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Reflections on Problem Solving Theory and Practice  
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Abstract: In this article, the author reflects on the current state of mathematical problem 
solving, both in theory and in instruction. The impact of the book Mathematical Problem 
solving (Schoenfeld, 1985) is also discussed, along with implications of problem solving 
today with the advent of 21st century technologies.   
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Introduction 

My book Mathematical Problem Solving (Schoenfeld, 1985), which I shall refer 

to as MPS) was published more than 25 years ago. MPS, which was fundamentally 

concerned with research and theory, had been developed in dialectic with a course in 

problem solving at the university level. The book provided a theoretical rationale for the 

course, and evidence that it worked; the course was an existence proof that, with the 

“right” kinds of instruction, students could become more effective problem solvers. The 

book-plus-course addressed a series of theoretical and pragmatic questions, some of 

which they answered, some of which they suggested answers to, and some of which they 

left unaddressed. Either directly or by logical extension the ideas in the book had the 

potential for significant curricular impact, if the “lessons” in them were taken seriously. 

The question is, what has been the fate of the ideas that the book and the course 

embodied? Which ideas survived, which flourished? Which evolved in unpredictable 
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ways, which withered with unfulfilled promise? I am grateful to the editors for the 

opportunity to reflect on the past and to think about future opportunities. 

I begin by describing what, in my opinion, were the achievements, failures, and 

potential of that early work (which, of course, built upon and reflected the state of the 

field in 1985). This is followed by a characterization some of the main outcomes of the 

evolution of problem solving research and development. There is, of course, a huge 

literature on problem solving. It is impossible to do justice to that literature, and my 

comments will be selective. My most general comments are based, in part, on the volume 

Problem solving around the world – Summing up the state of the art (Törner, Schoenfeld, 

& Reiss, 2008). That volume provides a recent overview of theory and practice (and to 

some degree, curricular politics) in a wide variety of nations. This article will update my 

article in that volume (Schoenfeld, 2008), characterizing recent and potentially significant 

events in the U.S.  

 

Problem Solving as of 1985 – a retrospective view 

In theoretical terms, what MPS offered in 1985 was a framework for the analysis 

of the success of failure problem solving attempts, in mathematics and hypothetically in 

all problem solving domains. “Problem solving” at its most general was defined as trying 

to achieve some outcome, when there was no known method (for the individual trying to 

achieve that outcome) to achieve it. That is, complexity or difficulty alone did not make a 

task a problem; solving a system of 100 linear equations in 100 unknowns without the 

use of technology might be a real challenge for me, but it is not a problem in the sense 

that I know how to go about getting an answer, even if it might take me a very long time 

and I agonize over the computations. 
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The core theoretical argument in MPS, elaborated slightly in Schoenfeld (1992), 

was that the following four categories of problem solving activity are necessary and 

sufficient for the analysis of the success or failure of someone’s problem solving attempt: 

a) The individual’s knowledge;   

b) The individual’s use of problem solving strategies, known as heuristic 

strategies;   

c) The individual’s monitoring and self-regulation (an aspect of metacognition); 

and 

d) The individual’s belief systems (about him- or herself, about mathematics, 

about problem solving) and their origins in the students’ mathematical 

experiences. 

Regarding (a), little needs to be said; one’s mathematical knowledge is clearly a 

major determiner of one’s mathematical success or failure.  Regarding (b): In 1985 I 

singled out heuristic strategies for special attention, because my major intuition when I 

began doing research on problem solving was that, with the right kinds of help, students 

could learn to employ the heuristic problem solving strategies described by Pólya 

(1945/57, 1954, 1962,65/81). Regarding (c): research over the course of the 1970s and 

early 1980s had revealed that how well problem solvers “managed” the resources at their 

disposal was a fundamental factor in their success or failure. When working complex 

problems, effective problem solvers monitored how well they were making progress, and 

persevered or changed direction accordingly. Unsuccessful problem solvers tended to 

choose a solution path quickly and then persevere at it, despite making little or no 

progress (see, e.g., Brown, 1987; Garofalo & Lester, 1985).  Finally, regarding (d): by the 
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time that MPS was published, many counterproductive student beliefs, and their origins, 

had been documented. For example, students whose entire mathematical experience 

consisted of working exercises that could be solved in just a few minutes came to believe 

that “all problems can be solved in five minutes or less,” and ceased working on 

problems that they might have been able to solve had they persevered. 

