991. He was elected a Member of the
US National Academy of Sciences and also a Foreign
Member of the Royal Society. He was elected as
a Member of the Hungarian Academy of Sciences
in 1956. But these laurels rested lightly on his
shoulders. He always gave away the prize money
he received for a good mathematical cause. When
interviewed for the documentary n Is a Number,
Erdős said that he would trade all his awards for
a nice theorem and its proof. To him what was
important was to prove and conjecture.

An academician must be judged not only by the
quality and significance of his contributions but
also by the work of his direct disciples and many
others he influenced through his ideas. In 1998 Tim
Gowers of Cambridge University was awarded the
Fields Medal. Gowers was in a sense a grand student
of Erdős, because Gowers received his PhD under
the direction of Bela Bollobás, who was a disciple
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First page of the handwritten manuscript

“Ramanujan and I” by Erdős, which he wrote for

the Ramanujan Centennial.

of Erdős. The Fields Medal to Gowers was a major
recognition by the international mathematical
community of the importance of combinatorial
methods and the kind of mathematics that Erdős
pursued. This was followed by the 2006 Fields
Medal to Terence Tao for contributions to many
areas of mathematics, especially to the field of
additive combinatorics. The award of the 2012
Abel Prize to E. Szemerédi, a protege of Erdős, is yet
another recognition for Erdős-type mathematics
and for the Hungarian mathematical tradition.
Even though Erdős started out in number theory
and made several pioneering contributions to
that area, in later years his attention was mostly
directed towards combinatorics, graph theory, and
discrete mathematics, and he strongly influenced
the development of these fields. If Erdős were alive
today, he would be the happiest person to see
that combinatorics and discrete mathematics have
been given their due place in mathematics.
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Note Added in Proof

Very recently there has been tremendous progress
on both the small gap and large gap problems.
Maynard [25] has stunned the world by showing
that the gap between primes can be made made
≤ 600 infinitely often. Following Zhang’s bounded
gap theorem, the Polymath Project led by Tao had
achieved a bound of 4,680 vastly improving Zhang’s
bound of seventy million, but Maynard has reduced
this even further. Maynard is awarded the 2014
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SASTRA Ramanujan Prize for this achievement
and other results. See [27] for the latest results on
the bounded gap problem. In the last few months,
Ford-Green-Konyagin-Tao [24] and Maynard [26]
have announced a solution to the Erdős $10,000
problem by showing that the constant in Rankin’s
lower bound can be made arbitrarily large. The
methods in [24] and [26] are different.
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László Lovász and Vera T. Sós

Erdős Centennial

It would be impossible to discuss the tremendous
work of Paul Erdős especially in such a short article.
All we can do is to contribute some impressions
and ideas about the nature of his work, flavored
by some quotations from letters of Erdős and
by a few personal impressions and experiences.
Several “mathematical,” and not only mathematical,
biographies of Erdős were written, among these
we mention here two thorough ones written by
Babai [2] and Bollobás [6]. His work was treated in
depth in a number of volumes containing expert
articles [20], [21], [22], [24], and even on the pages
of these Notices [4].

The idea of the present issue of the Notices
arose in connection with the Erdős Centennial
Conference we organized in summer 2013. To be
precise, we organized three Paul Erdős conferences
in Budapest: The first took place in 1996, one day
after his funeral. At that one-day meeting, our
goal was to give an immediate short survey of
his oeuvre, a demonstration of his unique role
in mathematics in the past seven decades. The
second conference took place three years later,
in 1999, when our primary aim was to cover as
much as possible the full scope and richness of his
mathematics and its impact. The third conference
was in 2013 to celebrate the hundredth anniversary
of his birth. The intention of this third one was to
give a panorama of the monumental development
originating in his mathematics, of the wide-ranging
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Paul Erdős and Paul Turán were great

mathematicians, close friends, and partners in

several important collaborations.

influence of his work, and to give some indication
of possible trends in the future. The success of the
conference surpassed all our expectations: more
than twice as many mathematicians participated
as we first expected, illustrating the tremendous
interest in his work and its proceeds.

Trying to collect a few thoughts about the
character of Erdős’s mathematics, our starting
point could be what he wrote in a letter that
included a scientific biography written by him in
the late 1970s:

To finish this short outline of my scientific
biography, I observe that most of my papers
contain some type of combinatorial reason-
ing and most of them contain unsolved
problems.

Indeed, a special trait all across his work was
his unparalleled power of formulating and posing
problems and conjectures. He had a special sense
for asking just the right questions: how else can
we explain that many of his innocent-looking
problems have opened up new areas, in some cases
after several decades? He wrote the first “problem
paper” in 1956 [9], which contained six problems.
After more than half a century, in spite of the many
important results and methods initiated by this
paper, none of these six problems is completely
solved.
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In one of his letters from 1979 he wrote:

I am writing a paper with the title: ‘Com-
binatorial problems I would most like to
see solved’—the subjective title is better
because then I do not have to write about my
opinion on the importance of the problems.

While Erdős often just asked a problem in a very
compact form without mentioning any reasons,
these problems were not as spontaneous as it
would seem. An example: In a letter to Paul Turán
in 1938 he formulated a conjecture about the
maximum number of k-element subsets of an n-
element set with the property that any two of them
intersect in at least r points. He mentioned that
with the help of Ko he could prove the case r = 1,
and he added the remark: “The theorem could
have beautiful applications in number theory.” The
proof was published only in 1961 in a famous
paper by Erdős, Ko, and Rado [15], but possible
applications in number theory are not mentioned
in the paper.

In its simplest form, the Erdős-Ko-Rado Theorem
says that to get the largest number of k-subsets
of an n-set (n ≥ 2k) that mutually intersect,
one should take all k-subsets containing a given
element. When reading such a statement, one
realizes that many similar problems can be raised
about subsets of a finite set, and then, depending
on one’s temperament, one might escape, or one
might be challenged by, the fact that such basic
questions are unsolved. Luckily, Erdős and several
others felt the challenge, and over a relatively short
period a wealth of basic questions in extremal set
theory were answered. The theorems of Sperner
(about sets not containing each other), Erdős-de
Bruijn (about sets, any two intersecting in exactly
one element), Erdős-Rado (about sets among which
no three mutually have the same intersection)
and Kruskal-Katona (about k-sets covering the
least number of r -sets) are not only standard
theorems in combinatorics textbooks, but they
have very important applications in geometry,
number theory, computer science, and elsewhere.
These problems, which arise in a very simple and
natural way, are often quite difficult to solve, and
in some cases a complete solution is still missing
after decades of intensive research.

Another characteristic of his mathematics was
that very often his questions and proofs reveal
deep relationships between different areas in
mathematics. Even though he was never directly
involved in computer science, he had an essential
influence on it, mostly through extremal set theory
and the probabilistic method. These connections
could not have been foreseen, except perhaps
by Erdős himself. (About this aspect of his work
see Babai [3].) Using his own words from the late
seventies:

I am basically a pure mathematician and
had little contact with applied mathematics,
I expect that my paper with Rényi on
the evolution of random graphs will be
used in several branches in science—Rényi
planned to work in this direction but was
prevented by his untimely death. Graham,
Szemerédi and I [16] have a paper on
problems raised by computer scientist but
I am not competent enough to judge their
importance for applications.

Erdős started out as a number theorist, and
number theory remained present in his mathemat-
ics all the time. There are several survey articles
dealing with his work on the theory of primes,
equidistribution, diophantine approximation, addi-
tive and multiplicative number theory, and many
more. Discovering the combinatorial nature of
some of his early number theory problems led him
to general questions in combinatorics and in graph
theory. He writes in his above-quoted “scientific
biography”:

My main subjects are: number theory (a
subject which interested me since early
childhood when I learned from my father
Euclid’s proof that the number of primes is
infinite), combinatorial analysis, set theory,
probability, geometry and various branches
of analysis.

His work in set theory often arose from combi-
natorics as infinite versions of finite problems. His
problems and results in geometry and algebra also
have a combinatorial flavor. He was the driving
force behind the development of large areas of
modern combinatorics, including extremal graph
theory and extremal set theory. Since combina-
torics is the best-known area of his work (which is
due, at least in part, to the fact that this was the
focus of his work in his later years), we will not go
into the details of these results.

Another area that Erdős introduced into sev-
eral branches of mathematics is probability. The
interaction with probability is a very hot topic in
number theory, combinatorics, computer science,
and other areas, and the pioneering work of Erdős
is present all over this work. We could talk about
four different ways in which he contributed to this
field.

1. He studied problems in pure probability
theory (often with a combinatorial flavor but
belonging to mainstream probability), like random
walks or the Law of Iterated Logarithm. As to this
last work, let us quote Bollobás [6]: “There are
very few people who have contributed more to the
fundamental theorems in probability theory than
Paul Erdős.”
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2. Starting with problems in number theory, he
showed how to exploit the random-like behavior
of different structures. Let’s quote his own words
[13]:

Heuristic probability arguments can often
be used to make plausible but often hope-
less conjectures on primes and on other
branches of number theory.

The deliberate and systematic application of prob-
ability theory to number theory started with the
celebrated Erdős-Kac theorem [14]. For a detailed
review of the story of this theorem, see the article
of Alladi-Krantz in this issue of the Notices. Erdős
himself wrote about the formation of the Erdős-Kac
theorem several times; let’s quote from [10]:

I conjectured that the convergence of the
three series is both necessary and sufficient
for the existence of the distribution function
(of an additive function) but this I could
not prove due to my gaps of knowledge in
Probability Theory.…After the lecture (of
Kac) we got together…and thus with a little
impudence we would say, that probabilistic
number theory was born.

Elliott writes in his book [8] about this theorem:

This result, of immediate appeal, was the
archetype of many results to follow. It firmly
established the application of the theory of
probability to the study of fairly wide class
of additive and multiplicative functions.

3. Perhaps most important of Erdős’s achieve-
ments is the “probabilistic method,” the use of
probability to prove the existence of certain objects
without explicitly constructing them (and whose
explicit construction is sometimes still open sixty
years later). This issue of the Notices contains other
papers that describe this fundamental method and
its applications, and we can also refer to the books
of Alon and Spencer [1] and Erdős and Spencer
[19].

4. The Erdős-Rényi theory of random graphs
is the first major example of the investigation of
random structures. To be precise, random sets of
integers, random polynomials, random matrices,
and other random structures were considered
before by several mathematicians (including Erdős
and Rényi themselves), but random graphs were
the first where a comprehensive theory arose that
showed how basic properties of these graphs are
different from their deterministic counterparts.
Several books have been written about random
graphs [5], [23]. The Erdős-Rényi random graphs
serve as basic examples in the recent explosion of
random graph models for many real-life networks
(like the Internet and social networks), where the
understanding and explanation of the differences
from this basic model is the main goal.

C
o
u

rt
es

y
o
f

V
er

a
S
ó
s

Paul Erdős with his mother, who travelled with

him around the world until her death in 1971.

Analysis, in particular approximation, interpola-
tion, polynomials, complex functions, and infinite
series, were also in the foreground of his research
from the thirties through the sixties. His analytic
power can be felt in his papers all along. It is best to
quote Paul Turán, who was an early collaborator of
Erdős and wrote a detailed survey on Erdős’s work
on the occasion of his fiftieth birthday [27]. (This
became an important source for many later articles
on Erdős.) Out of the several topics in analysis
which Turán discussed in this paper, let’s quote
what he wrote about the application of probability
in analysis:

“The application of probabilistic methods runs
right through the whole oeuvre of Erdős and this
holds for his works in analysis as well. In this
connection I have in my mind especially three of
his papers, the first of which was published in
1956 in the Proc. London Math. Soc. with Offord
[17], the second in 1959 in the Michigan Math. J.
with Dvoretzky [7], the third will be published with
Rényi in the volume to be issued to celebrate the
75th birthday of György Pólya [18]. In the first they
showed that if εν = ±1, then the 2n equations

1+ ε1x+ · · · + εnxn = 0

have, with at most o
(
2n/

√
log logn

)
exceptions,

2

π
logn+ o

(
log

2
3 n log logn

)

real roots each.
“The second gives an existence proof of the

nice theorem that there exists a power series
∞∑
0

eiαn√
n z

n with real αn that diverges on the whole

unit circle (that this can be achieved excluding a set
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(From l to r) George Graetzer, Paul Erdős, Paul

Turán and Alfred Renyi.

of measure zero was known). In the third they solve
an old problem of Zygmund in connection with
a theorem of N. Wiener. This theorem of Wiener
states (in a weakened form) that if the series

∑

ν

(aν cos lνx+ bν sin lνx),

where the lν ’s are positive integers satisfying

lim
ν→∞

(lν+1 − lν) = ∞

is Abel-summable in an arbitrarily small interval
(a, b) to a function f (x) belonging to L2, when
we have

∑
(a2
ν + b2

ν) < ∞, hence the series is the
Fourier series of a function belonging to L2 on,
the whole [0,2π], thus f (x) has an extension to
[0,2π] that is in L2 and whose Fourier series is the
given series. Ingham, Zygmund and Marcinkiewicz
and the author of these lines gave much simpler
proofs of this theorem than the original; some
twenty years ago Zygmund raised the question
whether the theorem can be extended to a class
Lq with q > 2 in the place of L2. Now Erdős
and Rényi with probabilistic methods showed for
every q > 2 the existence of a trigonometric series
satisfying the above lacunarity condition that is
summable to a function continuous in (a, b) for
every 0 < a < b < 2π and still the series is not the
Fourier series of any function belonging to Lq on
[0,2π].”

Erdős was always very supportive of young
people. In the 1960s, when the Cold War began
to melt and he started to spend more time in
Budapest, he would often sit in the lobby of his
hotel all day, with students and young researchers
coming and going, discussing their new results,
and learning about new developments and new
problems from all over the world. One of us (the
first author) was lucky enough, as a high school
student, to have the opportunity to stay there
and take part in these discussions. The effect of
these discussions on how to look at mathematics,

research, colleagues, science, and the world has
lasted a lifetime.

From this experience, and in general from the
attitude of Erdős towards open problems, conjec-
tures, dissemination of ideas and collaboration,
his basic (probably unstated) philosophy can be
distilled: he believed in total openness in research,
where the goal is to advance knowledge, and we
all work together to achieve it.

Let me (the second author) also mention my first
and last meeting with Paul Erdős—the beginning
and the end of almost fifty years of acquaintance
and more than three decades of collaboration,
partly in several hundreds of letters. I met Erdős
the first time in 1948, when he returned to Hungary
after a break of ten years. My high school teacher,
Tibor Gallai, one of Erdős’s best friends, introduced
me to him. I cannot recall the particulars of our
conversation, but I am sure he asked mathematical
questions, as he usually did when meeting young
people interested in mathematics. However, I
remember that because of a long break his visit
had a special significance. Let me say a few words
about this.

Erdős and Gallai were members of the now
legendary “Anonymus group.”1 The members of
this group met regularly during their university
years at the Statue of Anonymus in City Park
in Budapest. Lifelong friendships were formed
between them, and their meetings had a deep
impact on their professional lives as well.

Arranged by Mordell, Erdős spent the years
1934–38 in Manchester. During this period he
returned to Hungary quite regularly three times
a year for shorter visits. In 1938 he decided to
leave Hungary, with its adverse and deteriorating
political situation. He had to leave his family, he
had to leave his friends. Then came the war years;
Erdős returned to Budapest only ten years later
to see his mother and his friends. This was the
occasion when, in December 1948, I met Erdős for
the first time.