By these categories of behavior being “necessary and sufficient” for the analysis 

of problem solving success or failure, I meant that: 

They were necessary in the sense that if an analysis of a problem solving failed to 

examine all four categories, it might miss the cause. It was easy to provide 

examples of problem solving attempts for which each of the four categories above 

was the primary cause of success or failure. 

They were sufficient in that (I posited that) no additional categories of behavior 

were necessary – that the root cause of success or failure would be found in 

categories (a) through (d) above.  

In MPS I claimed that the framework described above applied for all of 

mathematical problem solving; I had ample evidence and experience to suggest that that 

would be the case. I conjectured, on the base of accumulated evidence in other fields, that 

the framework applied to all problem solving domains, broadly construed. If you take 

problem solving in any of the sciences, there was a face value case for the framework. 

The relevant knowledge and strategies would be different in each domain – knowledge 

and heuristic strategies are different in physics or chemistry than in mathematics – but it 

was easy to se that the framework fit. But the potential application was broader. Consider 

writing, for example. Someone who sits down to write an essay, for example, is engaging 
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in a problem solving task – the task being to create a text that conveys certain 

information, or sways the opinion, of a particular audience. Various kinds of knowledge 

are relevant, both factual and in terms of text production. Writers use heuristic strategies 

for outlining, using topic sentences, etc. They can profit from monitoring and self-

regulation; or they can lose track of their audience or argument, thus wasting time 

producing text that will ultimately be discarded. Finally, beliefs are critically important: 

the writer who believes that writing simply consists of writing down what you think will 

produce very different text from the writer who believes that crafting text is a challenging 

art requiring significant thought and multiple edits. 

In sum, MPS offered a framework for analyzing the success or failure of problem 

solving, potentially in all problem solving domains. At the same time, the work reported 

in MPS had significant theoretical limitations. My analyses of problem solving all took 

place in the lab: one or two individuals sat down to work on problems that I had chosen. 

In various ways, this represented very significant constraints on their problem solving, 

and thus on my analyses. First, they were given the tasks. In most real-world problem 

solving, the tasks emerge in practice and have a history or context of some sort. Second, 

the goals were pre-determined (the students were to solve my problem) and the problems 

themselves were fixed. In problem solving “au naturel,” goals and the problems 

themselves often change or emerge in interaction. Third, the timescale was relatively 

short. Fourth, social interactions were minimal. Fifth and most important, MPS offered a 

framework, highlighting what was important to examine in order to explain success or 

failure.  What MPS did not offer was a theory of problem solving – a characterization that 

allowed one to explain how and why people made the choices they did, while in the midst 
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of problem solving. All of these were limitations I wished to overcome. My ultimate 

theoretical goal has been to provide a theoretical explanation that characterizes, line by 

line, every decision made by a problem solver while working on a problem (trying to 

achieve one or more complex goals) in knowledge intensive, highly social, goal-oriented 

activities.  In 1985 that goal was far beyond what the field could do.  

Let me now turn to issues of practice. First and foremost, MPS was an existence 

proof, at multiple levels. At the macro level, the book provided evidence that my problem 

solving courses really worked – that my students became much more effective problem 

solvers, being able to solve more and more difficult unfamiliar problems after the course 

than before. At a finer level of grain size, examining students’ work after the course 

showed that it was indeed possible for the students to master a range of problem solving 

heuristics; that they could become more effective at monitoring and self-regulation; and 

that on the basis of their experiences in the course, students were able to evolve much 

more productive beliefs about themselves and mathematics. At a yet finer level of grain 

size, MPS offered a methodological blueprint for developing problem solving instruction.  