In September 1996 we both attended a graph
theory conference in Warsaw. Our plan was to
go from Warsaw, together with András Sárközy,
to Vilnius to participate in a number theory
conference the following week. On the morning of
Wednesday, September 18, he gave his very last
problem lecture. The last problem he mentioned
was a problem of Hajnal (and perhaps himself). He
got stuck, started again, and this was repeated two

1László Alpár (1914–1991), Pál Erdős (1913–1996), János
Erőds, (1912–1944), Ervin Feldheim (1912–1944), Géza
Grünwald (1913–1944), Tibor Grünwald (Gallai) (1912–
1992), Eszter Klein (1910–1975), Dezső Lázár (1913–1943),
György Szekeres (1911–1975), Pál Turán (1910–1976),
Márta Wachsberger (Sved) (1911–2005), Endre Weiszfeld
(1913–1976).
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more times. After the third attempt, he put down
the chalk and finished the talk. The audience broke
out in applause, and he responded, “Thank you. I
know this is meant as a consolation!” There was an
excursion the same afternoon, which he skipped,
partly because of the cold weather. Instead of that,
the rest of the day became the last hours we spent
together, switching between topics and problems
perhaps more often than at other times. Paul Erdős
passed away on Friday, September 20 [26].

Erdős’s brilliant mathematical thinking, pure
character, helpful and sympathizing nature; his
quest for truth in science, politics, everyday life—
these are what motivated his untiring, relentless
activity and creativity until his last days. His
personality is perhaps evoked by the simple lines
he wrote one morning in 1976:

It is six in the morning, the house is still
asleep, I am listening to lovely music, while
writing and conjecturing.2
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Ronald L. Graham and Joel
Spencer

Ramsey Theory and the Probabilistic Method

Ramsey Theory was a lifelong interest of Paul Erdős.
It began [11] in the winter of 1931–32. George
Szekeres recalled:

We had a very close circle of young math-
ematicians, foremost among them Erdős,
Turán and Gallai; friendships were forged
which became the most lasting that I have
ever known and which outlived the up-
heavals of the thirties, a vicious world war
and our scattering to the four corners of
the world. I […] often joined the mathe-
maticians at weekend excursions in the
charming hill country around Budapest and
(in the summer) at open air meetings on the
benches of the city park.

Szekeres, Esther Klein, and Erdős attacked an
unusual geometric problem: Is it true that for every
k there exists an n so that given any n points in
the plane, no three collinear, some k of them form
a convex k-gon? Szekeres, in finding a proof of this
conjecture, actually proved Ramsey’s Theorem,
which none of the three knew about at the time.

The mantra for Ramsey Theory is “Complete
disorder is impossible.” Let s, r , k be positive
integers. Then, Ramsey showed, for n sufficiently
large (dependent on s, r , k), the following holds: Let
Ω have size n. Take any partition of the s-element
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Joel Spencer is professor of mathematics and computer
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subsets of Ω into r colors. Then there will be a k-
element set S ⊂ Ω which is monochromatic, in the
sense that all of its s-element subsets are the same
color. In the important special case s = 2 one may
think of an r -coloring of the edges of the complete
graph Kn. While Erdős was not the originator of
Ramsey Theory, he was its chief proponent, with
conjectures and theorems in myriad directions
that truly turned Ramsey’s Theorem into Ramsey
Theory.

A natural question arose: Just how big does n
need to be? We’ll restrict here to s = 2, though
the other cases are also important. The Ramsey
function r(k) is the least n such that if the edges
of the complete graph Kn are red/blue colored,
then there will necessarily be a monochromatic Kk.

The proof of Szekeres worked for n =
(

2k−2
k−1

)
so

that, thinking asymptotically, r(k) < (4+ o(1))k.
In 1947 Erdős published a three-page paper [3] in
the Bulletin of the AMS that had a profound effect
on both the Probabilistic Method and on Ramsey
Theory.

Theorem. Let n, k satisfy
(
n

k

)
21−(k2) < 1.

Then r(k) > n. That is, there exists a two-coloring of
the edges ofKn such that there is no monochromatic
Kk.

Today, for those in the area, the proof is
two words: Color Randomly! Consider a random

coloring of the edges. For each of the
(
n
k

)
sets S

of k vertices there is a probability 21−m, m =
(
k
2

)
,

that the m edges are all colored the same. The
probability of a disjunction is at most the sum
of the probabilities, and so the disjunction has
probability strictly less than one. Thus with positive
probability the coloring is as desired. But (this part
is sometimes called Erdős Magic) if there were no
such coloring, then the probability would be zero,
so, reversing, the coloring absolutely positively
must exist.

Asymptotic analysis (from Erdős’s paper) gives
r(k) > (

√
2 + o(1))k. There have been some im-

provements in both the upper and lower bounds,
most notably by David Conlon, but only for lower-
order terms. The gap between

√
2 and 4 has not

moved since 1947 and is a central question in the
field.

In 1950 [7], with Richard Rado, Erdős began
the area of canonical Ramsey Theory. Let S be an
ordered set. They gave four special colorings of the
pairs of S: They could all have the same color; they
could all have different colors; the color of {x, y}
with x < y could be different for different x and the
same for the same x; the color of {x, y} with x < y
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could be different for different y and the same
for the same y . These they called the canonical
colorings of the pairs of S. Fix k and consider any
coloring (no restriction on the number of colors)
of the pairs of Ω with Ω = {1, . . . , n}. Then, for n
sufficiently large they showed that there must be
a k-set S ⊂ Ω on which the coloring is canonical
(there were similar results for triples, etc.).

Generalizing r(k) the Ramsey function r(l, k) is
the least n such that if the edges of the complete
graph Kn are red/blue colored, then there will
necessarily be either a red Kl or a blue Kk. The
special case l = 3 was a lifelong fascination of
Erdős. Associating red/blue with whether or not an
edge is in the graph, r(3, k) ≤ n means that every
triangle-free graph on n vertices must contain
an independent set of size k. The argument of

Szekeres from 1931–3 showed that n =
(
k+1

2

)
has

this property. In 1957 Erdős gave an intriguing
geometric construction showing R(3, k) > k1+c

for a small constant c. He returned [4] to the
problem in 1961 with a probabilistic tour de force.
He considered a random graph on n vertices
with adjacency probability p = ǫn−1/2, ǫ a small
constant. Such a graph G will have many triangles.
But then Erdős ordered the edges of G and
considered them sequentially. He rejected an edge
if it would form a triangle, thus tautologically
forming a triangle-free subgraph H. Erdős then
employed an array of probabilistic techniques that
would be impressive even today, but that they
were done so early is simply amazing. With them
he showed that with high probability the graph
H would not have an independent set of size
k = c√n lnn. Reversing the variables, this gave
r(3, k) > c1k

2 ln−2 k. For forty years, while alternate
proofs of this result were given, the asymptotics of
this lower bound were unchanged. In the meantime,
Ajtai, Komlós, and Szemerédi improved the upper
bound to R(3, k) = O(k2/ lnk). In 1995 [10] (with
Peter Winkler and Steve Suen) Erdős returned once
again to the lower bound. This time, rather than
use an arbitrary ordering, they looked at a random
ordering. They applied what we would call today a

random greedy algorithm:3 the
(
n
2

)
potential edges

were ordered randomly; an edge was rejected when
it would form a triangle with previously accepted
edges. Their analysis only improved the constant
c1 of Erdős’s 1961 paper. But it opened the door,
and soon after Jeong Han Kim [12], using a minor
modification of the random greedy algorithm,
improved the lower bound to r(3, k) = Ω(k2/ lnk),
thus resolving the asymptotics of r(3, k) up to
a constant factor. Indeed, Tom Bohman in 2009
showed that Erdős’s random greedy algorithm

3While Erdős’s work has been tremendously influential in the
analysis of algorithms, he himself never used that language.
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(From l to r) Fan Chung, Vera Sós, and Paul Erdős

in Budapest.

did give Kim’s result, although his proof involved
elaborate modern methods. However, to illustrate
our lack of knowledge here, the best current
bounds on r(4, n) are only

cn
5
2

log2 n
< r(4, n) <

c′n3

log2 n

for suitable positive constants c, c′. In particular,
we don’t even know the correct exponent of n!

In 1956 Erdős [8], with Richard Rado, expanded
the study of Ramsey’s Theorem to infinite cardinals.
Let a setΩ have cardinalityα. Let the pairs {x, y} ⊂
Ω be split into a finite number of classes. What is
the largest β such that there exists a set S ⊂ Ω of
cardinality β which is monochromatic? There are
many surprises. For example, assuming the Axiom
of Choice, when α is the continuum there is a
two-coloring of the pairs so that no monochromatic
set S has more than countable size. Erdős also
explored Ramsey’s Theorem on countable ordinals.
Here is a representative beautiful result of Jean
Larson: Let the pairs on ωω be colored red and
blue. Then there exists either a red triangle or a
blue set S of ordinal type ωω.

Coloring to avoid a monochromatic set (or
proving that this cannot be done) was another
problem that fascinated Paul Erdős over many
decades. In 1963 he began [5] the study of perhaps
the purest form of the problem. Let Ai , 1 ≤ i ≤m,
be m sets in some universe Ω, each with n

elements. No assumption about the size of Ω nor
the intersection patterns is made. It is convenient
to parametrize m = k2n−1. Erdős showed that if
k < 1, then the family is two-colorable; that is,
there exists a two-coloring of the vertices ofΩ such
that no set is monochromatic. The proof today:
Color Randomly! Letm(n) be the largest value ofm
such that every family could be two-colored. With
this notation m(n) ≥ 2n − 1, Erdős immediately
asked for the asymptotics of m(n). In 1964 he
showed m(n) ≤ cn22n by taking random sets in
an appropriately chosen Ω. This upper bound
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has not been improved. In 2000 Radhakrishnan
and Srinivasan colored an arbitrary family with
k = c

√
n/ lnn by first randomly coloring and then

applying an ingenious recoloring algorithm. This
result was recently duplicated independently by
Cherkashin and by Kozik. Kozik’s algorithm is the
simplest: Order the vertices randomly. Color a
vertex blue unless it would create a blue set; then
color it red. Random greedy! Uncle Paul would
have been pleased.

Motivated by the difficulty of finding r(l, k),
it was natural to extend the class of desired
monochromatic objects to include all graphs and
not just complete graphs. Thus, in the simplest
case, for two given graphs G and H, we define the
Ramsey number r(G,H) to be the least integer
r (guaranteed to exist by Ramsey’s Theorem) so
that in any red/blue coloring of the edges of the
complete graph Kr , there must always be formed
either a red copy of G or a blue copy of H. This
generalization has proved to be very fruitful, with
literally many hundreds of papers dealing with
these questions since they were first raised in the
early 1970s. (Erdős himself was an author of more
than fifty of them!)

One of the earliest (simple) results in this area
was the following:

Theorem. r(G,H) ≥ (χ(G)− 1)(c(H)− 1), where
χ(G) denotes the chromatic number of G and c(H)
denotes the cardinality of the largest connected
component of H.

An immediate consequence of this is the
following elegant result:

Theorem. r(Tm, Kn) = (m − 1)(n − 1)+ 1, where
Tm denotes a tree on m vertices.

Let us use the usual “arrow” notation H →
(G,G) to denote the fact that any two-coloring
of the vertices of the graph H always produces
a monochromatic copy of the graph G. Further,
denote by C(G) the class of graphs H for which
H → (G,G) but such that for any proper subgraph
H′ ⊆ H, it is not true thatH′ → (G,G). Such graphs
H are called Ramsey-minimal for G. An interesting
unsolved problem is to determine those graphs
G for which C(G) is infinite. It is known that this
is the case, for example, when G is 3-connected
or G has chromatic number at least 3 or when
G is a forest which is not the union of stars. A
nice conjecture involving C(G) is the following: If
C(G) is finite and G′ is formed from G by adding
disjoint edges, then C(G′) is also finite.

From the simplest arrow relation K6 → (K3, K3)

(the celebrated “party” problem), it follows that any
graph H containing K6 as a subgraph also satisfies
H → (K3, K3). Erdős and Hajnal already asked in the
1960s for an example of the graphH not containing

K6 as a subgraph for which H → (K3, K3). It was
shown that the smallest such graph has eight
vertices and is formed by removing a 5-cycle from
K8. A much more challenging question was to find
such a graph which had no K4 as a subgraph. This
was finally settled by a brilliant construction of
Jon Folkman. Unfortunately, his example had more
than 101010

vertices. This prompted Erdős to offer
a prize for the first example of a “Folkman” graph
with fewer than 1010 vertices, a prize that one of
the authors (JS) was proud to claim. Unfazed, the
other author (RG) then offered a reward of $100 to
show that there was a Folkman graph with fewer
than 106 vertices. This remained unresolved until
2007 when L. Lu constructed a Folkman graph
with only 9,697 vertices. The next year this bound
was lowered to 941 by Dudek and Rödl. Both of
these results used techniques from spectral graph
theory. The current record (in 2012) is 786 and
is held by Lange, Radziszowski, and Xu. There
is some evidence that the best possible bound
is below 100 (and RG offers $100 for a proof or
disproof of this).

Some forty years ago, Erdős and Graham con-
jectured that in some sense, the complete graph
had the largest Ramsey number among all graphs
with the same number of edges. Since it is known

that r(Kn) > 2
n
2 and Kn has

(
n
2

)
edges, it was

then conjectured that there is an absolute con-
stant c such that for any graph G with m edges,
r(G) < 2c

√
m. This was finally proven [13] in 2011

by Sudakov. However, the (somewhat) related
conjecture that for any graph H with chromatic
number n, r(H) ≥ r(Kn) is still unresolved.

We say that a graph H is d-degenerate if
every subgraph has a vertex of degree at most d.
Equivalently, there is an ordering of the vertices of
H such that each vertex has at most d edges “to
the left.” A conjecture of Erdős and Stephan Burr
from the 1970s has been quite influential:

Burr-Erdős Conjecture. For each positive inte-
ger d, there is a constant c(d) such that every
d-degenerate graph H satisfies r(H) < c(d)n.

In other words, d-degenerate graphs (fixing d)
have linearly growing Ramsey numbers. While this
conjecture is still unsettled, it has served as a
focal point for a variety of results related to it.
The best result in this direction up to now is the
recent striking result of Fox and Sudakov which
shows that there is a constant c(d) so that any

d-degenerate graph H satisfies r(H) < 2c(d)
√

lognn.
(Close, but no cigar!)

In fact, there are quite a few of the very first
questions raised by Erdős which are still unan-
swered. One of the nicest is the following. Denote
by r(G;k) the least integer r such that if the edges
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of Kr are k-colored, then a monochromatic copy
of G will always be formed. (Again, the existence
of r(G;k) follows from Ramsey’s Theorem.) What
is the true order of growth for r(C3;k) as k

tends to infinity (where Ct denotes a cycle with
t edges)? The best current bounds available are
essentially 2k < r(C3;k) < 2(k+ 2)!. Is it true that
for some constant A, we have r(C3;k) < Ak? Is it
true that r(C5;k) > r(C3;k)? Can one show that
r(C2m+1;k) > r(C3;k) for fixedm and k large? Our
lack of knowledge here is painfully obvious.