The challenge in 1975, when I began my problem solving work, was that heuristic 

strategies “resonated” – when mathematicians read Pólya’s books his descriptions of 

problem solving strategies felt right – but, it had not yet been possible to teach students to 

use such strategies effectively.  A major realization was that Pólya’s descriptions of the 

strategies were too broad: “Try to solve an easier related problem” sounds like a sensible 

strategy, for example, but it turns out that, depending on the original problem, there are at 

least a dozen different ways to create easier related problems. Each of these is a strategy 

in itself; so that Pólya’s name for any particular strategy was in fact a label that identified 
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a family of strategies. Once I understood this, I could “take apart” a family by identifying 

the main strategies that fell under its umbrella. I could teach each of those particular 

strategies (e.g., solving problems that had integer parameters by looking at what 

happened for n = 1, 2, 3 , 4 . . . ; looking at lower-dimensional versions of complex 

problems; etc.), and when the students had learned each of these, they had mastery of the 

family of strategies that Pólya had named. What that meant was that understanding and 

teaching Pólya’s strategies was no longer a theoretical challenge, but an empirical one. 

One could imagine a purely empirical, pragmatic program: take the main heuristic 

strategies identified by Pólya; consider each as a family of strategies and decompose 

them into their constituent parts; and work out a straightforward instructional program 

that enabled students to learn each of the constituent strategies.  In this way, it should be 

possible to make problem solving accessible to all students. I hoped that some such work 

would take place. 

 

A quarter-century later . . . 

Issues of theory 

Here there is good news, both in terms of what has been achieved and how the 

theoretical horizon has expanded. As noted above, the major challenge with regard to 

problem solving was to build a theory of problem solving, rather than a framework for 

examining it. More broadly, the challenge was to build a theory of goal-oriented decision 

making in complex, knowledge-intensive, highly social domains. Mathematical problem 

solving or problem solving in any content area, is an example. The goal is to solve the 

problem; knowledge (including knowledge of various strategies) is required; and, 

depending on the context, the problem solving activities may be more or less socially 



  Schoenfeld 

 

engaged. Mathematics (or other) teaching is another, much more complex activity. The 

goals here are to help students learn mathematics. Achieving those goals calls for a huge 

amount of knowledge and strategy, and for deploying that knowledge amidst dynamically 

changing circumstances: when a student suddenly reveals a major misconception, for 

example, or it becomes apparent that the class does not have a good grip on something 

that the teacher thought they understood, the current “game plan” has to be revised on the 

spot and something else put in its place. In fact, if you can model decision making during 

teaching, it is straightforward to model decision making in other complex knowledge-

intensive domains such as medical practice, electronic trouble-shooting, and more.  

By “model” I mean the following. One needs to specify a theoretical architecture 

that says what matters, and say how decision making takes place within that architecture. 

Then, given any instance of such decision making (e.g., problem solving or teaching), 

one should be able to identify the things that matter in that instance, and show how the 

decision making took place in a principled way (that is, through a structured model 

consistent with the theoretical architecture), using only the constructs in the theoretical 

architecture to build and run the model. By way of crude analogy, think of Newton’s 

theory of gravity as providing a theoretical architecture (the inverse square law) for 

characterizing the motion of a set of objects. For each object (say the planets in our solar 

system, plus the sun) the some parameters need to be specified: mass, position , direction, 

velocity. The model of the solar system is given these data for time T, and the theory is 

used to specify these parameters for time T+1.  The theory, then, is general; each model 

(whether of our solar system or some other galactic system) is a specific instantiation of 

the theory. The quality of any particular model is judged by how well the behavior of the 
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objects represented in the model corresponds to the behavior of the objects being 

represented. (A model of the solar system had better produce motion that looks like the 

motion of the planets in our solar system!) The quality of the theory is judged by its 

accuracy and it scope – what is the range of the situations for which it can generate 

accurate models? (A theory that only modeled two-body gravitational systems wouldn’t 

be very exciting.) 

Twenty-five years after MPS was published, my new book How We Think 

(Schoenfeld, 2010) builds on the earlier work and lays out the structure of a general 

theory of in-the-moment decision making. The architecture it describes is 

straightforward: what one needs for a theoretical account of someone’s decisions while 

that person is engaged in a familiar goal-oriented activity such as problem solving, 

teaching, or medical practice is a thorough description of: 

a) The goals the individual is trying to achieve;   

b) The individual’s knowledge (and more broadly, the resources at his or her 

disposal);   

c) The individual’s beliefs and orientations (about himself and the domain in 

which he or she is working); and 

d) The individual’s decision-making mechanism. 

These categories represent the natural evolution of the categories in the 1985 

framework. Regarding (a), depicting the goals is necessary in that the theory describes a 

much broader spectrum of behavior than problem solving. Depending on context, one’s 

highest priority goal may be, for example: to solve a problem; to make sure that one’s 

students understand a particular body of mathematics; or to diagnose a patient 
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appropriately and set him or her on a path toward recovery. Regarding (b), the role of 

knowledge is still central, of course: what one can achieve depends in fundamental ways 

on what one knows.  In my current theoretical view I fold access to and implementation 

of heuristic strategies into the category of knowledge. I always viewed problem solving 

strategies as a form of knowledge, of course – but, in the problem solving work I was 

trying to validate their importance and utility, so they were separated out for special 

attention. In addition, I add “resources” into the category of “what the individual has to 

work with”: the approach one takes to a problem may vary substantially depending on, 

for example, whether one has access to computational tools on a computer. Regarding 

(c), beliefs still play the same central role in shaping what the individual perceives and 

prioritizes as in my earlier work. I have chosen to use the word orientations (including 

preferences, values, tastes, etc.) as a more encompassing term than beliefs because, for 

example, choices of what to purchase for dinner and how to cook it, while modelable in 

terms of the architecture I specify, aren’t necessarily a matter of beliefs. 

Regarding (d), the decision making mechanism in the theory is implemented in 

two ways. If circumstances are familiar – that is, one is collecting homework or going 

over familiar content in class – people use various mechanisms described in the 

psychological literature (scripts, frames, schemata, etc.) that essentially say what to do 

next. If circumstances suddenly vary from the predictable – e.g., a student makes a 

comment indicating a serious misconception, an explanation obviously doesn’t work – 

then it is possible to model the individual’s decision making using a form of subjective 

expected utility. (The various options that might be used are evaluated in light of their 

perceived value to the person being modeled, and the higher a valuation an option 
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receives the more likely the option is to be chosen.) Monitoring and self-regulation, 

which were a separate category in MPS, still play a centrally important role – but here 

they are placed as a major component of decision making. 

To my mind How We Think has roughly the same status today that MPS had in 

1985. The book offers a number of very detailed case studies, showing how a wide range 

of mathematics teaching can be modeled, and an argument suggesting (by virtue of the 

breadth of “coverage” in the cases) that the model applies to all teaching. Then, there are 

suggestions that the theory should suffice to describe goal-oriented decision making in all 

knowledge-intensive fields. This is a heuristic argument similar to the argument I made in 

1985, that the problem solving framework I explicated for mathematics should apply to 

all problem solving disciplines. Time will tell if the theory holds up. 

While How We think brings to fruition one theoretical line of inquiry, it also 

opens up a number of others – lines of investigation that I think will be fruitful over the 

coming decades. These may or may not strike the reader as falling under the banner of 

“problem solving” – but, they should, if the question is, what do we need to know about 

thinking, teaching, and learning environments to help students become more effective 

mathematical thinkers and problem solvers? (I will revisit this question directly when we 

turn to practical issues.)  

My work to date has examined problem solving through the lens of the individual, 

at any point in time. That is, the question has been, how and why does the individual go 

about making decisions in the service of some (problem solving) goals, given what he or 

she knows? These are serious limitations. First, the focus on what is happening in the 

moment ignores questions of learning and development. The person who has worked on, 
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and solved, a problem, is not the same person who began working on it. He or she 

approaches the next problem knowing more than before. So, one question is, how can 

issues of learning and development be incorporated into a theory of decision making? 

This is a deep theoretical question, which may not have immediate practical applications 

– but, if we can trace typical developmental trajectories with regard to students’ (properly 

supported) ability to engage in problem solving, this might help shape curriculum 

development. More generally, if our goal is to theorize cognition and problem solving, 

such issues need to be addressed.  