Another direction in Ramsey Theory pioneered
by Erdős and the authors (together with P. Mont-
gomery, B. Rothschild, and E. Straus) in a series
of papers [6] published some forty years ago
had a geometrical flavor. Let’s call a (finite) point
configuration C ⊆ Em Ramsey if for every positive
integer r there is a number N = N(r) such that
for any r -coloring of the points in EN , there is
always formed a homothetic copy of C which is
monochromatic (i.e., a set C′ obtained by some
Euclidean motion of C). It is known that the
Cartesian product of Ramsey sets is Ramsey. Since
any 2-point set is Ramsey, then any subset of the
vertices of a rectangular parallelepiped is Ramsey.
On the other hand, it can be shown that any
Ramsey configuration must lie on the surface of
some Euclidean sphere. Thus, the collinear set
T = {0,1,2} of the three vertices of the degenerate
triangle T is not Ramsey. In fact, it is a nice exercise
to show if the points x ∈ En are four-colored
by color (x) = ⌊‖x‖2⌋ (mod 4), then there is no
monochromatic copy of T . It is not known if this is
possible using only three colors. A long-standing
conjecture is the following.

Conjecture A. A configuration is Ramsey if and
only if it is spherical.

Recently, an alternative conjecture has been
proposed by Leader, Russell, and Walters. Let us
call a configuration C transitive if it has a transitive
symmetry group. Furthermore, let us say that a
configuration C′ is subtransitive if it is a subset
of a transitive configuration. Leader et al. noted
that all configurations which had been shown to
be Ramsey are in fact subtransitive. Consequently,
they conjectured:

Conjecture B. A configuration is Ramsey if and
only if it is subtransitive.

Interestingly, neither of these conjectures im-
plies the other. Conjecture A implies that all finite
subsets of a circle are Ramsey. On the other hand,
it has been shown that almost all 4-point subsets
of a circle are not subtransitive. The strongest
results on this problem so far are due to Kříž,
who showed that C is Ramsey if it has a solvable
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(From l to r) Paul Erdős, Ron Graham, and Fan

Chung in Hakone, Japan, in 1986.

transitive group of symmetries. Thus, the set of
vertices of a regular n-gon is Ramsey.

We close with several tantalizing (simple!)
Euclidean Ramsey conjectures.

Conjecture. In any 2-coloring of the points in
the plane, every 3-point configuration must occur
monochromatically, with the possible exception of
the set of three vertices of some fixed equilateral
triangle.

It is easy to two-color E2 by half-open alter-

nating red/blue strips of width
√

3
2 which avoids

monochromatic copies of the three vertices of a
unit equilateral triangle.

On the other hand, we have:

Conjecture. For any 3-point configuration C3 of
the plane, there is some three-coloring of the points
of the plane which contains no monochromatic
copy of C3.

Clearly, there is a lot more to be done before we
have a complete understanding of these questions.
Now that Uncle Paul can read proofs from THE
BOOK, we are sure that he is annoyed for not
having seen the answers while he was still with us!
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Jean-Pierre Kahane

Bernoulli Convolutions and Self-similar

Measures after Erdős

A Personal hors d’øeuvre

I never collaborated with Paul Erdős and didn’t
meet him very frequently. However, I regarded
him, and believe he regarded me, as a friend.
Several hundreds of mathematicians all around
the world may feel the same—anyway it is a strong
personal feeling of mine. I wasn’t his closest friend
by far. His closest French friend was Jean-Louis
Nicolas, who is much younger and entertained
Paul in Limoges and Lyons. Jean-Louis collaborated
with Paul and wrote beautiful papers about him
[N1], [N2], [N3]. As a detail let me mention their
common interest in highly composite numbers, a
term coined by Ramanujan for numbers like 60
or 5040 that have more divisors than any smaller
number [E1], [EN], [N4]; my own interest was in
the implicit occurrence of the notion in Plato’s
utopia: 5040 is the best number of citizens in a city
because it is highly divisible (Laws, 771c). Through
Nicolas my Erdős number is 2.

I met Paul Erdős for the first time in Amsterdam
in 1954 at the International Congress of Math-
ematicians. He was a famous mathematician, a
famous nonwinner of the Fields Medal in 1950. He
was not a member of the Hungarian delegation;
he came from Jerusalem, where he had already
worked with Aryeh Dvoretsky. I had just published

Jean-Pierre Kahane is professor emeritus at the Uni-
versité Paris–Sud à Orsay. His email address is jean-

pierre.kahane@u-psud.fr.

my doctoral thesis, written under the supervision
of Szolem Mandelbrojt, and it had very little to
do with the mathematics of Erdős. Our common
point was that my wife, who is of Hungarian origin,
was there and spoke Hungarian. Since then he
always asked me about her and her health and later
about my children and grandchildren—epsilons
and epsilon-squares—and he asked me about pol-
itics and about mathematical questions he had
in mind: regularly the last few times about an
exponent which describes how close to a constant
the absolute value of a polynomial of degree n can
be when the coefficients have absolute value 1. He
remembered the exponent I had published and
regularly forgot.

Shortly after 1954, I read the book of Paul Lévy
on Brownian motion. Paul Lévy was impressed by
a discovery of Dvoretsky, Erdős, and Kakutani on
multiple points of the Brownian motion in the
plane, namely, the existence of multiple points
of nondenumerable order [DEK1], [DEK2]. It is
a beautiful result indeed. Here is a reinforced
version of the theorem, due to Jean-François Le
Gall: Consider a compact set on the real line
with empty interior, K, and a plane Brownian
motion; then the plane Brownian motion has
almost surely a K-multiple point z, meaning that
the reciprocal image of z is homeomorphic to K
through an increasing mapping [LG]. In turn this
result impressed Wendelin Werner when he began
to work on the plane Brownian motion with Le Gall
as advisor. In this way Erdős (1954) is related to
the Fields Medal received by Werner in 2006.

The Main Course: Bernoulli Convolutions

In 2000 Yuval Peres, William Schlag, and Boris
Solomyak published a beautiful study on “Sixty
years of Bernoulli convolutions” [PSS]. The starting
point was the seminal papers of Erdős in 1939
and 1940. Since 2000 and quite recently, Bernoulli
convolutions and self-similar measures were the
subjects of bright contributions, including the
brilliant lecture of Elon Lindenstrauss at the Erdős
Centennial July 2013 [L]. Old conjectures remain
and new ones appear. The quite recent paper of
Pablo Shmerkin [Sh] gives new results and an
excellent exposition of the whole subject. I shall
try to describe the impulse given by Erdős and how
things progressed with the notations in use today.

Given λ in the open interval (0,1), we consider
the random series

(1)
∞∑

n=0

±λn,

where the signs + and − are chosen at random,
independently each from the others, with proba-
bility 1/2. The sum is a random variable whose
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distribution is the Bernoulli convolution under
consideration,

(2) νλ =
∞∗
n=0

1

2
(δλn + δ−λn),

and the characteristic function is the infinite
product

(3) ν̂λ(ξ) =
∞∏

n=0

cosλnξ .

When λ = 1
2 , νλ is nothing but 1

4× Lebesgue

measure on (−2,2). When λ <
1

2
, νλ is carried

by a Cantor set whose ratio of dissection is

λ. This set has Hausdorff dimension log 2
log 1/λ ; it

is self-similar, meaning that it is the union of
two disjoint homothetic copies with ratio λ; and
νλ is the natural measure thereon, giving equal
masses to equal portions. When λ > 1

2 , (1) takes

every value between −1
1−λ and 1

1−λ and νλ is a
self-similar measure, meaning the average of two
copies obtained by similarities of ratio λ (affine
functions with main coefficient λ). It has been
known since 1935 [JW], [KW] that νλ is either
absolutely continuous or purely singular with
respect to the Lebesgue measure

(4) νλ≪ Lebesgue or νλ ⊥ Lebesgue .