Second, individuals do not work, or learn, in a vacuum. As will be seen below, 

characterizing productive learning environments – and the norms and interactions that 

typify them – is an essential endeavor, if we are to improve instruction. But learning 

environments are highly interactive, and the ideas that individuals construct are often 

built and refined in collaboration with others. At minimum, a theory of learning and 

cognition that explains how ideas grow and are shared in interaction is critical. There is 

much to be done on the theoretical front. 

Issues of practice 

Here, the question is whether one wishes to view the metaphorical glass as being 

half empty or half full. There is reason to be disheartened, and reason to be encouraged. 

And there is work to be done. 

On the one hand, there are ways in which we could and should be much further 

along in curricular development (and the research that would undergird it) than we are. 

As explained above, there was an implicit blueprint for progress in MPS: the methods I 

described for decomposing heuristic strategies into families of more fine-grained 
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techniques, and finding out how much instruction was necessary for those techniques to 

become learnable, were well enough characterized for others to implement them. That is, 

25 years ago it was theoretically possible to begin a straightforward program of 

development that would result in successful instruction on a wide range of problem 

solving strategies. “All” that was needed was a huge amount of work! That work did not 

get done. There are systemic reasons for this, which Hugh Burkhardt and I (Burkhardt & 

Schoenfeld, 2003) have explored. University reward systems work against this kind of 

work. There is no theoretical “glory” in working through such pragmatic issues, either for 

the individual or in terms of promotion decisions at research universities. Making 

significant progress at the curricular level calls for a team of people, and university 

reward structures are stacked against that as well – our system tends to reward individual 

achievements, and to give less credit for collaborative work. Perhaps for those reasons, 

perhaps because there are fads and fashions in educational research (as in all fields), an 

area that I considered to be fertile ground for practical development went unexplored. I 

think that’s a shame. 

At the same time, some good things have happened in K-12 education. A global 

summary of developments can be found in Törner, Schoenfeld, & Reiss, 2008. Here I 

will summarize the optimistic view regarding the past 25 years in the U.S., and then point 

to the fact that we are at a turning point, where much hangs in the balance.  

In contrast to some nations where a ministry of education or its equivalent makes 

curricular decisions that are implemented nationwide, the U.S. has had what is best 

described as a “loosely coupled” system. For almost all of its history, each of the states 

had its own educational system, which was responsible for setting statewide standards. 
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Historically, textbook decisions have been local – each of the roughly 15,000 school 

districts in the U.S. could choose is own textbooks. Until the past decade, few states had 

statewide assessments, so there was little pressure to “teach to the test.” There were 

homogenizing factors, of course. There were a small number of textbook publishers, so 

textbook choice, though theoretically unconstrained, was limited in practice; and, most 

school districts aimed at preparing their college-intending students for the (essentially 

universal) college calculus course, so the goal state was clearly established. By tradition, 

grades K-8 focused on arithmetic and then pre-algebra; algebra I was taken in 9th grade, 

plane geometry in 10th, algebra II and possibly trigonometry in 11th, and pre-calculus in 

12th. Some students accelerated through calculus in high school; many students dropped 

out of the pipeline altogether. (The generally accepted figure in the 1980s was that each 

year, some 50% of the students at each grade level in secondary school failed to take the 

next year’s mathematics course.) There was huge variation in the courses students took, 

but “traditional” instruction focused mostly on conceptual understanding and mastery of 

skills and procedures. There was a negligible amount of “problem solving,” by any real 

definition. 

In 1989 the National Council of Teachers of Mathematics produced the 

Curriculum and Evaluation Standards for School Mathematics. The volume was intended 

for teachers, and had few references; but the authors knew the problem solving research, 

and it showed. For the first time in a major policy document, there was a significant 

emphasis on the processes of doing mathematics: The first four standards at every grade 

level focused on problem solving, reasoning, communication using mathematics, and 

connections within and outside of mathematics. The U.S. National Science Foundation, 
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recognizing that commercial publishers would not build such textbook series on their 

own, issued a request for proposals for the creation of “Standards-based” texts. In each of 

these texts, the authors elaborated their own vision of what it meant to learn according to 

the Standards. This variety was a good thing: different visions of a richer mathematics, 

focused on problem solving and reasoning, began to emerge. It is hard to get precise 

figures, but some estimates are that 20-25% of the K-12 textbooks in use today are 

Standards-based. Given the vagaries of the “loosely coupled” educational system in the 

U.S., that’s a non-trivial impact for research ideas! (Of course it took 25 years, and the 

ideas don’t necessarily reflect, and may sometimes be contradictory to, the views of the 

original researchers. But that’s the way the system works.)  