To decide between these two possibilities according
to the value of λ is the first and the main question
when λ > 1

2 .
This question was considered by Erdős in two

papers published in 1939 and 1940 by the American
Journal of Mathematics [E2], [E3]. The first deals
with the question: when is

(5) lim sup
ξ→∞

ν̂λ(ξ) > 0?

According to Riemann-Lebesgue, this can’t happen
when νλ is absolutely continuous; therefore (5)
implies that νλ is singular.

The question makes sense for λ > 1
2 as well

as λ < 1
2 , but the implications are quite different:

when λ < 1
2 , νλ is singular and (5) has a meaning in

the Riemann-Cantor theory of trigonometric series
[Z] ; when λ > 1

2 it is a way—the only way we have
up to now—to find λ for which νλ ⊥ Lebesgue. In
any case it is convenient to introduce

(6) θ = 1/λ

and to use the formula

(7) ν̂λ(tθ
Nπ) =

N∏

n=1

cos(tθnπ)
∞∏

n=0

cos(tλnπ)

where 1 ≤ t < θ. When θ is an integer> 2, choosing
t = 1 gives (5). The same works whenever all θn are
very close to integers. Erdős observed that it is the
case indeed when θ is a Pisot-Vijayaraghavan or
Pisot number, that is, an algebraic integer whose

conjugates (other than θ itself) lie inside the unit
circle of the complex plane (Erdős’ condition).

It was the beginning of a long story where
Raphaël Salem played the major role. First, includ-
ing the integers larger than 2 among the Pisot
numbers, the Erdős condition is necessary and
sufficient for (5) to hold. Then, considering the
case λ < 1

2 , the Erdős condition is necessary and
sufficient for the support of νλ, the Cantor set
described by (1), to be a set of uniqueness, or
U -set, for trigonometric series; that is, the only
trigonometric series that converges to 0 out of
the set is the null series. This is one of the most
striking relations between the theory of numbers
and trigonometric series [S]. Finally, the set of Pisot

numbers is closed [S]. Already 1+
√

5
2 and the real

root of x3−x−1 = 0 had been recognized as Pisot
numbers lying in the interval (1,2): it happens
that the first is the smallest accumulation point of
Pisot numbers, and the second, the smallest Pisot
number [BDGPS].

The set of Pisot numbers, denoted by S, is now
well understood [BDGPS], [M]. It is not the case for
a companion introduced by Salem, the set T of
algebraic integers τ whose conjugates other than
τ lie in the closed disc |z| ≤ 1 with one at least
(then all but two) on the boundary |z| = 1. Those
numbers τ are now called Salem numbers. Every
θ ∈ S is a limit in both directions of a sequence
of τ ∈ T , and no other accumulation point of T
is known [S]. Is 1 an accumulation point for T? A
section of [PSS], entitled “Bernoulli convolutions
and Salem numbers,” is devoted to this question,
still unsolved.

The second paper of Erdős [E3] goes in the
opposite direction: when is νλ ≪ Lebesgue? His
approach is another question: when is

(8) ν̂λ(ξ) = O(ξ−α) (ξ →∞)
for some α > 0? His answer is that (8) holds for
some α ≃ α(λ) > 0 for almost all λ. More exactly,
given α > 0, there exists δ > 0 such that (8) holds
for almost all λ ∈ (1 − δ,1). When (8) holds, we
can make use of the identity

(9) ν̂√λ(ξ) = ν̂λ(ξ)ν̂λ(ξ
√
λ)

and its analogues to get
(10)
ν̂√λ(ξ) = O(ξ−2α) , ν̂λ1/k(ξ) = O(ξ−kα) (ξ →∞) .
As soon as kα > 1/2, the measureνλ1/k is absolutely
continuous with density in L2; when kα > 1 the
density is continuous, and so on. That is a way to
obtain information for λ near 1 from information
for λ belonging to any interval. Anyway, νλ ≪
Lebesgue for almost all λ belonging to some
interval (1− δ,1).

No progress was made for a long time. Adriano
Garcia in 1962 gave a new method to find explicit
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values of λ for which νλ≪ Lebesgue, with bounded
density. Here is a typical result of his: If θ is an
algebraic integer with norm 2 and all conjugates
outside the disc |z| ≤ 1, then νλ≪ Lebesgue with
bounded density [G].

The short report that I published on these
questions in 1971 contains an exposition of
Erdős’s proof in twelve lines (tersely written,
according to [PSS]) with an improved conclusion:
E0, the λ-set such that (8) fails for every α > 0, is
0-dimensional. In the statements of Erdős that I
gave above, “almost all” can be replaced by “except
on a 0–dimensional set” [K]. The combinatorial
argument was later developed by Peres, Schlag,
and Solomyak ([PSS], Proposition 6.1) and used by
Shmerkin ([Sh], Propositions 2.2 and 2.3). However,
the numerical consequence expressed in [PSS] is
rather poor: if we want to have (8) with α = 0.6
(therefore νλ is absolutely continuous with density
in L2) when λ ∈ (1− δ,1)\G with dimG < 1, the
combinatorial argument provides 1 − δ = 2−2−10

,
that is, δ ≃ 0.00066.

The first breakthrough was realized by Solomyak
in 1995: νλ is absolutely continuous with density
in L2 for almost all λ in

( 1
2 ,1

)
[So], [PS]. The second

is quite recent: the exceptional set for which νλ is
singular is not only of Lebesgue measure 0, but
it is also 0-dimensional [Sh]. This last result, due
to Pablo Shmerkin, echoes and uses another quite
recent and deep discovery of Michael Hochman:
Except for a λ-set of dimension 0, νλ has dimension
1, meaning that νλ(B) = 0 when dimB < 1 (we
assume always 1

2 < λ < 1) [H].
Extensions and new developments on non-

symmetric Bernoulli convolutions (+ and − in (1)
having unequal probabilities) and on self-similar
measures (not restricted to the real line) can be
found in [PSS], [L], [Sh] and the references therein.

Going back to the questions: 1) when is νλ ≪
Lebesgue? 2) when is (8) valid for some α > 0
(power decay of ν̂λ)? the answer is that they hold
whenever λ ∈

( 1
2 ,1

)
\E, E being a 0-dimensional

set. E is not the same in question 1 and question 2;
let us write E1 and E2 accordingly. We know that
E1 contains the inverses of the Pisot numbers < 2.
It is easy to see that E2 contains the inverses of the
Salem as well as the Pisot numbers, and also θ−1

as soon as θn tends to 0 modulo 1 (n → ∞). The
study of those θ by Charles Pisot in 1938 should
be mentioned here [P]. First, the result the set of
those θ is denumerable. Then, the question does it
contain anything other than Pisot numbers? And
finally the proof: it is easy, but it is a paradigm
for the combinatorial argument now known as
Erdős-Kahane [PSS], [Sh].

Dreams and Goals

All investigations on the asymptotic behavior of
the infinite product (3) rely on the formula (7):

ν̂λ(tθ
Nπ) =

N∏

n=1

cos(tθnπ)
∞∏

n=0

cos(tλnπ) ,

where θ = 1/λ and 1 ≤ t < θ. The second product
is bounded, and the first involves the behavior of
tθn modulo 1. Erdős in 1939 used the fact that
θn modulo 1 tends to 0 rapidly when θ is a Pisot
number. Let us look at the most classical result,
going back to Hardy and Littlewood [HL] and to
Hermann Weyl [W]: given t , the distribution of tθn

modulo 1 is uniform on R/Z for almost every θ. It
implies that

lim
N→∞

1

N

N∑

n=1

log | cos(tθnπ)|

=
∫ 1

0
log | cosπx|dx = − log 21;

therefore, given t , almost every λ in (0,1) satisfies

(11) ν̂λ(tθ
Nπ) = O(2−N+εN) (N →∞)

and

(12) ν̂λ(tθ
Nπ) = Ω(2−N−εN) (N →∞)

for all ε > 0. For almost every λ in (0,1) (11) and
(12) hold a.e. in t , but O(·) and Ω(·) depend on λ
and t . Let us write

(13) g(λ) = sup{α : ν̂λ(ξ) = O(ξ−α) (ξ →∞)} .
According to (12) we have a.e. in λ,

(14) g(λ) ≤ − log 2

logλ
.