So, there has been curricular progress in K-12 mathematics in the U.S., if not as 

much as one would like. Recent political events mean that the progress will either be 

accelerated or blocked, in the near future. As part of an attempt to improve mathematics 

instruction called the “Rate to the Top” initiative (see 

http://www2.ed.gov/programs/racetothetop/index.html), the federal government offered 

fiscal incentives to collections of states that produced high quality standards and plans for 

assuring that students reached them. Given the short time frame to apply for funding, the 

U.S. National (State) Governors Association and the Council of Chief State School 

Officers supported an effort to construct a set of standards for mathematics, known as the 

Common Core State Standards (see http://www.corestandards.org/, from which the 

Common Core State Standards for Mathematics (CCSSM) can be downloaded.)  

As of this writing, 44 of the 50 states have committed to the Common Core 

initiative, meaning that they will replace their current state standards with CCSSM. By 
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federal statute, they will need to use assessments (tests) that are deemed consistent with 

the CCSSM in order to measure student progress toward the goals of CCSSM. Two 

national consortia have been funded to produce assessments consistent with the CCSSM: 

PARCC (the Partnership for Assessment of Readiness for College and Careers; see 

http://www.achieve.org/PARCC) and the SMARTER Balanced Assessment consortium 

(see http://www.k12.wa.us/smarter/). By the time this article appears, both consortia will 

have published their “specs” for assessments consistent with CCSSM. Simply put, those 

assessments (tests) will shape the mathematics experiences of the students in the states 

that have committed to the Common Core State Standards initiative.  As we know, testing 

– especially high-stakes testing – determines the foci of classroom instruction. The 

CCSSM place significant emphasis on what they call mathematical practices, claiming 

that people who are mathematically proficient: 

 Make sense of problems and persevere in solving them.  

 Reason abstractly and quantitatively.  

 Construct viable arguments and critique the reasoning of others.  

 Model with mathematics.  

 Use appropriate tools strategically.  

 Attend to precision.  

 Look for and make use of structure. 

 Look for and express regularity in repeated reasoning.  

If the tests produced by the consortia provide students with opportunities to 

demonstrate such mathematical habits of mind, the tests will serve as a lever for moving 

the K-12 system in productive directions. But, if they consist largely of short answer 
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questions aimed at determining students’ mastery of facts and procedures, they will serve 

impede the kind of progress we have been making over the past 25 years. 

In sum, progress in K-12 has been slow but steady; it may get a boost or a setback 

in the immediate future, depending on the high-stakes tests that the two assessment 

consortia adopt. But there has been significant progress. I wish I could say the same 

about collegiate mathematics over the same time period. For a while calculus reform 

flourished, but it seems to have stabilized and become “same old, same old.”  There have 

been glimmers of excitement surrounding innovations in linear algebra and differential 

equations (stimulated in some part by technology), but not so much that the general 

zeitgeist of collegiate mathematics instruction is noticeably different from what it was 

when I was a math major.  And that was a long time ago! 

 

Rethinking “problem solving” 

I got my “start” in problem solving and I still think that, in some ways, it deserves 

to be called “the heart of mathematics” (Halmos, 1980).  More broadly, there is a view of 

mathematics as the “science of patterns” (Steen, 1988). What I like about this framing is 

that one thinks of science as consisting of systematic explorations – and mathematics as 

we practice it certainly has that character. This broad a framing includes problem posing 

as well as problem solving, and a certain form of empiricism, which was made explicit in 

Pólya’s (1954) title, “patterns of plausible inference.” In doing mathematics we explore; 

we seek systematicity; we make conjectures; and, we use problem solving techniques in 

the service of making and verifying those conjectures. Yet more broadly, we engage in 
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“thinking mathematically” – a title used by John Mason, Leone Burton, and Kaye Stacey 

(1982, 2010) and which I wish I’d thought of. Here I want to push things one step further. 