If we forget that O(·) in (11) depends on λ and t ,
we may dream and ask the question: Is it true that

(15) g(λ) = − log 2

logλ

for almost every λ in (0,1)? That is asked with a
wrong factor 1

2 in [K]; then a negative answer was
given by Peres and Solomyak [PSo]. Here is what
they proved. Writing

(16) λn =
(2n
n

)
2−2n

(λ1 =
1

2
, λ2 =

3

8
, λ3 =

5

16
, . . . , λn ∼

1√
πn

(n →∞)),
we have

(17)

{
ν̂λ ∈ L2n(R) for almost all λ ∈ (λn,1),
ν̂λ ∉ L

2n(R) for all λ < λn .

We recover Solomyak’s theorem when n = 1. The
negative answer was obtained for n = 2 and λ = 1

4 .

1
M denoting the mean value M(log | cosπx|) = M

(log | sinπx|) = M(log | sin 2πx|) = M(log | cosπx|) +
M(log | sinπx|)+ log 2. I am indebted to Mrs Anne Raoult
for this footnote.
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A weak point of the beautiful result (17) is that
all λn lie in

(
0, 1

2

)
. In order to have estimates on( 1

2 ,1
)
, Peres and Schlag considered weighted L2

instead of L2n. Here is a typical result: Suppose

J = [λ0, λ
′
0] ⊂

[ 1
2 ,0.68

]
and λ

1+2γ
0 >

1
2 ; then

(18)

∫ ∫

R×J
|ν̂λ(ξ)|2 |ξ|2γdξdλ <∞;

hence

(19) ν̂λ(ξ) = o(ξ−γ) (ξ →∞)
for a.e. λ ∈ J [PSS, section 7] .

This is far from (15), but it is an important step in
estimating g(λ).

A general goal is the study of g(λ) on (0,1). What
happens “in general”? What happens in exceptional
cases, or particular cases, has interesting relations
with the theory of numbers. We already saw that
g(λ) = 0 for Pisot and Salem numbers. When λ
is a Garcia number, it was proved recently that
g(λ) > 0 [DFW].

Let me express ancient problems [S] as dreams:
1) “θn modulo 1 tends to 0” implies that θ is

Pisot.
2) A limit of Salem numbers is Pisot.
And here is the main dream on Bernoulli

convolutions:
νλ ⊥ Lebesgue implies that λ is Pisot.
The behavior of powers modulo 1 is the matter

of new investigations and problems [B, BM, K1].
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[EN] Paul Erdős and Jean-Louis Nicolas, Répartition
des nombres super abondants, Bulletin Soc. Math.
France 103 (1975), 65–90.

[G] Adriano Garsia, Arithmetic properties of
Bernoulli convolutions, Trans. Amer. Math. Soc.
102 (1962), 409–432.

[H] Michael Hochman, On self–similar sets with
overlap and inverse theorems for entropy, Ann.
of Math. (2) 180 (2014), 773–822.

[HL] G. H. Hardy and J. E. Littlewood, Some prob-
lems of diophantine approximation, Acta Math.
37 (1914), 155–191; cf. p. 183.

[JW] Børge Jessen and Aurel Wintner, Distribution
functions and the Riemann zeta function,Trans.
Amer. Math. Soc. 38 (1935), 48–88.

[K] Jean-Pierre Kahane, Sur la distribution de
certaines séries aléatoires, Colloque Th. Nom-
bres [1969, Bordeaux], Bull. Soc. Math. France,
Mémoires 25 (1971), 119–122.

[K1] Jean-Pierre Kahane, Sur la répartition des puis-
sances modulo 1, C.R. Acad. Sci. Paris, série 1, 352

(2014) 383–385.
[KW] Richard Kershner and Aurel Wintner, On sym-

metric Bernoulli convolutions, Amer. J. Math. 57

(1935), 541–548.
[L] Elon Lindenstrauss, Bernoulli convolutions and

self similar measures, Invited Plenary Lecture,
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Melvyn B. Nathanson

Paul Erdős and Additive Number Theory

Additive Bases

Paul Erdős, while he was still in his twenties,
wrote a series of extraordinarily beautiful papers
in additive and combinatorial number theory. The
key concept is additive basis.

Let A be a set of nonnegative integers, let h be
a positive integer, and let hA denote the set of
integers that can be represented as the sum of
exactly h elements of A, with repetitions allowed.
A central problem in additive number theory is
to describe the sumset hA. The set A is called
an additive basis of order h if every nonnegative
integer can be represented as the sum of exactly
h elements of A. For example, the set of squares
is a basis of order 4 (Lagrange’s theorem), and
the set of nonnegative cubes is a basis of order 9
(Wieferich’s theorem).

The set A of nonnegative integers is an as-
ymptotic basis of order h if hA contains every
sufficiently large integer. For example, the set of
squares is an asymptotic basis of order 4 but
not of order 3. The set of nonnegative cubes is
an asymptotic basis of order at most 7 (Linnik’s
theorem) and, by considering congruences modulo
9, an asymptotic basis of order at least 4. The
Goldbach conjecture implies that the set of primes
is an asymptotic basis of order 3. Helfgott [18]
recently completed the proof of the ternary Gold-
bach conjecture: Every odd integer n ≥ 7 is the
sum of three primes.

The modern theory of additive number theory be-
gan with the work of Lev Genrikhovich Shnirel’man
(1905–1938). In an extraordinary paper [38] pub-
lished in Russian in 1930 and republished in an
expanded form [39] in German in 1933, he proved
that every sufficiently large integer is the sum
of a bounded number of primes. Not only did
Shnirel’man apply the Brun sieve, which Erdős sub-
sequently developed into one of the most powerful
tools in number theory, but he also introduced a

Melvyn B. Nathanson is professor of mathematics at
Lehman College (CUNY). His email address is melvyn.

nathanson@lehman.cuny.edu.

new density for a set of integers that is exactly the
right density for the investigation of additive bases.
(For a survey of the classical bases in additive
number theory, see Nathanson [28].)

Shnirel’man Density and Essential Components

The counting functionA(x)of a setAof nonnegative
integers counts the number of positive integers in
A that do not exceed x, that is,

A(x) =
∑

a∈A
1≤a≤x

1.

The Shnirel’man density of A is

σ(A) = inf
n=1,2,...

A(n)

n
.

The sum of the sets A and B is the set A + B =
{a+ b : a ∈ A and b ∈ B}. Shnirel’man proved the
fundamental sumset inequality:

σ(A+ B) ≥ σ(A)+ σ(B)− σ(A)σ(B).
This implies that if σ(A) > 0, then A is a basis of
order h for some h. This does not apply directly
to the sets of kth powers and the set of primes,
which have Shnirel’man density 0. However, it is
straightforward that if σ(A) = 0 but σ(h′A) > 0
for some h′, then A is a basis of order h for some
h.

Landau conjectured the following strengthening
of Shnirel’man’s addition theorem, which was
proved by Mann [23] in 1942:

σ(A+ B) ≥ min(1, σ(A)+ σ(B)).
Artin and Scherk [1] published a variant of Mann’s
proof, and Dyson [4], while an undergraduate at
Cambridge, generalized Mann’s inequality to h-fold
sums. Nathanson [27] and Hegedüs, Piroska, and
Ruzsa [17] have constructed examples to show
that the Shnirel’man density theorems of Mann
and Dyson are best possible.

We define the lower asymptotic density of a set
A of nonnegative integers as follows:

dL(A) = lim inf
n=1,2,...