At heart, doing mathematics – whether pure or applied – is about sense-making. 

We observe an object, or a relationship, or a phenomenon, and we ask: What properties 

must it have? How do we know? Do all objects that look like this have the same 

property? Just what does it mean to “look like this”? Are there different ways to 

understand this? With that mindset, simple objects or observations become the starting 

points for explorations, some of which become unexpectedly rich and interesting. Third 

graders observe that every time they add two odd numbers the sum is even. Must it 

always be so? How would one know? We observe that some numbers can be factored, 

others can’t. How many of the unfactorable kind are there? How can I measure the height 

of a tree without climbing it? How many different crayons do I need to color a map, so 

that every pair of countries that share a border have different colors?  

What I strive to do in my problem solving courses is to introduce my students to 

the idea that mathematics is about the systematic exploration and investigation of 

mathematical objects. Elsewhere (see, e.g., Schoenfeld, 1989; see also Arcavi, Kessel, 

Meira & Smith,  1998; English & Sriraman, 2010) I have described our first-week 

discussions of the magic square. We start with the 3 x 3, which my students solve easily. 

But that is just a start. Did we have to get an answer by trial and error, or are there 

reasons that even numbers go in the corners, and that 5 goes in the center? Is the solution 

unique (modulo symmetry), or are there distinct solutions? Having finished with the 

original 3 x 3, we ask: what if I had nine other integers? Say 2 through 10, or the odd 

numbers from 1 through 17, or any arithmetic sequence? Can we find a magic square for 
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which the sum of each row, column, and diagonal is 87? How about 88? We observe that 

if we multiply all the cells in a magic square by a constant, we get a magic square; if we 

add a constant to each cell, we get a magic square. Thus, we can generate infinitely many 

3 x 3 magic squares. But can we generate all the 3 x 3 magic squares this way?  

The reason for this discussion is that I want to introduce my students to what it 

means to do mathematics. I want them to understand that mathematics isn’t just about 

mastering facts and procedures, but that it’s also about asking questions (problem posing, 

if you will) and then pursuing the answers in reasoned ways. The problem solving 

strategies are tools for sorting things out, seeing what makes the mathematical objects 

and relationships “tick.” So yes, we are solving problems, but as part of a larger sense-

making enterprise. That, in part, is why attending to my students’ beliefs is so important a 

part of the course. Having been “trained” by their prior experience to understand 

(believe) that doing mathematics means “mastering” content selected and organized by 

others; that all problems can be solved in short order, usually by the techniques the 

teacher has presented within the past week; that proofs have nothing to do with 

discovery; and so on2, my students needed to be “untrained” or “retrained” by their 

experiences in my course. Thus I give them extended opportunities to make observations 

and conjectures, and provide them with the tools that enable them to experience the doing 

of mathematics as a sense-making activity. 

My question is, can’t we approach all mathematics teaching this way? I believe 

that all of K-12 mathematics, and a good deal of collegiate mathematics, can be seen as a 

set of sensible answers to a set of sensible questions. Given the pace at which K-12 

                                                 
2 See Schoenfeld (1992) for a list of counterproductive beliefs that students typically 
develop. 
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mathematics proceeds, I am sure that this could be done without any formal loss of 

content. What would be gained is that students would experience mathematics as an 

exciting sense-making domain, which is the way we see it as mathematicians. If K-12 

students truly experienced mathematics that way, I’m willing to be that similarly oriented 

collegiate instruction could build on well-established habits of mind, and proceed much 

more effectively than it currently does. (Despite the fact that the students in my problem 

solving courses through the years could be labeled “the best and the brightest” – it’s a 

non-trivial achievement to get into Berkeley – my feeling has always been that my 

problem solving courses have been remedial in a significant way. The vast majority of 

the students who entered those courses were unaware of basic mathematical problem 

solving strategies, and, as a function of their experience, did not view mathematics as a 

domain that they could make sense of.) 

 

Rethinking Research on Classroom Environments 

A comment made by one of the advisory board members of one of my projects 

(“Classroom Practices that Lead to Student Proficiency with Word Problems in Algebra”, 

NSF grant DRL-0909815), struck me as particularly interesting. Megan Franke (2011) 

noted that, of the various classroom variables she had looked at, the one that seemed to 

have the strongest impact on student learning was the amount of time students spent 

explaining their ideas. This resonates, not only with the discussion of sense-making 

above, but with an emerging body of research focusing on the character of classroom 

environments that support the kinds of rich student engagement and thinking that one 

would like.  Engle, for example (Engle, in press; Engle and Conant, 2002) has developed 
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a “productive disciplinary engagement framework.” Reviewing the best-known examples 

of rich learning environments in mathematics and science, Engle concludes that the most 

powerful learning environments all include aspects of: 

 Problematizing – students participate in the act of framing meaningful 

questions, which the class explores. 

 Agency and authority – students are empowered to seek information, distill it, 

craft arguments, and explain them.  

 Disciplinary accountability – students learn what it is to make claims and 

arguments that are consistent with disciplinary norms. 

 Resources – when tools or information is needed, the students have access to 

them.  

For an elaboration of these ideas with examples drawn from my problem solving 

courses, see Schoenfeld (2012). Gresalfi, Martin, Hand, & Greeno (2009) offer a 

framework (see Fig. 1) that indicates ways on which classroom participation structures 

can lead to differential outcomes in terms of student agency, argumentation, and 

accountability. 
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Fig. 1. A model of how competence gets constructed in the classroom. 
From Gresalfi, Martin, Hand, & Greeno (2009), p. 54, with permission. 

This kind of framework can be useful, as we seek to understand both how to craft 

classrooms more focused on sense making and to document their effects. 

 

Rethinking Technology (a.k.a. entering the 21st century) 

When I took my first statistics class, all of the examples were “cooked.” This was 

before the days of widespread access to calculators and computers, so everything I did 

had to be hand-computable. As a result, the variation of every distribution I worked with 

was a perfect square! The presence of computational technology should have radicalized 

the ways in which our students can engage with statistics, in that no data analysis is now 

an obstacle. Students should be able to ask their own questions and gather their own data. 

Yet, few students have this experience. In Schoenfeld (2012) I give the example of how, 

sitting at my desk in early June and watching it rain, I wondered whether this was 



  TME, vol10, nos.1&2, p .31 
 

 
 

atypical. The San Francisco Bay Area is supposed to have a “dry” season, and it seemed 

that we had gotten more rain than we should have.  Using Google I was quickly able to 

find data regarding annual monthly rainfall and recent rainfall, at which point I could do 

some simple statistical analyses to verify that this year’s June rainfall was anomalously 

high. (In fact, it went on to set a record.)  From my perspective, I was clearly doing 

mathematics. My question is, where do today’s students learn to gather such information 

and to operate on it? Asking questions, seeking data, building models, and drawing 

inferences should be everyday experiences for our students. 

Similarly, the presence of computational tools – whether symbolic calculators, 

graphers, or Wolfram Alpha (see http://www.wolframalpha.com/) – has the potential to 

radically reshape the knowledge to which students have access in mathematics 

classrooms, and the ways they can operate on it. Pure mathematics can become an 

empirical art for students in ways that it was not, even for mathematicians, until recently. 

Where are students learning to harness these skills – not for the sake of learning to be 

fluent with technology, but as means to mathematical ends? There have been some 

inroads along these lines, for example with dynamic geometry software, but for the most 

part these positive examples are the exceptions that probe the rule.  

 

Concluding Comments 

I thank to the editors for the opportunity to think about the current state of 

mathematical problem solving, both in theory and in instruction. I became a mathematics 

educator many years ago because of my love for mathematics and my wish to share it 

with students, who were typically deprived of the pleasures that I consistently 

experienced as a mathematician. Problem solving provided a way into the joys of doing 
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mathematics and the pleasures of discovery. I firmly believe that problem solving – or a 

broader conception of mathematics as sense making – still can do so, and I hope to see us 

make progress along those lines. 
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