A(n)

n
.

This is a more natural density than Shnirel’man
density. A set A with asymptotic density dL(A) = 0
has Shnirel’man density σ(A) = 0, but not con-
versely. A set A with asymptotic density dL(A) > 0
is not necessarily an asymptotic basis of finite
order, but A is an asymptotic basis if dL(A) > 0
and gcd(A) = 1 (cf. Nash and Nathanson [24]).

The set B of nonnegative integers is called an
essential component if

σ(A+ B) > σ(A)
for every set A such that 0 < σ(A) < 1.
Shnirel’man’s inequality implies that every set
of positive Shnirel’man density is an essential

140 Notices of the AMS Volume 62, Number 2



component. There exist sparse sets of zero asymp-
totic density that are not essential components.
Khinchin [20] proved that the set of nonnegative
squares is an essential component. Note that the
set of squares is a basis of order 4. Using an
extremely clever elementary argument, Erdős [6],
at the age of twenty-two, proved the following
considerable improvement: Every additive basis is
an essential component. Greatly impressed, Lan-
dau celebrated this result in his 1937 Cambridge
Tract Über einige neuere Fortschritte der additiven
Zahlentheorie [22].

Plünnecke [33], [34], [35] and Ruzsa [37] have
made important contributions to the study of
essential components.

The Erdős-Turán Conjecture

In another classic paper, published in 1941, Erdős
and P. Turán [5] investigated Sidon sets. The set
A of nonnegative integers is a Sidon set if every
integer has at most one representation as the sum
of two elements of A. They concluded their paper
as follows:

Let f (n) denote the number of representa-
tions of n as ai+aj , … . If f (n) > 0 for n > n0,
then lim sup f (n) = ∞. Here we may mention
that the corresponding result for g(n), the
number of representations of n as aiaj , can
be proved.

The additive statement is still a mystery. The
Erdős-Turán conjecture, that the representation
function of an asymptotic basis of order 2 is
always unbounded, is a major unsolved problem
in additive number theory.

Many years later, in 1964, Erdős [7] published
the proof of the multiplicative statement. This
proof was later simplified by Nes̆et̆ril and Rödl [32]
and generalized by Nathanson [26].

Long ago, while a graduate student, I searched for
a counterexample to the Erdős-Turán conjecture.
Such a counterexample might be extremal in
several ways. It might be “thin” in the sense that
it contains few elements. Every asymptotic basis
of order h has counting function A(x) ≥ cx1/h for
some c > 0 and all sufficiently large x. We call
an additive basis of order h thin if A(x) ≤ c′x1/h

for some c′ > 0 and all sufficiently large x. Thin
bases exist. The first examples were constructed
in the 1930s by Raikov [36] and by Stöhr [40], and
Cassels [2], [29] later produced another important
class of examples.

Alternatively, an asymptotic basis A of order
h might be extremal in the sense that no proper
subset of A is an asymptotic basis of order h. This
means that removing any element of A destroys
every representation of infinitely many integers.
It is not obvious that minimal asymptotic bases
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exist, but I was able to construct asymptotic bases
of order 2 that were both thin and minimal [25].
Of course, none was a counterexample to the
Erdős-Turán conjecture.

Stöhr [41] gave the first definition of minimal
asymptotic basis, and Härtter [16] gave a non-
constructive proof that there exist uncountably
many minimal asymptotic bases of order h for
every h ≥ 2.

There is a natural dual to the concept of
a minimal asymptotic basis. We call a set A
an asymptotic nonbasis of order h if is not an
asymptotic basis of order h, that is, if there are
infinitely many positive integers not contained in
the sumset hA. An asymptotic nonbasis of order
h is maximal if A ∪ {b} is an asymptotic basis
of order h for every nonnegative integer b ∉ A.
The set of even nonnegative integers is a trivial
example of a maximal nonbasis of order h for
every h ≥ 2, and one can construct many other
examples that are unions of the nonnegative parts
of congruence classes. It is difficult to construct
nontrivial examples.

I discussed this and other open problems in my
first paper [25] in additive number theory. I did not
know Erdős at the time, but I mailed him a preprint
of the article. It still amazes me that he actually
read this paper sent to him out of the blue by a
completely obscure student, and he answered with
a long letter in which he discussed his ideas about
one of the problems. This led to correspondence,
meetings, and joint work over several decades.

Extremal Properties of Bases

Here is a small sample of results on minimal bases
and maximal nonbases.

Nathanson and Sarközy [31] proved that if A is
a minimal asymptotic basis of order h ≥ 2, then
dL(A) ≤ 1/h. The proof uses Kneser’s theorem [21]
on the asymptotic density of sumsets, one of the
most beautiful and most forgotten theorems in
additive number theory. A well-known special case
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is Kneser’s theorem for the sum of finite subsets
of a finite abelian group.

Erdős and Nathanson [14] proved that for every
h ≥ 2, there exist minimal asymptotic bases of
order h with asymptotic density 1/h. Moreover,
for every α ∈ (0,1/(2h− 2)), there exist minimal
asymptotic bases of order h with asymptotic
density α. In particular, for every α ∈ (0,1/2]
there exist minimal asymptotic bases of order 2
with asymptotic density α.

Does every asymptotic basisA of order 2 contain
a minimal asymptotic basis of order 2? Sometimes.
Let f (n) count the number of representations of n
as the sum of two elements of A. If f (n) > c logn
for some c > (log(4/3))−1 and all sufficiently large
n, then A contains a minimal asymptotic basis
of order 2 (Erdős-Nathanson [13]). This result is
almost certainly not best possible.

Does every asymptotic basis of order 2 contain
a minimal asymptotic basis of order 2? No. There
exists an asymptotic basis A of order 2 with the
following property: If S ⊆ A, then A \ S is an
asymptotic basis of order 2 if and only if S is finite
(Erdős-Nathanson [12]).

There exist “trivial” maximal asymptotic non-
bases of order h consisting of unions of arithmetic
progressions [25]. However, for every h ≥ 2 there
also exist nontrivial maximal asymptotic non-
bases of order h (Erdős-Nathanson [8], [11] and
Deshouillers and Grekos [3]).

Is every asymptotic nonbasis of order h a subset
of a maximal asymptotic nonbasis of order h?
Sometimes. If A ∪ S is an asymptotic nonbasis
of order 2 for every finite set S ⊆ N \ A, then A
contains a maximal asymptotic nonbasis of order
2.

Is every asymptotic basis of order h a subset
of a maximal asymptotic nonbasis of order h? No.
Hennefeld [19] proved that for every h ≥ 2 there
exists an asymptotic nonbasis A of order h such
that if S ⊆ N \ A, then A ∪ S is an asymptotic
nonbasis A of order h if and only if the set
N \ (A∪ S) is infinite.

Investigating extremal properties of additive
bases is like exploring for new plant species in the
Amazon rainforest. Much has been collected, but
much more is unimagined. The following results
about oscillations of bases and nonbases appear
in [9], [10].

There exists a minimal asymptotic basis of
order 2 such that A \ {x} is a maximal asymptotic
nonbasis of order 2 for every x ∈ A.

There exists a maximal asymptotic nonbasis of
order 2 such that A∪ {y} is a minimal asymptotic
basis of order 2 for every y ∈ N \A.

There exists a partition of the nonnegative
integers into disjoint sets A and B such that A is

a minimal asymptotic basis of order 2 and B is a
maximal asymptotic nonbasis of order 2.

There exists a partition of the nonnegative
integers into disjoint sets A and B that oscillate
in phase from minimal asymptotic basis of order
2 to maximal asymptotic nonbasis of order 2 as
random elements are moved from the basis to the
nonbasis infinitely often.

It is an open problem to extend these results to
asymptotic bases of order h ≥ 3. For a survey of
extremal problems in additive number theory, see
Nathanson [30].
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